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In a series of four papers magnetooptical transitions are presented for InSb crystals, which are

subjected to uniaxial stress perpendicular to the magnetic field. Here, in the first paper, we establish

an 8X8 k p Hamiltonian matrix for stress T~~[100] and field B~~[001]and diagonalize it exactly. The

dependence of valence and conduction states on stress and longitudinal momentum is discussed and

compared with the geometry of parallel fields TlBi~[001]. Characteristic features are extracted for

inter- and intraband transitions. Under crossed fields, the levels are separated much stronger with

stress, yielding more insight than in the parallel configuration.

I. INTRODUCTION

The electronic energy bands of zinc-blende structure
semiconductors exhibit significant deviations from the
simple isotropic and parabolic shape close to the gap. In
both conduction' and valence bands one finds strong
terms of cubic and quartic order in k and warping. Uni-
axial stress induces k-linear terms which shift the band
extrema to nonzero wave vectors. For the valence bands
k-linear terms exist already in the unstressed state. The
band anomalies can be detected in Shubnikov-de Haas
oscillations, in spin-depolarization measurements, or in
far-infrared and Raman scattering experiments on doped
semiconductors.

Under the influence of a magnetic field, the spin-
degenerate conduction bands form two Landau ladders,
which, due to the nonparabolicities, are spaced irregular-
ly. The differences in the spacings show up in splittings
of the harmonic transition lines. The cyclotron mass and

g factor are field dependent. Higher harmonic and
spin-flip transitions become allowed.

The uppermost valence band is fourfold degenerate at
k=0. In a magnetic field, the four bands turn into four
entangled Landau ladders with strongly varying separa-
tions of the rungs. Magnetooptical transitions can only
be identified reliably if by application of uniaxial stress
the band degeneracy is lifted and the ladders are pulled
apart.

Such a program was first pursued by Hensel and
Suzuki in the investigation of the valence bands of Ge.
For most of their experiments, stress was applied parallel
to the magnetic field along the crystal [001], [111],and
[110] directions, and microwave absorption was regis-

tered. The spectra were calculated from an effective-mass
Hamiltonian which was formed in the space of the four
degenerate valence-band functions of symmetry I 8+.

Given the geometry of the experiments and the diamond
lattice structure of Ge, the symmetry groups of this
Hamiltonian are C4 (consisting of rotations about the
direction of the magnetic field by tnultiples of 2m/4), C3,
and Cz, respectively. The symmetries permit a simple la-
beling scheme for the magnetic states and simplify the
numerical calculations.

Similar experiments were performed soon afterwards
by Ranvaud et al. ' Since Ranvaud used far-infrared ra-
diation, higher magnetic fields had to be applied than
were necessary in the microwave experiments of Hensel
and Suzuki. The strong fields (up to 8 T) and the small

gap of InSb required that in the theoretical evaluation the
number of basis states for the k p Hamiltonian be en-
larged. The basis finally consisted of the four I 8 valence
states, the two I 7 split-off band states, and the two I 6
conduction states. " The zinc-blende lattice is lacking
the inversion symmetry of the diamond lattice.
Inversion-asymmetry terms reduce the symmetry of the
k p Hamiltonian from C4 to C2, if stress and magnetic
field are applied parallel to the [001]direction.

Ran vaud's intraband quantum cyclotron-resonance
spectra provided deep insight into the energy structure of
holes in InSb. The set of band parameters, which was de-
rived in the fit of field and pressure dependence of the
spectral lines, disagrees, however, with data used in inter-
preting interband absorption spectra and intra-
conduction-band measurements (see, for example, Ref.
12). In these measurements, no advantage was taken of
the band resolving power which uniaxial stress offers.

To enhance the knowledge of the magnetic band struc-
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ture, we present a series of magnetooptical experiments
on uniaxially stressed InSb in four successive articles. In
all cases the magnetic field is applied along the [001]
direction. Contrary to previous investigations, the direc-
tion of the uniaxial stress is perpendicular to the magnet-
ic field, namely along [100]. For the k.p theory, the
geometry of crossed fields is not inferior to the geometry
of parallel fields, since the symmetry group of the Hamil-
tonian remains the two element group C2. From the ex-
perimental point of view, the geometry is easier to realize
and yields an even higher resolution of the bands. In the
group C2 all symmetry breaking effects are taken into ac-
count: the tetrahedral crystal point group, magnetic and
strain field, and longitudinal momentum kz.

In the present paper we establish an effective-mass
Hamiltonian that describes the band-edge states in a
magnetic field along the [001] direction and in a stress
field parallel to the [100]direction. We also add terms to
the Hamiltonian, which take into account the k p, mag-
netic, and strain interaction of the eight basis states with
the spin-orbit split I'7 and I 8 conduction states. These
states are separated by 3 eV from the gap. The Hamil-
tonian is diagonalized, and the spectra are discussed. We
used the band parameters from the work of Ranvaud
et al. ,

' supplemented by data from Ref. 8.
In the second paper of this series' we report the obser-

vation of optically pumped recombination radiation. In-
terband transitions were detected which reveal some of
the valence-band fine structure.

The third paper of this series' describes magnetore-
flection spectra under varying stress loads.

The final paper of this series' is concerned with hole
Raman scattering in the valence bands of InSb. From the
data features are extracted that characterize the depen-

dence of the energies on the longitudinal momentum kz.
The theory can identify all the observed spectral lines.

Although in several cases the exact line positions
disagree, the stress dependence and the oscillator
strengths of the transitions are unique. However, we did
not attempt to derive another set of band parameters, be-
cause the amount of experimental data still seems to be
insufficient.

II. GENERAL FORM
OF THE EFFECTIUE-MASS HAMILTONIAN

The Hamiltonian, on which we base the following cal-
culations, has been established in Ref. 11. In this section
we briefly repeat its construction principles and present
additional terms, which arise from the interaction of the
gap states with higher conduction states.

The 8)(8 Hamiltonian matrix falls into nine blocks:
Hcc H'" Hc$

H = H"' H"' H"'
Hsc HSU HSS

H" and H are 2g 2 intraband matrices for the I 6 con-
duction and I 7 spin-orbit split valence states, and H"" is
the 4)&4 intraband matrix of the I s valence states closest
to the band edge. H'", H, and H"' are interband ma-
trices, forming 2X4, 2X2, and 4X2 blocks, respectively,
and H"', H", and H'" are their Hermitian conjugates.

The elements of each block consist of polynomials in
the components of the wave vector k, the magnetic in-
duction B, and the strain tensor e. Each block has been
expanded into products of basis matrices (spanning the
respective space of n X m matrices) and basis polynomials
(in the components of k, 8, and 7).

TABLE I. Invariant expansion of the blocks H ~ of the Hamiltonian matrix. Compared to Table IV of Ref. 11 the notation B in-

stead of H is used and interaction terms with the p-antibonding bands have been added. c.p. denotes cyclic permutation of the

preceding term and trV=e, +e»+e„.

H"=E + (1+2F)—(g, —4N] ) (o B)+C&trV
/2k 2

2m 4mc

Q UU Q UU+ +UU ++UU+ / UU

HI", (fi2/m)[q'yak~ y~[(J2,'J )k~+c p ] 2y3[q'(J Jr+Jr J )2(k kr+krk )+c p ]]
(equi/mc)[(a—J +qJ3}B„+c.p. ]

H","=Ddtre+ ', D„[(J,' 3J )e»+—c.p]+ ~~—D„'[2z'(J~Jr+Jr J„)e,r+ .p. ]
Hg("=(2C/&3)[ 2 [J,(Jr J, )+(Jy J, )J ]k —+c.p.]-
H","I, ——[C4(e —e )k, +C', (e,„k„e„k,)]J„+c.p—.
H"= —[A+(A' /2m)y, k ]—2z(eh/2mc)(tr. B)+DdtrV
H v 3[P(k T +c p )+iB[T t(k k +k kr)+c p ]+iC2(T er +c p )

' 1/2

+ — Nz[(k,' ——,'k')(T„„T„„)—(k,' —k,'}—T ]+ . N, (B„T„+c.p. }
m

H'*= —(1/W3) [P(kp)+iB [p, z(krk, +k,kr )+c.p. ]+iC2(p, er, +c.p. ) j

+US +US+ +US ++US

HI",'= —(A /m)[ —3yz(U, k +c p ) —6y3[U, . '.(k, k„+k k, )+c—.p. ]] (eA/mc) a(U—,B,+c.p.—)

H& =2Dtt( UxxEzx+c~p )+2Dtt(2Uzy6xy+c~p )

H",~I, = —,
' [C4(e „e~)k, +C—', (e„rk» e»k, )]U„—+c.p.
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It is known how the polynomials transform under
point group operations, since their variables are com-
ponents of Cartesian tensors. The transformation prop-
erties of the basis matrices are determined by the behav-
ior of the corresponding wave functions under the opera-
tions of the crystal point group. '

In the expansion special bases both in the space of ma-
trices and in the space of polynomials have been used
which transform according to irreducible representations
of the crystal point group Td . This choice immediately
yields invariants of the group Td and of the time reversal
operation, out of which the blocks must be composed.
The symmetry adapted matrix and polynomial bases are
presented in Ref. 11. [There is a misprint in Table I of
Ref. 11: the sign of component (T „}z,must be reversed
such that ( T„„}z,———&3/2. ]

The factors weighing the invariant terms are material
constants. They can be determined by a fit to experimen-
tal data, but also by comparison with a perturbation ma-
trix. This matrix arises if the eight band-edge states are
considered as quasidegenerate, being mixed by k p, mag-
netic, and strain interactions.

In Ref. 1 1, which aimed at computing valence-band
levels, several less important invariants have been omit-
ted jn H" and H '. However, as stated by Ogg, Her-
mann and Weisbuch, ' Weiler et al. , and Rossler, ' in-
teraction terms with the higher conduction states I 8 and
I"7 (p-antibonding states} appreciably influence the energy
of the lowest conduction electrons. Since we are going to
probe magnetic states also in the conduction bands, the
following terms, which have been elaborated, for instance
in Ref. 8, were added to the Hamiltonian of Trebin
et al. :" (i) The bare conduction-band g factor,

g, = —2.0023, is modified to g =g, —4N, . The parameter
N

&
has been carefully studied recently by Chen et al.

and Cardona. ' (ii) Two new invariants appear in H'",
weighed by factors N2 and N3 .

The expansion of the blocks H ] is presented in Table
I. It corresponds to Table IV of Ref. 1 1, where some
minor misprints have been corrected and the interaction
terms with the p-antibonding bands have been inserted.
We replaced the correction A ' of the bare conduction-
band mass by the more frequently used notation
F=mA'/ft .

III. SPECIAL FORM
OF THE EFFECTIVE-MASS HAMILTONIAN

In the effective-mass Hamiltonian we now specialize
the magnetic induction to B=(0,0,8},pointing along the
[001]direction, and the strain tensor to

yy 6zz $~2T

xx Sii T (2}

arising from uniaxial stress along the [100] direction.
The stress is denoted by T and s;J are the cubic elastic
compliance constants.

Introducing dimensionless coefficients, oscillator
operators, and basis matrices in cylinder coordinates as in
Ref. 1 1, we obtain the effective-mass Hamiltonian of
Table II. The blocks H I) are expressed in units of the cy-
clotron energy %co, and are designated D I3. They are di-
vided into contributions D '&, D '

13, and D '
&. The opera-

tors D '& have cylinder symmetry C„,and the operators

TABLE II. Blocks of the Hamiltonian matrix in magnetic units and cylinder coordinates for 8~[[001], T~~ [100]. For the notation

see Ref. 1 1. The terms which have changed in comparison to Table VI of Ref. 1 1 are set in curly brackets.

D;, =es+ [(1+F/2)S —4(g, 4N~)o3j+x, —
D„„=—y,S —y2Sp+2y3S, + —,'(y2+y, )S2 —aJ3 qJ3+ [ ', c—4', ——'c4(—aJ +aI+ )j+xd —

[ 2x„(J3 4 )j

D = —A, —p)S —KO' +xd
D;„=&3p,(a T +aT++gT, )

D;, = —(1/&3)p, (a p +up++ gp, )

D„=—3y2Sp+6y3S~+ 2(yg+y3)Sp —&KU +3[ 4c4(U3 —&c4(u U +QU+ ) —&x„U33 ]

D;„=
2 (y2 —y3)(J+a '+J' a')

p(y2 y3)( U++~ + U ~ )

D„'„=—(c/V'3)[a (J —'4' J++3J3J+J3+J+J J+ )+a(J+ —'4' J +3J3J J3+J ~J )

—2((J+J,J~+J J,J )]+[ 4c4(a J+ —al )+ ~x„(J++J' )j

D,'„=&3b[((a T+ aT )+ z(a —a )—T3]

+ [ —3v'3/2N2[~(a a+ —' —g )(T+++T )+(a +a )T33] j
—[ 2&6N, (T++ —T

D,', = —(I/~3)b[g(a p+ —ap )+ z(a —a )p3]

D„', = [ 9c4(a~U++aU )+ 2x„(U+++ U ) j

S=a a+z+zg
Sp ——U»(a a+ z

—g )

S, = U3+ (a+ U, ga

S2 ——U++a + U a2 f'2

Sp=(J3 —4)(a a+ z
—g )

S, = ,'(J,J++J+J, )g~+ ,'(J-,J +J J34u'-'
J2 &2+J2 &t2
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D'& have symmetry C4 due to cubic terms of the crystal
field. Finally, the parts D'& are of symmetry C2 due to
tetrahedral crystal-field terms and stress terms. In Ref.
11, the division of the Hamiltonian matrix was refined
still more, leading to six stages of symmetry breaking,
which have been denoted Mo-M5. Stage M5 of lowest
symmetry —C2—was due to tetrahedral crystal-field
terms of finite longitudinal momentum kz. In the present
geometry of crossed fields also k~ =0 terms contribute to
stage M~, viz. , those which originate from the transversal
stress.

IV. EIGENSTATES

The magnetic eigenstates are expanded into basis states

~
g;naM ). These are products of plane waves of wave

vector g along the magnetic field; of pure oscillator states
carrying n quanta; and of spin states in the band
a E I c, v, s } carrying magnetic quantum number M.

The division of the Hamiltonian matrix into parts of
descending symmetry leads to a series of labels for each

u, =(c/AeB)'~ mv, . (3)

The final state is denoted by f, the initial state by i;
s & [x,y, z } characterizes linear polarization, s & I +, —}
circular polarization. The value of the matrix element is
1 for harmonic intraband transitions between pure oscil-
lator states.

eigenstate, e.g., N„K QP for 8~I[001]. The only good
quantum number is PB I0,1}, denoting an irreducible
representation of the exact symmetry group C2 of the
Hamiltonian. The other labels are only approximate
quantum numbers unless lower symmetry parts of the
Hamiltonian vanish and thus raise the symmetry. For
simplicity we frequently label the states by (n, M) or by a
consecutive numbering za, z =1,2, 3, . . . , aE Ic, v, s}.
A level scheme for zero stress and zero longitudinal
momentum is presented in Fig. 1.

With the help of the symmetry labels selection rules
are established for optical inter- and intraband transitions
and qualitative conclusions can be drawn about their
strength. For an exact identification of several transi-
tions we calculated the transition matrix element
(f ~

u,
~

i ) of the dimensionless velocity operator

B II [001]

Conduc tion
band

A B

~ =(-' —')
J 2 I 2

5C

4C

V. STRESS DEPENDENCE
OF THE LANDAU LEVELS AT kg =0

Figures 2(a) and 2(b) show how the magnetic states
close to the gap behave under stress parallel and perpen-
dicular to the magnetic field. The material parameters
are the same as in Ref. 11, and for the constants F, N„
N2, and N3 we used the data of Weiler et al. :

3C

2C=( Q,-g)

F = —3.4, N) ———0.35,

N2 ——0.23, N3 ——0.23 .
(4)

1C=(0.4)

Valence
band

3V=( 0,-&)

7V

1Y

11V

15V

19V

23V

27V

31 V

4V

8V

2v=(O. T )

6V

10V

14 V

18V

22V

(3 3) p (
3 1) p (3 3) g (3 1

)
J 2 I 2 J 2 I 2 J 2 I 2 J 2 I 2

ALH AHH BLH BHH

FIG. 1. Schematic representation of the zero stress Landau
levels for B along the [00lj direction and ks ——0. A simplified
notation is used and reference is made to the Pidgeon-Brown
classification.

The magnetic induction is held fixed at 2.0 T, the longitu-
dinal momentum at k& ——0. We have inverted the energy
scale; hence the conduction states are situated at the bot-
tom of the figures, the valence states at the top. All ener-
gies are referred to the lowest conduction state
1C=(0,—,

' ), which appears as a flat band. For recombina-
tion radiation from this reference state, the diagram
directly displays the stress dependence of the frequency.

At ks ——0, the symmetry for T((B(~[001] is S4. The
group is generated by a 90' rotation about the field direc-
tion, followed by the inversion operation. There are four
irreducible representations, i.e., four noninteracting sets
of Landau levels, labeled by QE I0, 1,2,3}. Roughly
speaking, each level interacts with the fourth one follow-
ing.

For TiB the symmetry is lowered to C2, even at
k& ——0, and two sets of levels exist, which are dis-
tinguished by the quantum number P E I0, 1 }. Each level
interacts with the second next one by stress terms of stage
M5. This fact explains the strong fanning of the energies.

For T~~B, anticrossing effects become visible at 1980
cm '. They are related to the final state 7V=(1,——,') of
the "fundamental transition. " In Ge this state runs
without interaction across the other lines, exactly parallel
to the initial state 3V=(0,——,

' ). Owing to stress-induced
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FIG. 2. Stress dependence of the magnetic states for k~ =0 and 8=2.0 T parallel to [001]with inverted energy scale. The energies
are referred to the lowest conduction state. (a) Parallel stress T along [001]. (b) Transversal stress T along [100].

k-linear terms, the levels avoid crossing in InSb. No
trace of this structure has remained in the other
geometry [Fig. 2(b}]. Furthermore, when moving from
T[[B to TLB the valence levels 2V =(0,—,

'
) and

3V=(0,——,') interchange and strongly split up with in-

creasing stress.
In the conduction band, for T[[Bthe g factor decreases

linearly with stress. For TlB the two spin-split oscillator
ground states 1C=(0,—,

'
) and 2C=(0,——,

' ) run parallel and
document a stress-independent g factor.

VI. INTERBAND TRANSITIONS

In the following, we primarily discuss the geometry
TLB[[[001]. Electrons, which recombine from the lowest
conduction level, emit a significant pair of spectral lines
[Fig. 2(b)], namely 1C= (0,—,

'
)~2V = (0,—,

' ) and
IC=(0,—,')~3V=(0,——,'). The frequency of the first line

decreases monotonically with stress, the frequency of the
second line first increases and then falls away. Line
IC~2V is n polarized, because EP=O, and line 1C~3V
is cr polarized, because hP= l.

The energy separation of the two spin-split conduction
states 1C and 2C does not change with stress. Therefore
the stress dependence for recombination radiation, which
is emitted from level 2C, is the same as for radiation from
level 1C. The only difference is a shift by about 46 cm
and an inverted polarization characteristic (m instead of
o and vice versa). One expects to observe two series of
lines which are exact copies, each resembling the behav-
ior of the valence-band structure under stress. Inter- and
intraband features are thus seen simultaneously.

For zero stress and kz ——0 the symmetry group of the
Hamiltonian is S4 in both geometries. Dipole radiation
accepts S4 symmetry as equivalent to cylinder symmetry,
and cr-polarized light will not display any dependence of
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FIG. 3. kq dependence of the uppermost valence states. Only the representation P=O is drawn. The magnetic field is B=2.0 T
along [001]. (a) Zero stress. (b) Parallel stress T= 100 MPa along [001]. (c) Transversal stress T= 100 MPa a1ong [100].

the angle of the polarization direction in the Voigt
configuration (klB, ELB). When transversal stress is ap-
plied, lowering the symmetry to C2, an angular depen-
dence of the intensity will be seen, reflecting the twofold
symmetry.

VII. kg DEPENDENCE
OF THE VALENCE ENERGIES

The kz dependence of the magnetic valence states is
distinctively different in the two geometries. At zero

stress [Fig. 3(a)] anticrossing effects of neighboring bands
cause several noncentral extrema (for clarity only the
P=O levels are drawn). However, when stress is applied
parallel to the magnetic field, the extrema are
straightened, and the bands assume an almost parabolic
shape. This is the reason why, in the work of Ranvaud
et al. , ' the valence intraband transitions could be inter-
preted as central transitions.

Under crossed fields, only the two lowest valence states
depend in a parabolic way on k~, the higher states
preserve the off-center extrema. This behavior causes the
unusual effects in hole Raman scattering experiments (see
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the fourth paper in this series' ).
For interband transitions, the noncentral maxima are

not significant. Due to the strong parabolicity of the con-
duction states the kz dependence of the energy separa-
tion hE (ktt ) always is minimal at ks ——0.

VIII. SUMMARY

In this paper, previous calculations of Landau states in
zinc-blende-type crystals, which are exposed to uniaxial

stress parallel to the magnetic field, have been extended
to a geometry of crossed fields. We established an
effective-mass Hamiltonian and diagonalized it with ma-
terial parameters for InSb. The stress dependence of the
states is completely different in the two geometries and
gives rise to the expectation that the structure of the
valence bands can be illuminated by intra- as well as in-
terband transitions. Experiment justifies this optimism in
the following three papers.
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