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A new band-structure method which allows the self-consistent solution of the Schrodinger equa-

tion with a full (all-electron, non-mu5n-tin) crystal potential has been developed. A basis set con-

sisting of the 9 (16) s, p, and d (f) linear-inuffin-tin orbitals per site is used. The wave functions as

well as the electron density and the potential are split into a smooth "pseudo" part, which is ex-

panded in plane waves, and local parts, which are expressed as spherical-harmonics one-center ex-

pansions. The total-energy functional of density-functional theory is evaluated without any shape

approximation. The usefulness and accuracy of the method is demonstrated by applying it to a
"frozen phonon" in silicon and comparing the results with experiment. The calculated phonon fre-

quency and anharmonic term are in excellent agreement with the experimental data. The method is

generally applicable to systems with delocalized as well as localized orbitals.

I. INTRODUCTION

—V +2I, d r'+U"'[n, r]+V (r) P(r)n (r')
fr —r'/

=E'p(r) . (1.2)

V is the electrostatic potential produced by the nuclei
(in atomic Rydberg units}.

This Schrodinger-type Kohn-Sham (KS} equation has
to be solved self-consistently with the condition

N

n (r) = g ~

1b'(r) [
', (1.3)

In recent years there has been a noticeably growing in-
terest in the first-principles description of solids (for a re-
view, see Ref. 1), i.e., in a description in which the cou-
pling constants of the phenomenological theory are re-
placed by expressions following from the basic quantum
theory of the electron-nucleon system, as discussed, e.g. ,
in Ref. 2. An ab initio foundation of lattice dynamics via
the "frozen-phonon" concept requires a method which
yields accurate total energies or forces. If the Born-
Oppenheimer Approximation is accepted and a density-
functional (DF} formulation for the many-electron
ground-state problem is used, the Hamiltonian describing
the dynamics of the nuclei is

(Pu)H= g " + min E[n(r), tR„]],2m In(r) I

where E [n (r), t R„]] is the electronic energy functional,
which depends on the electronic density n (r) and the nu-
clear positions R„. Its minimum with respect to n(r) is
the ground-state eigenvalue of the many-electron system.
P„ is the momentum of nucleus p, with mass m„.

In the Kohn-Sham scheme the minimum of the func-
tional E is found by solving the corresponding Euler-
Lagrange equation

where the sum runs over the N lowest eigenstates of Eq.
(1.2). Density-functional theory (Dt I'} in the local-
density approximation (LDA} yields an explicit expres-
sion for the total energy, the Kohn-Sham (KS}functional

+ c"'n r n r r+ V rn r r+8'

xc 5 . xc d& + xc
v = E =n +E

5n dn
(1.5)

The ion-ion interaction $V was added to E[n] in order
to obtain the total ground-state energy of the solid.

The application of the theory to lattice statics and dy-
namics (cohesive properties, equilibrium configurations,
phonon frequencies, phase transitions) requires a band-
structure method which is suited to yield accurate charge
densities and accurate total energies or forces.

A widely used method in electronic-structure calcula-
tions is the linear muffin-tin-orbital (LMTO) method, '

which in its simplest solid-state version uses the atomic-
sphere approximation (ASA). The LMTO-ASA method
is very eScient and yields accurate band structures, lat-
tice constants, and bulk moduli. In contrast to methods
like the linear augmented-plane-wave (LAPW) method or
methods which use a pure plane-wave basis in connection
with a pseudopotential, the LMTO method uses a
minimal basis set (9—16 orbitals/sites). Due to the crude
approximations (spherically averaged potential and densi-
ty), the LMTO-ASA method, however, has problems
with the calculation of energy variations due to lattice de-
formations.

In this paper, an LMTO version is developed which, on
the one hand, has the advantages of the small LMTO

(1.4)

where the exchange-correlation (xc) energy density is
connected to the xc potential v"' by
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basis set and its applicability to systems with localized as
well as delocalized states and which, on the other hand,
avoids spheridizing the potentials and the electron densi-
ties in the self-consistency cycle (no shape approxima-
tions). The only approximations of our method are there-
fore those of the finite basis set and the LDA, and we
demonstrate thaf, highly accurate "frozen-phonon" fre-
quencies can be obtained. The method is formulated in
such a way that the calculations can be performed step-
wise in order of increasing complexity and accuracy,
starting from ASA —and going to full-potential self-
consistency. The technique for evaluating the total ener-

gy was developed earlier and applied to various ferroelec-
trics of the perovskite type. * In this paper we complete
the method by showing how the full potential can be in-
cluded in the self-consistency cycle without approxima-
tions.

In the version developed in this paper, the theory is of
an accuracy sufficient for a precise calculation of some of
the quantities necessary for a physical understanding,
e.g. , in the sense discussed in Ref. 2, of unusual phonon
properties. Of special interest are such properties which
are relevant for a description of structural phase transi-
tions.

The paper is organized as follows. In Sec. II the
LMTO Bloch sums are expressed in a way suitable for ac-
curate evaluation of matrix elements and wave functions.
These expressions are then used in Sec. III to calculate
the Hamiltonian and overlap matrix elements. In Sec. IV
the electron density and the resulting Hartree-plus-
exchange-correlation potential are determined and, final-

ly, in Sec. V the total energy functional is evaluated. In
order to check the accuracy and the usefulness of the
method, it was applied to the TO(I ) phonon of silicon,
where experimental information and accurate LAPW and
pseudopotential calculations are available. The numeri-
cal calculations are reported and discussed in Sec. VI,
and Sec. VII gives the summary and conclusions.

XA(r) = g e'" XA(r —Q —T),
T

(2.1)

where A ( = (Q,L ) ) is an abbreviation for the combina-
tion of the collective angular momentum index L
(= jl, m ) },and the site Q in the primitive cell. T are the
translation vectors. The Bloch orbitals are split into a
smooth "pseudo"-LMTO part X ~ (Refs. 5 and 11) which
extends over the entire space, and a local and strongly
varying part which is nonzero only inside the MT spheres
and approaches zero continuously and differentiably at
the boundaries. The pseudo- and the real LMTO are

II. EXPRESSIONS FOR THE BASIS FUNCTIONS

In the present method linear-muffin-tin orbitals5 6

(LMTO's} are used as basis functions. They are con-
structed from a muffin-tin potential V which is ob-
tained from a given full potential V by taking the spheri-
cal average in spheres around the atomic (or interstitial' )

sites. In the interstitial region the solid-state LMTO s are
solutions of the Laplace equation, i.e., V'X=O. The
LMTO's are everywhere continuous and differentiable.

The basis orbitals are Bloch sums of LMTO's,

thus identical in the interstitial region. At the sphere
boundaries X matches onto 7 continuously and
differentiably. The smoothness of 7 allows a plane-wave
representation

X k(r) @—g P (k+G)ei(k+G) r

G

with expansion coefficients of the form

4msq j(+,(Ksq)
F~(K)= (21+1)(2!+3)

(Esq )

(2.2)

(2.3)

Here Q, denotes the unit-cell volume and s& the radius of
the sphere centered at site Q.

The difference between the LMTO and the pseudo-
LMTO is a strongly localized function, X~(r), which
vanishes at and outside spheres and which is everywhere
continuous and differentiable. This function is con-
veniently expressed as the difference between the one-
center spherical-harmonics expansions of the LMTO and
the pseudo-LMTO inside each sphere. These expansions
are' '

X„'"(r)= g e'"' g 4„(r—Q —T)IIA ~
T A'

+4 ( —Q —T)Q" (2.4)

X~"(r)= g e'" g 4~. (r —Q —T)II A„
T A'

+@a'(r—Q —T)~ A'w (2.5)

where the explicit expressions for the 4 functions and the
II and Q matrices are given in Refs. 5 and 6 and are sum-
marized in Appendix A. The spherical-harmonics expan-
sions have infinitely many terms, but, since after a partic-
ular /'—=I,„ the centrifugal term dominates the radial
Schrodinger equation for V, we have 4&.(r)=4&.(r)
and 4t (r) =4&(r) for I' & l,„and hence 11„A= IIA „and
Q„A =QA A, so that the one-center expansion inside any
sphere for the difference function,

X"„(r)=—X'"(r)-X„'"(r), (2.6)

X~(r)=X~(r)+LA(r) . (2.7)

These two contributions to the LMTO Bloch sum are
sketched in Fig. 1(a). In Fig. 1(b} we show X and X, as

is jtnite and stops at l,„. From now on, we shall there-
fore take the sums over I' in (2.4) and (2.5) to be truncat-
ed at I,„, and these equations then define the functions
X'(r) and X '(r).

In conclusion, we have expressed the LMTO as the
sum of a smooth pseudo-LMTO and a remainder which
vanishes continuously and differentiably in the interstitial
region and whose spherical-harmonics expansion inside
any sphere is finite and only has components with
I &1,„,viz. ,
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tion (2.1}. This expression has not yet been used to obtain
the full potential and the corresponding Hamiltonian ma-
trix.

For comparison with the normal LMTO-ASA expres-
sions for the Hamiltonian and overlap matrices, as well as
for the electron density, it is useful to split up the LMTO
Bloch sum into the ASA part plus a remainder, i.e.,

x"„(r)=x,'"(r)+X",(r) .

The latter,

x ~(r)—:x A(r) —x ~"(r),

(2.8)

(2.9)

then equals the LMTO in the interstitial region, is discon-
tinuous at the spheres, and contains merely the high par-
tial waves (I' & I,„),whose radial parts are r', inside the
spheres.

In the following sections we shall evaluate matrix el-
ments between LMTO's, as well as the electron density,
in a practical way. The basic expression will be the fol-
lowing decomposition of the product of two LMTO
Bloch sums:

x"(r)'x" (r') =
I
x & &x

I

=
I
x'&&x'

I
+(

I
x&&x

I

—
I
x'&&x'

I
}

+( I x) (x
I + I

x) (x
I ), (2.10)

FIG. 1. Schematic plot of a Bloch orbital: (a) pseudoorbital
(solid line) and augmentation contribution (dashed line); (b)
pseudoorbital (solid line) in comparison to the truncated one-
center expansions of the real orbital (dashed linc) and the pseu-
doorbital (dotted line).

well as the two discontinuous contributions, g' and X ', to
X.

If overlapping Wigner-Seitz (WS} spheres are used in-

stead of MT spheres, a single-valued orbital is obtained
by taking the superposition of all X's that contribute to
the overlap region.

The reason for expressing the LMTO Bloch sum in
terms of a plane-wave part (2.2) and a local part (2.6} is
that the lattice summation (2.1} cannot be performed
directly due to the infinite range of the conventional
LMTO (X=r ' ') In the A.SA this problem is circum-
vented by approximating the LMTO Bloch sum by the
truncated one-center expansions X' defined in (2.4). The
lattice summations can then be performed for the II and
Q matrices or, rather, for the structure constants (Appen-
dix A) by use of the Ewald method. The drawback of this
procedure is that the one-center expansions converge
slowly far away from the centers so that, with 1,„=2,
X'(r} does not go smoothly from one WS sphere to the
next. Recently it was shown' how the LMTO may be
expressed accurately, without the use of a plane-wave ex-
pansion but using an exact transformation of the conven-
tional set of LMTO's into a short-ranged, so-called tight-
binding set and thereafter performing the direct summa-

The overlap matrix follows from (2.10}by setting r=r'
and integrating over the cell; as a result

o"=(x"
I
x")

=(x'
I
x')+(x

I
x) —&x'

I
x'), (3.1)

since (X
I
X ) =0. On the right-hand side the superscripts

k have been dropped. The first and the last terms in (3.1)
are integrals in the spheres and the second term is an in-
tegral over the entire cell. Using (2.2)—(2.5) we obtain

(x'
I
x'

& =II'II+ n'g n
(3.2)(x'

I
x'& =ll'11+n'p n

and

(x"„
I
x"„)=n, @„@„yF„*(k+G)F (k+G) . (3.3)

the correctness of which is easily proved using the
definitions (2.6)-(2.9). In expression (2.10) the first term
is the "density" in the ASA, and the second term is the
difference between the pseudodensity and its ASA; these
terms are easily evaluated using (2.2), (2.4), and (2.5). The
third term in (2.10) is a correction consisting of the prod-
uct of the function X, which contains merely low partial
waves inside the spheres and which goes smoothly to zero
at —and outside —the spheres, and the function X, which
contains merely high partial waves inside the spheres,

which vanishes like r '" near the sphere centers, and
which is the full LMTO outside the spheres. These two
functions are thus orthogonal and hardly overlap so that
the third term in (2.10} will give small —or vanishing—
contributions.

III. OVERLAP AND HAMILTONIAN MATRICES
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Here, the diagonal matrices P and P have the elements

(4 ~ & and (4 A &, respectively. This way of evaluating
the overlap matrix is conventional and is normally re-
ferred to as the ASA plus combined correction.

In order to evaluate the matrix elements of the Hamil-
tonian we assume that the potential is decomposed into a
smooth pseudopart V and a localized part P'which van-
ishes continuously and differentiably at—and outside-
the spheres:

V(r) —= V(r)+ ~(r) . (3.4)

MT part of the full potential (3.4}. Inside the sphere at
Q+T this MT potential is

VMT(r) V MT(r)+ fl'MT(r) (3.5)

with

V& (r)= g V(G)e' qjp(Gr)B(r —s&) (3.6a)

being the spherical average of the pseudopotential inside
the sphere at Q and

Here P q (r) = Pq L p(r)!(4n )' (3.6b)

V(r)= g V(G}e' '
G

and

(r)='g g P'&(r —Q —T)
T Q

with

P'o(r)—:g V&L (r) YL (r) .
L

Each P'&(r) is defined to vanish continuously and
differentiably at —and outside —its sphere. Any crystal
potential can be expressed in the form (3.4).

The LMTO basis functions are constructed from the

The Hamiltonian matrix elements are now obtained us-
ing —V + V(r} together with (2.10). The integrals are
over a cell and —V is Hermitian between LMTO Bloch
sums. Since the latter are everywhere continuous and
differentiable we can neglect discontinuities in individual
contributions to X. From the last, small term in (2.10) we
therefore obtain (X I

—V
I
X & =0, because X is a solution

of the Laplace equation, and (X
I

—V
I
X& =0, because

—V conserves angular momentum. The potential in
density-functional theory is a local operator and the last
term in (2.10) therefore only picks out the non-MT part,
V —VM —=V, of the potential, i.e., (X

I
V

I
X&

+H.c.= (X
I

V™
I
X&+H.c; this is a very small term.

In conclusion, therefore,

8=—&xI —v'+v Ix&

=&x'I —v'+v Ix'&+&xI —v'+V Ix& —&x'I —v'+v Ix'&+(&xI V'"'Ix&+H c )

= &x'I -v'+ v"'Ix'&

+&xI —v'Ix& —(x'I —v'Ix'&

+(xI vIx&-&x'I v 'Ix'&
+(x'I vNM Ix'& (x'I v Ix'&

+&xI t& Ix&-&x'I 0 Ix'&

+(xI v Ix&+(xI v M Ix&

(3.7a}

(3.7b)

(3.7c}

(3.7d)

(3.7e)

(3.7f}

The integrals containing X', X ', X, V, V, or 0'only
extend inside the spheres.

In the following we discuss the different contributions
to the Hamiltonian matrix. The explicit expressions are
given in Appendix B in terms of potential parameters and
structure constants. Term (a) in Eq. (3.7) is the usual MT
or ASA term. The kinetic-energy term (b) vanishes un-
less the spheres overlap. This is so because V

I
X& =0 in

the interstitial region so that if the spheres do not overlap
(b) is the sum of the expectation values of —V between
high partial waves, and the latter are all solutions of the
Laplace equation. The terms (c)—(f} are potential-energy
terms and describe the influence of the interstitial region
and the nonsphericity. The most important term is (c},
which contains the complete shape correction and the
influence of the nonsphericity of the pseudopotential.
Term (d) accounts for the nonspherical part of the poten-
tial well inside the spheres. Term (e) is very small be-

I

cause
I
x & (x

I
and

I x '
& (x '

I
give different weightings

only in the outer parts of the spheres, and there t is
small. Similarly, as discussed previously, term (f} is very
small. Its evaluation is possible but tedious. Since we
have found the influence of the terms (e) and (f) to be van-
ishingly small in all cases we shall neglect them from now
on. The other terms are always included in our calcula-
tions, but, at least for Si, the only important effect of the
full potential in comparison with the AS or even MT po-
tential comes from term (c).

By expanding the crystal wave function PJ into
LMTO's,

(3.8)

the band structure problem is transformed to the algebra-
ic eigenvalue problem
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(H"—ekjOk). a kI =0

The eigenvectors are normalized according to

a "I 0"a"' =fijj .

(3.9}

(3.10)

X+X X

are neglected. Inserting Eqs. (2.2}, (2.4), and (2.5) into
Eq. (4.1) one finds

IV. DENSITY AND POTENTIAL

In order to find a self-consistent solution of the KS
equations, one has to derive the electron density n(r}
from the crystal wave functions f"I and from n (r}, the
new crystal potential.

According to Eq. (1.2) the density is given by the sum
of the squares of the wave functions of the occupied
states. From Eqs. (2.10) and (3.9) one obtains the valence
density

n "(r)= g g fi'Q(r —Q —T)+if(r)
T Q

with

fi' Q(r) = g 8 QL(r) YL(r)
max

and

I(r)= QI(G)e'
6

(4.2)

(4.2a)

(4.2b)

+XkA'Xk, ) . (4.1)

Here the cross terms

occupied

n "(r)=2 y y (akj}saki( gl, kepi, k pl, keg l, k

k j A, A'
The density n" given in Eq. (4.2) thus consists of a local-
ized part it "and a pseudopart I. & Q is nonzero only in-
side the sphere at site Q and goes continuously and
differentiably to zero at the boundary, whereas 8 is
smooth and nonzero everywhere.

One obtains explicitly

nn rrn QO QA~ QL 2 2 ( D QL'L" NQI'4Ql" +D QL'L" 4QI'{t'Ql" +D QL'L" NQI'PQI" +D QL'L" 4Q!'OQI"
L', L"

D QL'L" PQl'WQl" D QL'L" 'FQl "FQl" ~QL'L" ~Ql'~Ql" D QL'L" ~Ql'~Ql" ~~ CL'L "L (4.3)

with

occupied

QLL' X X A = A, QL
pQ kj» kj

A AQL'

and similar expressions for the other D matrices. The
Gaunt coefficients are

CLLL —— YL YL.YL- 0

the electrons.
The Hartree potential is calculated by solving Poisson's

equation for the total charge density p. In order that the
localized part of the charge density gives rise to localized
potential auxiliary charges 6, which are localized inside,
the MT spheres are added and subtracted to the total
charge density

p=(8+n —6)+(8+6,)

and the pseudodensity is =p+p (4.5a)

S(G}=QTr[Ak S "(G)]
k

Here we have defined the localized electronic density as

with
8 =8 "+n' . (4.5b)

occupied

Xk kj» kj

J

S AA, (G)= MFA(k+G')FA (k+G'+G) .
G'

(4.4)

The 5's are introduced in order to compensate the
multipole moments of the local charge density 8'+n
they have to satisfy the condition

f Sq
[8QL(r)+&4m'nQ (r)5Io ~QL(r))r'+ dr =0 .

0

In practice, the one-center expansion in Eq. (4.2a) is a
sum over a few L combinations, which are allowed by the
symmetry of the corresponding site. The application of
group theory in charge-density calculations with the
LMTO method is described in Ref. 13.

The potential due to the valence density n' [Eq. (4.2)],
the core electron density n', and the nuclear point
charges n (&0) must now be calculated. The LDA po-
tential consists of a nonlocal Hartree term, produced by
all charges in the system and a local xc part, produced by

(4.6}

If Eq. (4.6) is fulfilled, pQ does not produce an electrostat-
ic field outside its own sphere. The inhuence of the
charge in a given sphere on the rest of the crystal is com-
pletely described by the field produced by the b Q which is
added to the pseudodensity. Poisson's equation for p is
solved by Fourier transformation. Therefore, 6 must be
smooth enough to ensure a fast convergence of the
Fourier series, and the Fourier coef5cients should be
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known analytically. Our choice is and

deL r 1+cos
bqL(r) =

0 otherwise,

T, r(se
se (4.7)

V (r)= g [n(G)+b(G)]e'
G 6

In the LDA a smooth density gives rise to a smooth
exchange-correlation potential. If we therefore write

which has a discontinuity in the second derivative at the
sphere boundary (just as X). The Fourier coefficients con-
sequently have the asymptotic form

1b(G)- as 6~co .64

v "'(n ( r ) )= u "'(r ) +v "'(r),
then

u "'(r}—:u"'(N(r))

(4.9)

(4.9a)

V (r)= P (r)'+ V (r),
where

(r)= g g O'Q(r —Q —T),
T Q

q(r) ='g 0'qL(r)YL(r),
L

(4.8)

QL(r) =' 8m

2l +1
r
XpqL(X)dX

Explicit expressions for 4(G) and dqL are given in Ap-
pendix C.

The Hartree potential now arises as a superposition of
a localized and a plane-wave part:

is smooth, and the remainder

u "'(r) =u"'(n (r))—u"'(K(r)) (4.9b)

is localized and vanishes continuously and di8'erentiably
at —and outside —the spheres. As usual, we now want
to express v

"' as one-center spherical-harmonics series,
and v

"' as a Fourier series. These series do not, however,
follow directly from those for the density because
u"'(n (r)) is a nonlinear function of n (r).

We first consider v
"' and make a Taylor expansion of

each term in (4.9b) taking the spherical (MT) part of the
respective density (n or r7) as the large part and the non-
spherical (NMT) part as the small part. For the pseu-
dodensity the spherical part is thus

Sq
+r f X pqL(X)dX

r7 Q (r)= g I(G)e' jo(Gr)B('r —sQ)
G

(4.10a)

PQL("}="QL("}++4~nQ (xylo ~QL(x) inside the sphere at Q, and the nonspherical part is

n Q (r)=4mB(r —sq) g i'YL(r) g ri(G)e' jI(Gr)YL(G')' .
L &0 G

(4.10b)

The spherical and nonspherical parts of the total density to be used in the first term on the right-hand side of (4.9b) are
obtained from

n MT I MT+ g MT and n NMT n NMT+ g NMTne —— e e an ne ——n e (4.10c)

where the spherical and nonspherical parts, & Q (r) and )2 Q (r), of the localized valence and core density, &Q, follow

from (4.2a) and (4.5b). The Taylor expansion thus yields the following spherical-harmonics series for the localized part
of the exchange-correlation potential:

with

u q(r) = y u QL(r) YL(r}
L

(4.11)

g xc (r)y(4~)1/2 [Vxc(nMT} uxc(~ MT)]

[Vxc"(nMT} Vxc"(I MT)] g (g )2+ & Vxc"(nMT) g (g u )2i Vxc"(n MT) y g u

4~ 2 QL 2 e QL' QL'
L'&0 L'&0 L'&0

g xc
[V xc'(n MT } V

xc'( p MT)]n +V
xc'(n MT)n u

QL &0
Ix MT I ~ ul

+ g I —,'[u"' (n ) u"' (n —)]nqL nqL-+ —,
'u"' (n )n QL.R'QL" +v"' (n ))2 QL'nQL" }CL'L"L

L', L"&0
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where v"' and v"' are the first and second derivative of
v"' with respect to the density.

In the central parts of the spheres, especially in the
core region, the nonsphericity is small as compared to the
total density and the Taylor expansion converges rapidly.
In the outer region of the sphere, the nonspherical part of
the pseudodensity, 8', is of the same order of magni-

tude as the total density, but both 8' and the expan-
sion coefficients

d (i)
. u"'(n)

dn"
d(i)

(,)
u"'(n), i =0, 1,2,

„MT de n=nMT

go continuously and differentiably to zero at the sphere
boundary. Thus, the Taylor expansion converges well in
the whole sphere.

The pseudopart of the exchange-correlation potential is
represented as a Fourier sum. The coefficients

u xc(G) uxc(r7(r))e —iG rd r.1

0,
are determined via a three-dimensional numerical in-
tegration over the unit cell. Because of the flatness of
I(r) the integration can be performed on a rather wide
mesh (e.g., about 4000 grid points in the Si unit cell}.

The total crystal potential now has the desired form
(3.4). Figure 2 shows our calculated self consistent poten-
tial for Si in a (110) plane. The potential is smooth, even
at the boundaries of the spheres where the local parts and
the pseudoparts match.

V. TOTAL ENERGY

Density-functional theory gives the total energy E [n]
of a many-particle system as a functional of the particle
density. We now insert the total charge density p given
by Eq. (4.5) into E [n], rearrange the terms and subtract

I

FIG. 2. Self-consistent potential of Si in a (110) plane. The
contour interval is 0.25 Ry.

the intracore interactions, which produce an uninterest-
ing constant when we use the frozen-core approximation,
and obtain

E [n]= T, +E +E +E"'[n]—E"'[n'],
where the kinetic energy, T„is calculated by

occupied

T, = g e"'—f V(r)n "(r)d r .
k,j C

(5.1)

(5.2)

The interaction of the input potential V with the valence
density is composed of integrals over spheres and a re-
ciprocal lattice sum. Inserting V(r) given by (3.4) and
n "(r) given by Eq. (4.2) one obtains

S

f V(r)n "(r)d r=Q, g V(G)n '(G)+ g f [0&L(r)8&&'(r)+V&L(r)&&&(r)+0'&z(r)I&L(r))r dr .
C G QL

(5.3)

Here VQL and nQL denote the one-center expansion
coefficients of V and ri in the sphere around site Q: 2l +1 rI+

VqL (r) = g 4mi V(G)jI(Gr)YI'(G)e'
G

(5.4) +r I Qx )-IB() (x}dxQL (5.7)

E = g [T)Eg(1)+Eq(2)+Eg(3)],
Q

where each of the terms E&(i}has the form

SqE&(i)=2+ f A&z(r)W&L(r)r dr
0

(5.5)

(5.6)

with

An analogous expression holds for n&&(r).
The intrasphere Coulomb energy has three contribu-

tions:

and

~QL =& QL+~QL
(1)

g QL
—8 QL QL

(1) v

A QL
—8 QL

(2)

B&1 &4mn& —5io,(2) c, N

(3)A QL
——8QL,

~QL QL+ ~ Q ~10 ~QL
(3) v c N

(5.8)
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The pseudo-Coulomb energy is

~
n(G)+h(G)

~

C 62G
(5.9)

The cell integration is done numerically, whereas the in-
tegrand of the sphere integrals is expanded in a Taylor
series with respect to the nonsphericity n . With

The exchange-correlation energy is treated similarly as
the exchange-correlation potential. E"'[n) is split into a
cell integral over a smooth function and sphere integrals:

u"'(n) =E"'(n)+n e"'(n)d
dn

E"'[n]=f n(r)e"'(n(r))d r+E "' . (5.10) we obtain, up to second order in n

P"'[n]= g 4n f [n& e"'(n& ) ir &
—e"'(ir ~ )]r dr

e .

Sq
+ g f I —,'u"'(n~ )(il'&I, )'+ 2[v"'(n& ) —u"'(+

& )](+&& ) +v"'(n& )&&LEAL jr'dr . . (5.11)
L)0

The core xc energy

SqE"'[n']= +4m f n&e"'(n&)r dr
g 0

is trivial due to the sphericity of n &.
Notice that the approximations in our total energy ex-

pression are consistent with the approximations in the
Hamiltonian matrix elements. This ensures that the
Schrodinger equation which we solve self-consistently is
exactly the Euler-Lagrange equation corresponding to
the variational problem

5E[n]
5n

and, consequently, the energy behaves variationally in the
sense that a small deviation 5n from the self-consistent
density causes energy deviations of order (5n) .

Even the ASA energy functional (spherical density in-
side overlapping spheres) is stationary at the self-
consistent solution of the ASA Schrodinger equation
(spherical potential inside overlapping spheres, calculated
from a spherical density). This is the reason why in a
self-consistent-field (SCF) run the ASA total energy con-
verges much faster than the ASA potential and the ASA
band energies. Nevertheless, the ASA energy functional
is not the HK energy functional for a given (spherical)
density. '

In contrast to the ASA, the total energy expression de-
rived above is the HK energy evaluated for a given densi-
ty, but due to the limited basis set (Lm,„&~, z =0) the
obtainable densities are confined to a certain subspace.

Up until now, the method was formulated with strictly
MT (i.e., not overlapping} spheres. If the spheres are
blown up to overlapping atomic spheres, the basis orbit-
als [Eq. (2.7)] and the density [Eq. (4.2}] are still well-
defined single-valued functions, continuous, and
differentiable. But the expression derived for the total en-
ergy [Eq. (5.1)] becomes inaccurate due to a wrong treat-
ment of the overlap region. The Hartree energy is wrong
by

f f hq(r)R'g. (r') dr'dr

where the integral runs over the overlap region.
Similar terms are missing in the kinetic and exchange-

correlation energy. Since R' is small in the overlap region
(R' approaches zero continuously and differentiably) these
energy corrections are small. In frozen-phonon calcula-
tions, however, where the result depends on energy
differences of the order of 0.1 mRy, these terms become
important.

In practice the evaluation of E[n] is simplified by re-
placing the sphere integrals

S S
2rior r &r. r dr and +&I W~Lr dr (5.12)(3) 2

0 0

by

f Sq Sg
rigL. P&Lr dr a'nd f n&L W&z r dr, (5.13)

0 0
1

where 8 qL is the density obtained by the one-center ex-
pansion j' [see Eqs. (4.1) and (4.3}]. The difference be-
tween 8'&L and 8 &L is relevant close to the boundary of
the sphere, but there the potentials P'&L and W&L be-
come small by construction. On the other hand, these
potentials are very large close to the center of the
spheres, and small errors in 8, due to an incomplete con-
vergence of the Fourier series, lead to noticeable changes
in the result. The above replacement therefore dimin-
ishes the cutoff dependence of the total energy.

VI. NUMERICAI. TEST OF THE METHOD

In this section the method is applied to silicon, where
experimental as well as accurate theoretical (LAPW, '

pseudopotential, ' ' and multiple Green's function' )
results are available for comparison. Several approxima-
tions and their influence on the electron density, the
cohesive energy, and the phonon frequencies will be dis-
cussed.

The only (essential) approximation in the presented
LMTO version is the restriction to zero kinetic energy in
the interstitial region (a =0). This limitation causes an
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incompleteness of the basis set in the interstitial region.
In ASA the interstitial region is eliminated by enlarging
the MT spheres to space filling WS spheres. In our
method, the size of the spheres may still be chosen, and
we discuss the accuracy of the results as a function of the
radii.

There are three quantities of interest which are given
by an electronic ground-state calculation: the band struc-
ture (band energies, density of states), the electron densi-

ty, and the total energy. Their variation, due to a phonon
distortion, is of special interest. It yields the deformation
potentials, the deformation densities, and the phonon fre-
quencies, respectively.

A. Application to cubic Si

Our self-consistent calculations are performed in the
frozen-core approximation. The core density was deter-
mined by a relativistic free-atom calculation. The 3s and
3p electrons are included in the scalar relativistic band
calculation. For the local exchange-correlation potential
we use the parametrization by von Barth and Hedin.
Empty spheres, which have the same size as the Si
spheres, are fitted into the diamond structure to obtain a
bcc structure. The integrations over the irreducible part
of the fcc Brillouin zone are replaced by weighted sum-
mations over the two special points '

with weights

a =—anda =—'.1 3 2

4 4

Previously, it was shown that accurate band energies
are obtained in ASA if empty spheres are placed to the
empty sites of the diamond structure and the "combined
correction term" (CCT) is included. ' This was
confirmed by our calculations. The full potential is not
necessary if WS spheres are used, whereas the inclusion
of the nonsphericity of the potential brings a substantial
improvement as compared to the spherical potential if
MT spheres are used.

The same trend is recognizable if the influence of
different approximations on the charge density n (r) is in-
vestigated. Figure 3 shows a contour plot of the calculat-
ed density in the Si (110) plane in comparison with the x-
ray-determined electron density (same contour values in
both plots). The calculation gives practically the same re-
sult (with irrelevant difFerences) for the spherical WS-
potential (WSP) and the full potential (FP) if WS spheres
are used as augmentation spheres for the orbitals (WSO).
This was demonstrated in Ref. 12. On the other hand, if
MT augmentation spheres are used it is necessary to per-
form a full potential calculation (FP-MTO} in order to
obtain a satisfactory charge density. A spherical average
of the potential in the MT spheres changes the density
drastically (MTP-MTO}. This is demonstrated in Fig. 4.
The results of the FP-MTO and the FP-%SO calculations
are nearly identical and both agree quite well with the ex-
perimental result (see Fig. 3).

FIG. 3. (a) Measured electron density of Si in the (110) plane
(Ref. 22), in comparison to (b) the calculated (FP-WSO) density.
The contour values are given in electrons/bohr, the contour in-
terval is 0.0074 electrons/bohr' (same contour values in both
parts). The experimental density was measured with different
x-ray sources (left part, Mo; right part, Ag).

Next we consider the cohesiue energy, which is the
difference between the crystal total energy and the total
energy of the isolated atoms. In DPI' the best electron
density gives the lowest total energy, which means that
the cohesive energy is a measure for the accuracy of the
calculated charge density, provided the KS functional
E [n] is evaluated exactly for a given density.

The cohesive energy in the LDA and ASA is —5.0
eV/atom, whereas other methods, without shape ap-
proximation, give values between —5.3 and —5.4
eV/atom. ' ' The main defect of the ASA is the spheri-
cal average of the density. If we do not use this approxi-
mation but keep the potential spherical inside WS
spheres (WSP-WSO}, ' the result changes to about
—5.35 eV/atom. The inclusion of the nonsphericity of
the potential causes a further lowering of E „by about
0.01 eV/atom. This result is in agreement with the fact
that n (r) calculated from an ASA potential is close to the
full potential n(r}. If we change the spheres to MT
spheres, E„z increases to —4.75 eV/atom, which re6ects
the incompleteness of the basis set in the interstitial re-
gion.

Unfortunately, E„h calculated with the nonspherical
density con verges very slowly as a function of the
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B. Frozen phonon in Si

In recent years, first-principles calculations of phonon
frequencies and structural energy differences have been of
great interest. A well investigated example is the optical
I -point phonon of Si, which has the interesting feature of
a strong anharmonicity. The phonon is threefold degen-
erate and we choose the polarization vector in such a way
that it describes the displacement of one of the two Si
atoms in the unit cell in the 111 direction. The two posi-
tion vectors are in units of the lattice constant a

Q'=(0, 0,0), Q'=(1+y)(-,', —,', —,'),
where y is the amplitude of the phonon. In addition to
the two Si atoms there are two empty (E) spheres per
unit cell. In the undistorted crystal, the two Si spheres
are followed by two E spheres along the 111 direction,
with equal distances between all neighboring spheres. In
the distorted crystal, the positions of the E spheres are no
longer fixed by symmetry. We studied two cases.

Case I

Q'=(2+y)(-,', —,', —,'),
(6.1a)

Case II:

(6.1b)

FIG. 4. Comparison of electron densities in Si calculated
with different approximations: (a) muffin-tin potential, muffin-
tin augmentation spheres (MTP-MTO); (b) full-potential,
muffin-tin augmentation spheres (FP-MTO); (c) full-potential,
Wigner-Seitz augmentation spheres (FP-WSO). The contour
values are given in electrons/bohr', the contour interval is 0.005
electrons/bohr'.

Because of the symmetry breaking by the phonon, the
k integration has now to be performed over the rhom-
bohedral irreducible Brillouin zone. The integration is
replaced by a summation over five special points k' with
weights a':

k'= —(1,1, 1), a'=
—,', ,

k = —( —1, 1, —1), a = —,', ,a

k = —(1,3, 1), a = —,', ,
2m. 1

a

Fourier-expansion cutoff, 6,„, of the pseudo-wave-
functions. In order to obtain variations of E„& less than
+0.07 eV/atom, G,„must be larger than 9(2n /a). This
strong dependence of E„z on 6,„ is due to variations in

the interactions of the pseudodensity with the strong core
potential. It is reduced if 5 is replaced by n ' [which is
independent of G,„, see Eqs. (5.12) and (5.13)) in these
terms and the convergence is better than 0.02 eV/atom
for G,„~6(2n/a).

In the above expression for E [n] the cutofF G~,„ is not
a variational parameter (in contrast to the situation for
I.APW and pseudopotential calculations). Consequently,
the 6 sums have to be convergent in order to obtain a to-
tal energy which behaves variationally with respect to a
variation of the input potential or of the basis set.

k = —(3, 1, —1), a =-', ,
a

k = —(3, —1, —1), a = —,', .
a

The variation of the total energy

EE(y)=E(y) E(y =0)—
as a function of the distortion y for a shift of the empty
spheres according to case I is shown in Fig. 5, for various
approximations, in comparison to the experimental curve
[determined from phonon frequency and third-order elas-
tic force constants (see Ref. 16)]. Pure ASA (potential
spherical, density spherical) yields an unphysical result:
the crystal is unstable against the phonon distortion (U in
Fig. 5). A substantial improvement is obtained if the den-
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sensitive to errors in E[n]: An inaccurate treatment of
the overlap region, which occurs if WS augmentation
spheres are used, leads to an error of 15% in the calculat-
ed frequency.

VII., SUMMARY AND CONCLUSIONS

Q 1 2
FIG. 5. Total energy variation (in mRy) as a function of the

phonon amplitude given in units of 0.005~3a (a is the lattice
constant) for various approximations, in comparison to the ex-

perimental result (solid line) (see Ref. 16). X: Full-potential
LMTO, MT augmentation spheres (FP-MTO). 0: Rigid ASA
potential, nonspherical density, WS augmentation spheres
(WSP-WSO). 0: Rigid mu5n-tin potential, nonspherical densi-

ty, MT augmentation spheres (MTP-MTO). C3: Rigid ASA po-
tential, ASA density.

sity is not spheridized any more but the potential used to
determine the density is still the result of a self-consistent
ASA calculation (WSP-WSO). The square of the fre-

quency has the correct sign but the calculated energy
differences (~ in Fig. 5) and frequencies are still too low

as compared to the experimental values (solid curve in

Fig. 5 for b,E) by about 30% and 15%, respectively. In
all these calculations, the potential was the self-consistent
ASA potential obtained for y =0 and was shifted rigidly
under the distortion (y&0). ASA self-consistency for
y&0 would flatten the energy parabola even further. Go-
ing to self-consistency in the full potential but keeping
the augmentation spheres as overlapping WS spheres
does not improve the results (FP-WSO). On the other
hand, if instead of a rigid WS-potential a rigid MT-
potential (MTP-MTO) is used, the energy variation is
overestimated (0 in Fig. 5). Excellent agreement with
the experimental values is obtained from a full-potential
calculation ( X in Fig. 5) with spheres which are so small
that they do not overlap even in the distorted crystal
(FP-MTO). The frequency and the anharmonicity are de-
scribed well. The results of FP-MTO calculations are al-
most independent of the position of the empty spheres: If
the empty spheres are shifted from the positions of case I
to that of case II [cf. Eq. (6.1)], the energy difference is
about 0.02 mRy. In addition, the calculated b,E(y) is
essentially independent of the cutoff G,„ if G,„
~ 5(2~/a).

These results show that a frozen-phonon calculation is

A new full-potential band-structure method based on
the linear muffin-tin-orbital (LMTO) method was
developed. In connection with density-functional theory
in the local-density approximation it allows total-energy
calculations which are sufficiently accurate for "frozen-
phonon" calculations. A minimal basis set of 9-16
LMTO's per site is used. For neither the potential nor
the density is a shape approximation used. Muffin-tin or
Wigner-Seitz spheres are needed only as augmentation
spheres for the definition of the basis orbitals. The varia-
tional principle allows the optimization of the radii by
minimalization of the total energy with respect to the ra-
dii. There are some similarities between the LMTO
method presented above and the full-potential linear
augmented-plane-wave (LAPW) method. 2 Roughly
speaking, the LAPW's are linearly combined to the
smaller set of LMTO's with zero kinetic energy (» =0)
in the interstitial region. The incompleteness of the basis
set in the interstitial region has some influence on the
cohesive energy but not on the phonon frequencies. In an
open structure, the volume of the interstitial region is re-
duced by inserting empty spheres into the open regions of
the crystal. Small displacements of the empty spheres
have no influence on the total energy.

The application to silicon yielded information about
the influence of several approximations. In spite of the
use of spherically averaged potentials, the atomic-sphere
approximation produces a charge density which is very
close to the experimental one and is much better than
that calculated from a muffin-tin potential. The energy
variation due to a phonon distortion, as obtained from a
spherical potential, however, is only in qualitative agree-
ment with a full-potential calculation. These investiga-
tions have shown that an accurate "frozen-phonon" cal-
culation requires a full-potential method.

Recently, our method was applied to the group-IV
semiconductors and to some III-V compounds. In all
cases, the calculated phonon frequencies are in excellent
agreement with experiment. An application to the more
complex systems of perovskite-type ferroelectrics showed
the general applicability of the method. 2s The lattice in-
stability of BaTi03 with respect to the ferroelectric
TO(I ) mode was found. The method presented in this
paper allows, thus, for deformed, relatively complex com-
pounds first-principles calculations which are of an accu-
racy suScient for a discussion of, e.g., sequences of
structural phase transitions.
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APPENDIX A: %'AVE FUNCTIONS
AND POTENTIAL PARAMETERS

2l +3
' 1/2

Pg, (r) =
(sg) sq

A basis orbital X&L (r—Q —T) centered at a position Q
in the unit cell at T with angular momentum L = (I, m ) is

obtained from a multiple field
—I —1

+TQL(r)=: I Yz (x), x=r —Q —T
s

by P, P auginentation. Here s denotes the average radius
of space-filling spheres. Inside the sphere at T+Q, the
radial part of j:is replaced by

(A 1)

4Q j ( —I —1,r )=Pqt ( r ) +co&t Pqi ( r) (A2)

whose logarithmic derivative at the boundary is —I —l.
Inside the sphere at T'+Q' the one-center expansion of
the multipole field is

I +1/2

1 T

2l +5 sq

1 T

21 +3 sq

sq
OQi=

s

2!+5
[8(2I+3)]'~ sq

I +1/2
21 +1

sq sq

(2l + 1)(21+5)
2(sq }

2
2l +3

' 1/2

((}pl(r) = —,
' [(2I +3 }so]'~'

1+2

00
1 X

L

~)
YL (x )S'rQ.L, TQL

(A3)
x'= r —Q' —T'

and the radial functions are replaced by

C'gi( I, r) =
PqI (")+toqikgi( r) (A4)

and

IIwA ——5ww ($~ } 'SAA QA—

Q"„A. e)„5AA a)A——(pA ) 'S—"„„pA,

(A5)

where

with a logarithmic derivative 1' at the boundary. The
function Pqi is the solution of the radial Schrodinger
equation inside the sphere Q with energy E+ and Pqi is

its energy derivative.
The matrices II" and 0" appearing in the one-center

expansion of the Bloch sum, Eq. (2.4), are

~qI ——o,—+

Sg
&yq, &= I yq((r)r'dr

0

(sq)

(21+3)(21+5)(21+7)
The one-center expansion coefficients of Eq. (2.5) are ob
tained from Eq. (A5) by replacing the real-potential pa-
rameters by the pseudopotential parameters.

APPENDIX B: HAMILTONIAN MATRIX ELEMENTS

The derivation of explicit expressions for the Hamil-
tonian matrix contributions (a) —(d) of Eq. (3.7) is
straightforward.

Term (a), the usual MT term, is obtained by inserting
Eq. (2.4) into Eq. (3.7a):

&X'
~

—V'+ V"'~X'& =ll'Q+II'E 11+0E&P'}Q.

(81)

ck ~ ikTc.SAA'= z, e STqs Tq.L

T

Here E denotes a diagonal matrix with elements

E~A =Eq(fih~ (82)
are the usual Fourier-transformed LMTO structure con-
stants. '

The potential parameters P and P+ are obtained from
the wave functions at the boundaries of the sphere,

and Eqi is the energy corresponding to ((}qi.
The kinetic-energy correction, term (b), is obtained

from Eqs. (2.2}and (2.5):

by

4~ =4~( —I —I,so),
4~+ =4~(l, sq ),

(A6)
&x„ i

—v'i 7,, },= Q, e„-e„-,

x g /k+G/'

Sq

P~+ =2(2I +1)
sq

s
2

'I
s

' 1/2 (A7}

xF„'(k+G)F„.(k+G),
(83)

A'
&X„'~ —V ~X~ ),= (11~@)Ap

The "pseudo"-wave functions as well as the potential pa-
rarneters are known analytically:

The cell integral appearing in term (c) is obtained from
the Fourier representations of X [Eq. (2.2}] and V [Eq.
(3.4}]:
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&x,
~

v
~
x„,),=~„-~„- y F„'() +G +G)

G, G'

(B4)xF, (It+G') V(G) .

The remaining terms [(d} and the second contribution to
(c)] are integrals over spheres and are obtained by insert-
ing the one-center expansions [Eqs. (2.4) and (2.5)] into
Eq. (3.7}. If a one-center expansion of the potential is as-
sumed

with

1
+QL (G ) = e ' '&~L (rQ ) YL (rQ)d'r

Q n,

A one-center expansion of the exponential about the site
Q yields the Fourier coefficients EQL (G):

4~ i t i It (GsQ)
EQL, (G ) = ( i—)'SQ+ dQL Yz (G )e0 (GS )t+s

f = g f QL Yz, V= g VQz YL

Q, L Q, L
(B5)

with
(C6)

with

VQz (r)=4ni'g V(G)jt(Gr)Yt"(G)e' B(s'Q —r),
G

one obtains

(C7)Ii (a)= f jt(x)x'+ 1+cos —x dx .

From the explicit form of the spherical Bessel functions
jt (x ), one obtains the integrals I& up to I =4:

&X'
~

V
~

X'& =II'I "II+II'I"n+n'I" II+n'I"n

with

L+L' sq
IA&~, =5QQ. g f $Qt'(x) VQL (x)Q$('(x)x dx

0

(B6)

Xi ( —1) CL I" L ~ (B7)

Cz L
~ I denotes the Graunt coefficients [see Eq. (4.3}]and

L is an a—bbreviation for (I, rn). —The wave functions
P' ' are P if v= 1 and P if v=2. Because of the triangular
inequality of CL L

~ L- the L" summation in Eq. (B7)
breaks off at L + L '; thus, the highest angular momentum
that is needed in the one-center expansion of the potential
(even of V) is L =2L,„. The application of Eqs.
(B5)-(B7) to the appropriate potentials and wave func-
tions yields explicit expressions for the considered matrix
elements.

APPENDIX C: FOURIER COEFFICIENTS h, (G)
AND WEIGHTS 4&L OF THE AUXILIARY CHARGES h, (r )

The weights dQL of b,(r) are determined by Eqs. (4.6)
and (4.7):

I0 ——S)+S)C C

I i
——Si —C2+S i

—C2,c

I2 ——3S) —S3—3C2+ 3S )
—S3 —3C2,c

I3
——15S)—6S3 —15C2+C4+ 15S(

—6S3 —15C2 +C4,
I4 = 105S& —45S3+S5—105C2+ 10C4

+ 105S)
—45S3 +S5 —105C2 + 10C4,

where

S„(a)=f x "sinx dx,
0

C„(a)=f x "coax dx,
0

and

S„(a)=f x "sinx cos —x dx,
0 a

C„(a)=f x "cosx cos —x dx .
0 a

&CS)

(C9)

(Clo)

Sq
dQL f r 1+cos

0 sQ
r dr =MQL, (Cl) The integrals in Eq. (C10) are deterinined via the recur-

sion relations [f =ai I(n i —a i ) ]

C„(m)= f x "cosx dx
0

one obtains

(C3)

where MQL are the moments of the local densities:

SgI« f [e Q, (—r)+v'4mnQ (r)5io]r + dr . (C2)
0

With the definition

Co =f —cosa+a, Sz f ( —cosa —1)——,C

a

So =f—sina, Co =f sina,a

S„=f —a cosa nC„, — nS„— —c n 7T

a

dQI
SQ

. 21+3
QL

21+3

+ C2i+2(n )
2I +3

(C4)
S =f a"sina — nC„, +—nS„a

Partial integration of the rhs of Eq. (C3) leads to a recur-
sion relation for C„.

The Fourier coefgcients b,(G) are, by definition,

Ss=f —a"sina —nC„ i +—nS„a a

&(G)= g &QL (G)
Q, L

(C5)
C =f a"cosa+—nS„&+—nC„
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