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Nonlinear-process-induced period doubling of a picosecond transient grating in CdS
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The occurrence of higher-order Fourier components in an originally sinusoidal free-carrier index

grating produced in CdS by the interference of two picosecond light pulses is demonstrated by mon-

itoring simultaneously the temporal behavior of the first- and second-order diffraction intensities of
transparent probe pulses for the temperature range 10—140 K. Nonlinear processes which take part
in the decay of photoexcited carriers result in a deformation of the shape of the grating, which leads

to the occurrence of higher-order Fourier components in the diffraction grating. Theoretical

analysis of the experimental results yields the following distinct processes: bimolecular recombina-

tion of electrons and holes for the degenerate plasma, free-carrier-to —exciton Mott transition for
the nondegenerate plasma at low carrier temperatures, and a nonlinear relation between exciton

density and free-carrier density at high temperatures.

I. INTRODUCTION

Transient-induced grating experiments have been wide-

ly used to study the dynamics of diffusion, relaxation, and
recombination of photoexcited carriers in solids. ' In
these experiments the interference of two coherent light
pulses produces an intensity (absorption) or phase (index)
grating inside a crystal which periodically modulates the
optical properties of the material. The decay of this grat-
ing monitored by the diffraction of a third light pulse il-
lustrates some of the intricacies of carrier dynamics. In-
formation on phase-relaxation processes of photoexcited
carriers can also be studied if the two interfering excita-
tion pulses are delayed with respect to each other (four-
wave mixing}. '

The initially photoexcited sinusoidal grating remains
sinusoidal at any time until it completely decays, if the
dynamics of the photoexcited species responsible for the
occurrence of a grating is described by linear processes
only. The intensity of the diffracted beam in the first or-
der provides full information on the decay of the grating
for the purely sinusoidal intensity or phase grating. Non-
linear processes, on the contrary, result in a deformation
of the shape of the grating, which leads to the occurrence
of higher-order Fourier components in the diffraction

grating and a modification of the diffraction pattern.
Simultaneous observation of the decay of different
diffraction orders is required to provide a more detailed
insight into the dynamics of the photoexcited carrier sys-
tem. To realize this concept we have performed pi-
cosecond transient-grating experiments in CdS. The
temporal behavior of a second-order Fourier component
is revealed by simultaneous measurement of the decay of
the Arst- and second-order diffraction intensities. This
second-order grating is produced by nonlinear processes
such as the bimolecular recombination of electrons and
holes in the degnerate plasma and/or the formation of ex-
citons in the nondegenerate first-order free-carrier grat-
ing (Mott transition). At elevated temperatures (T)60
K) the exciton and the free carrier are in thermal equilib-

rium because of the thermal dissociation of exciton mole-
cules. The nonlinear relation between the exciton density
and the free-carrier density also brings about second-
order Fourier components. Further increase in tempera-
ture (T) 140 K) makes the exciton contribution negligi-
ble, and in fact no higher-order components are observed.

In this paper, the theory as well as the experimental re-
sults are discussed. Section II describes the theoretical
background for calculation of the diffraction intensity of
different orders in the Raman-Nath regime. In Sec. III
are shown the experimental procedures for transient-
grating measurements. Section IV deals with the discus-
sion of the experimental results. The decay mechanisms
of the photoexcited carriers can be determined by com-
paring the experimental data with the theoretical calcula-
tions.

II. THEORETICAL BACKGROUND

A. DifFraction in the Raman-Nath regime

The diffraction of the probe beam is due to the spatial-
ly periodic change of the refractive index of the sample
induced by free carriers or excitons. The index change
due to the photoexcited free carriers can be estimated
within the limits of the Drude model. The exciton contri-
bution is calculated by using a simple-harmonic-oscillator
(Lorentz) model. s In both cases the index change is pro-
portional to the carrier or the exciton density. Nonlinear
processes which take part in the decay of the grating will
result in the deformation of the free-carrier distribution
from the initially created sinusoidal shape. Let b,NI(AJ )

be the difference of the free-carrier density at the peak of
the grating and its minimum for the jth Fourier com-
ponent of the carrier distribution with the grating spac-
ing of A -. The amplitude of the jth Fourier component
of the index change, dna', owing to hN (A ) is then given
by

2

hn =— bN(A ),
2m*~2m, n,

37 10 236 1988 The American Physical Society



37 NONLINEAR-PROCESS-INDUCED PERIOD DOUBLING OF. . . 10 237

where co, is the angular frequency of the probe pulse, np

is the background refractive index at co„eis the electron

charge, ep is the permittivity in vacuum and m ' is the re-

duced mass of the electron (effective mass of m, ) and the
hole effective mass of mi, }. For mi, we use the density-

of-states mass of mI,
~~

and m„~,where mz~~ and mI, ~ are the
effective hole masses parallel and perpendicular to the c
axis of CdS, respectively. As will be consequently
shown, A is given by Az ——A/j, where A represents the

spacing of the initially created grating and corresponds to
the j=1 Fourier component. The exciton contribution
to b,n is given by a relation similar to Eq. (1) in which

co, in the denominator is replaced by co,„—co„where co,
„

is the angular frequency of the free exciton. Hence, hnJ.

becomes larger than the free-carrier contribution for
equal density.

For incident probe beam normal to the grating in the
Raman-Nath regime ($„«1),the amplitude of the nth
order diffraction light, P„,due to hn is given by the
solution of the difference-differential equation, '

dP„+ ' (P„,—P„+,)=0, (2)

where z is the direction normal to the grating and 4j is
the phase modulation of the probe pulse at wavelength A.,
due to hnJ, and is defined for the grating with thickness
Lby

hn
2mL

S

The solution of Eq. (2) is given by the Bessel function of
the nth order, i.e., P„=J„(4). The phase modulation

4, which takes the maximum value for j= 1, is at most
—3.6 )& 10, calculated using Eqs. (1) and (3) for

A,, =532 nm, L = 1 JMm, and KNi(A) =10 m ( = 10'
cm ). The relation 4 « 1 thus holds, resulting in

P «1; i.e., the grating is surely in the Raman-Nath re-
gime. The n th order Bessel function can then be approxi-
mated by (4J /2)" /n!. The intensity of the n th
diffraction order due to the jth Fourier component of the
refractive index change, Id";r'(AJ ), is given by

2 2
CI'"'(A )= = [hN (A )] ",

2 n! n! J J

(3)

(4)

where

~Le
2m*i, co E'plop

from Eqs. (1) and (3).
The temporal behavior of Id";r'(A~) can be calculated

directly from the time dependence of d,N (A ). For a
purely sinusoidal grating (j= 1 only), Eq. (4) leads to the
fact that the decay time of the second-order diffraction
intensity, Id;r'(A), is just half of the decay time of the
first-order intensity, Id';r'(A). In other words, the time
dependence of the ratio of Id';r'(A) to Id'r'(A}, i.e.,
Id;r'( A }/Id;r'(A), becomes just the same as that of I~r'(A)
It is also noted that the value of this ratio is at most of
the order of 10 for ENi(A) =10' cm

The carrier density and, therefore, the index change
have a steep gradient inside the sample because of large
absorption coefficient of the order of 10 cm '. Strictly
speaking the phase modulation 4 can not be simply
given by the product of L and b nJ [Eq. (3)],but instead is
proportional to the integration of An- from the front to
the rear surface of the sample. It should be noted, how-
ever, that the diffraction of the probe beam is dominated
by the carrier distribution close to the surface where the
density is highest. " For this reason as well as for facility
of the following calculation, we neglect the concentration
gradient inside the crystal, and assume instead an aver-
aged distribution within the depth corresponding to the
inverse of the absorption coefficient.

B. Calculation of LLNj(Aj )

1. At low temperatures

In the case of nonuniform excitation, excitons, exciton
rnolecules, and free carriers coexist. At high excitation
intensities the exciton binding is screened at the maxima
of the grating where the free-carrier density is highest.
Excitons and exciton molecules are preferably formed at
the minima of the grating where the free-carrier density
is lowest. At carrier temperatures approximately below
60 K for CdS, exciton rnolecules are thermally stable.
Very fast recombination of exciton molecules results in

the fact that the exciton density becomes negligibly small
even at the minima of the grating. Thus we consider the

temporal and spatial change of the free carrier density
only, neglecting the excitonic contribution.

Free carrier plasma grating decays due to either bi-
molecular recombination and diffusion or free-
carrier-to-exciton Mott transition and diffusion depend-
ing on the plasma being in the degenerate or nondegen-
erate state, respectively. Note that the Mott transition is
also a bimolecular process. The density of electron-hole
pairs at the position x along the sample surface and at
time t, N, I, (x, t ), is then given by the solution of the con-
tinuity equation,

dN, I, (x, t ) d N, i, (x, t )
pN'(x, r )+D—

r}t X
(5)

where D is the ambipolar diffusion coefficient and is as-
sumed to be density (and therefore position) independent,
and P is the rate of the bimolecular process. In solving
Eq. (5}, we assume that the excitation of the grating is
given by the delta function at t =0, i.e.,
N, h(x, 0)=No[1+cos(2nx /A)]/2, where No is the pair
density at x =0 (peak of the grating} and t =0. Equation
(5) can be solved analytically only when D =0, giving rise
to

1+cos(2irx /A)
(6)

2+Pt [1+cos(2nx/A )].
where P=PNO. In the case of D&0, we assume that the
carrier diffusion affects only the modulation of the carrier
distribution which is represented by the cosine terms in
Eq. (6) to decay exponentially, i.e., exp( yt ), where y is—
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the decay rate of the grating due to carrier diffusion and
is assumed to be y =D(2m /A) . As will be subsequently
shown this y value is obtained in the case that the car-
riers recombine by linear process. An approximate solu-
tion for Eq. (5) is

1+exp( yt )—cos(2mx /A)
eh x~r 0 2+Pt [1+exp( y—t )cos(2' /A )]

This approximation is applicale only when the diffusion
effect is less eScient than the bimolecular process. Ex-
pansion in a Fourier series is performed only for the
denominator of Eq. (7), owing to the fact that analytical
expansion of Eq. (7) as a whole is not possible and also
that the deformation from the sinusoidal shape is brought
about by the denominator. N, z (x, t ) can be expressed as

N p (x r ) =No( I 1 Bex—p( yt )—) + j [ 1 —28 exp(yt ) +8 ]exp( yt —)cos(2nx /A ) J

—IB[1—28 exp(yt )+8 ]exp( yt )c—os(4n.x /A) I + )/3,

where

A =[(2+pr )'-(pr )'exp( -2yr )]'",
and

8= 2+pr —A

Pt exp( —yt )

The quantity in the first set of curly brackets in Eq. (8)
represents the term with constant carrier density. The
first-Fourier component [j= 1; the second set of curly
brackets in Eq. (8)] yields b,Ni(A), the difference of the
carrier density at the peak (x=0) and its minimum

(x =A/2). Using Eq. (4) the first-order diffraction inten-

sity due to the A grating, Id';r'(A), is given by

Iq'r'(A) =[CbNi(A)]
=[CNO(1 —28 exp(yt)+8 )exp( yt }/A ]—

For the j=2 term [the third set of curly brackets in Eq.
(8); A/2 grating], the carrier occupies the peak density at
x=A/4 and the minimum density at x=0. [Note the
negative sign for the j=2 term in Eq. (8).] Therefore, the
first-order diffraction intensity due to the A/2 grating,
Iz;& (A/2), becomes

dir'(A/2) =[CbN2(A/2)]

= [CNO(1 28 exp(y—t )+8 )exp( —yr )8/g ]~ .

(10)

The ratio of Id'r'(A/2) to I&'q(A ) becomes

z 2+Or —[( 2+p&) (pr) ex—p( —2yt)]'~2

I,",,'(A) Pt exp( yt)—
It is to be noted that the ratio [Eq. (11)] is determined
only by the P and y values, and does not include the ini-
tial carrier density No nor any other material parameters
shown in Eq. (1).

Figure 1 depicts the time dependence of the calculated
ratio, Iz'r'(A/2)/Id';r'(A), for three A values; A=7. 9 pm
by solid curves, A=4. 0 IMm by dotted curves and A=2. 9
pm by dash-dotted curves, each for p=2XIO s ' and
D=3 crn /s, p=1X10' s ' and D=3 cm /s, and
p= 1 X 10' s ' and D =7 cm /s. Equation (11) indicates
that for D =0 (or A=ao ) the decay of Id';r'(A/2) is al-
ways slower than the decay of Iz;&(A), i.e., the ratio in-
creases monotonously with time delay as shown by the
dashed curve for the respective P values. Owing to the
fact that the period doubling of the grating is brought
about by a nonlinear process, the value of the ratio de-
creases if the contribution of the nonlinear process be-
comes smal1 compared with the effect of the carrier
diffusion as in the following cases: (1) the case of smaller

P values for the given D and A values (cf. the case of
p=lX10' s ' and p=2X10 s ' for D=3 cm /s), (2)

the case of larger D values for the given P and A values
(cf. the case of D =7 cm /s and D =3 cm /s for
p = 1 X 10' s '

), and (3) the case of smaller A values for
the given P and D values. Moreover, the ratio has some-
what similar temporal behavior among the different A
values in case of smaller D value because of insuScient
diffusion effect (cf. the case of D=7 cm /s and D=3
cm /s).

2
Nex =nNe-I (12}

where g is a function of temperature and the exciton

2. At high temperatures

At temperatures above about 60 K in CdS, where the
exciton molecule is thermally dissociated, the main chan-
nel which diminishes the exciton density disappears. '

This results in the occurrence of thermal equilibrium be-
tween the exciton and the free carrier. Under this condi-
tion, the exciton density, N,„,is proportional to the
square of the free carrier density, N, I„i.e.,
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can be expressed as

Id';t(A/2)=C g Noexp(21't) .

The ratio of Id';t ( A /2 ) to Id;t ( A ) becomes

I
d; t( A /2 ) /I g; t( A ) = ( '/No }

(15)

(16)
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In the present approximation the value of the ratio be-
comes independent of A. Because g should increase with
decreasing temperature, the ratio increases for lower car-
rier temperature and higher I,

„„

in spite of the fact that
the absolute value can not be determined.

With further increase of the temperature, the exciton
density becomes negligibly small because of thermal dis-
sociation. The deformation from the sinusoidal grating
can then be neglected, i.e., no higher-order Fourier com-
ponents result. The observed second-order diffraction in-
tensity should certainly correspond to the second-order
diffraction due to the A grating.

III. EXPERIMENTAL PROCEDURES

FIG. 1. Time dependence of calculated ratio of the first-order
diffraction intensity due to the grating with A/2 spacing,
I4;'q(A/2), to that due to the grating with A spacing, I4'f(A),
I4 f ( A /2 )I4';q ( A ), for three grating spacings; A =7.9 pm (solid
curves), A=4.0 pm (dotted curves), A=2. 9 pm (dash-dotted
curves). Dashed curves indicate the case of no diffusion (D =0).

binding energy, and decreases with increasing tempera-
ture. ' It should be noted that this nonlinear relation be-
tween N,„andN, & also brings about the exciton grating
with A/2 spacing.

In the following calculation, we again assume that the
exciton density is much less than the free carrier density,
and that the latter decays by linear process with the rate
of I . The temporal and spatial change of the free carrier
density, N, z (x, t ), is then given by

N, z (x, t ) =No[ 1+cos(2mx /A)exp( y t )]-
&(exp( —I t )/2, (13)

where the same initial condition as that in solving Eq. (5)
is used. The first-order diffraction intensity due to the
free carrier grating with spacing A is

Id';t(A) =(CNO } exp( 2I't ), — (14)

where I =y+I =D(2m/A) +I .
As will be discussed in Sec. IV C, exciton diffusion can

be neglected, i.e., the exciton grating decays only due to
recombination, while the free carrier grating decays due
to both recombination and diffusion. This fact suggests
that any alteration to the free-carrier distribution in Eq.
(13) is not necessary even if we take the exciton contribu-
tion into consideration. The exciton density is then given

by the square of the free-carrier density, but should decay
in the same manner as that of N, z [Eq. (13)] because of
the thermal equilibrium existing between them. The
first-order diffraction intensity due to the exciton grating

(2)
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ldll(~& +
(2)

(1) (i)
d (

- ld)(p) '
e

~ ~ ~ ~
y(1)f
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FIG. 2. Schematics of experimental technique for producing
and measuring transient grating. I4;'& and I„";,' are the first- and
second-order diffracted beams, respectively.

The experimental configuration used is as follows:
Two excitation pulses with a wavelength of 355 nm, the
third-harmonic pulses of an active-passive mode-locked
Nd: YAG laser (pulse width 25 ps), separated by an angle
of 28, are focused on the sample to coincide both spatial-
ly and temporally (Fig. 2). The interference between the
two pump pulses produces a modulation of the optically
excited free-carrier density at the sample surface, which
is proportional to 1+cos(2@x /A), where the x direction
is taken along the sample surface, and A is the grating
spacing given by A=A. /(2sin8) (I, is the pump-pulse
wavelength). This grating decays in time due to recom-
bination, transformation into excitons, and diffusion of
the carriers. The grating decay is monitored by measur-
ing the first-order, Id';&, and the second-order diffracted
light, Id;t, of the second-harmonic pulses (A,, =532 nm) of
the Nd:YAG laser as a function of time delay between
the excitation pulses and the probe pulses. The probe
pulses at A,, =532 nm is transparent for CdS. The angle
of the jth order diffracted beam due to the grating with
the spacing A, y'J', is given by sing'~'= jA,, /A. It is not-
ed, therefore, that the second-order diffracted beam due
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IV. KXPKRIMKNTAL RESULTS AND DISCUSSION

A. Results at T»,h &4OK

Experimental results for the diffraction intensity versus
time delay measured at the bath temperature of
Tbgth 10 K are summarized in Fig. 3 for three grating
spacings. The 611ed and open circles correspond to the

&0'

K

5)tJ

10

C

05- 104 ~

9 IJLm.
04)

to the A grating just coincides with the first-order
diffracted beam due to the A/2 grating (see Fig. 2).

A single pulse is switched from the train of the mode-
locked pulses by means of an electrooptic shutter. Exci-
tation pulses and probe pulses with almost constant am-
plitude are selected electronically and are used for
averaging. The excitation energy, I,„„of1 pJ corre-
sponds to a power density of about 10 MW/cm . Thin
platelet crystals of 10-SO pm thickness are used. The
temperature of the crystals mounted on a cold finger
which is in contact with liquid He is controllable from 10
K up to about 200 K within an accuracy of +2 K during
experiments.

first-order [Id';r'] and second-order [I
deaf

] diffracted
beams, respectively. The intensity scale for I„';fis shifted
with respect to Id;f, so that the data for Id';f and those for
Id f nearly coincide in the later time regime for each A.
The decay of Id;'f can be characterized by a fast initial
and a slower component in the later time regime. The
temporal position of the maximum of Id,'& remains nearly
constant for different A. The decay of Id;f is nearly ex-
ponential and the peak position shifts to longer delay
times with increasing A. The decay times become faster
with decreasing A as a result of the carrier diffusion. It is
important to note that roughly the same decay time ob-
served in the later time regime for Id'f and Id;f leads to
the fact that the time dependence of Id;f cannot be simply
described by the second-order diffraction due to a
sinusoidal grating with spacing A [cf. Eq. (4)).

Solid curves in Fig. 3 represent Id', r'(A) and Id,&(A/2)
calculated for P=1.2&(10' s ' and D=8 cin /s using
Eqs. 9 and 10, respectively. ' The absolute values for
both I(d't)(A) and I~(;t)(A/2) are shifted so as to fit the ex-
perimental points. In any case, fairly good agreement
both for the first- and second-order components is found
in the time regime later than approximately 100 ps.

In order to discuss in detail the relation of diffraction
intensities between the different diffraction orders and
those between the different A values, it is rather con-
venient to plot the ratio of the diffraction intensity in the
second order to that in the first order, Id;r'/Id';&, instead of
the diffraction intensity itself as in Fig. 3. Figure 4 de-
picts experimental data for the ratio Id;& /Id;& versus time
delay for the same data as shown in Fig. 3: A =7.9 pm
(open circles), A=4. 0 )um (solid circles) and A=2. 9 pm
(squares). One can clearly recognize that the decay of Is(;r)

is slower than that of Id';f for A =7.9 pm, nearly equal for
A=4.0 pm and somewhat faster for A=2. 9 pm. The ra-
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FIG. 3. Observed diffraction intensity in the first (solid cir-
cles) and second order (open circles) as a function of time delay
for three grating spacings measured at Tb„&——10 K.
Solid curves are the calculated diffraction intensities for
/= 1.2X 10' s ' and D =8 cm /s as described in the text.

FIG. 4. Observed ratio, Id;&/Id';f', as a function of time delay
measured at T»,&

——10 K for three grating spacings; A=7.9 pm
(open circles), A =4.0 pm (solid circles) and A =2.9 pm
(squares). Solid and dashed curves indicate the calculated ratio,
Idq(A/2)/Id;, '(A), for /=1. 2X10' s ' and D=8 em~/s as de-
scribed in the text.
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tio has a larger value for larger A value. The solid curves
in Fig. 4 are the calculated results of the ratio,
IdIf(A/2}/IdIf(A), for the same P and D values as in
Fig. 3; p=1.2X10' s ' and D=8 cm /s. The ordinate
scale for the calculated results, however, is shifted so that
the calculated curve for A=7. 9 pm coincides with the
experimental points for A=7.9 pm. (The ordinate scale
on the right-hand side is for the calculated ratio and that
on the left-hand side for the observed ratio. ) The calcu-
lated ratio is found to be about 2 times larger than the ex-
perimentally obtained ratio. This discrepancy increases
with decreasing A. The dashed curves for A=4.0 and
2.9 pm are also the calculated results but are shifted so as
to fit well to the respective data points. It is noted that
agreement between the experimental and calculated re-
sults is good as far as the time-dependence of the ratio is
concerned. Similar results are obtained for I,„,=0.18
and 0.5 pJ, and also for three I,„,'s measured at
Tb„h——40 K. The results of the theoretical analysis are
summarized in Table I.

The discrepancy between the experimental and the cal-
culated ratios in Fig. 4 is ascribed to the approximation
presently used. The approximate solution for N, „(x,t)
in Eq. (7) gives rise to the carrier density at x =A/4,
N, I, (A/4, t)=No/(2+Pt), which is independent of the
D value, i.e., the carrier density at A/4 decreases only by
the bimolecular recombination or the transformation pro-
cess, and is not affected by the carrier diffusion. This re-
sult, however, is not correct for the actual distribution of
the carrier. Numerical solution of Eq. (5) shows that the
carrier density at x =A/4 becomes smaller than that of
the approximate value obtained from Eq. (7) irrespective
of P and D values for the entire time range measured
here. This fact leads to the overestimation of the calcu-
lated Id;'&(A/2) value, resulting in the larger value for the
ratio. This discrepancy becomes larger for smaller A
value, where the diffusion effect is more efficient and
therefore the approximation becomes worse.

In the present calculation of the diffraction intensities,
we employed the initial condition that the excitation of
the grating is given by the delta function at t=0. In-
clusion of the correct pulse shape, however, enhances fur-
ther the discrepancy between the experimental and calcu-
lated results in the earlier time regime (Fig. 3), indicating
that the plasma grating in the earlier time regime decays

TABLE I. Obtained P, I, and D values. Note that the data
in the parentheses at Tb„&——60 K are obtained for I,„,=0.35
pJ. Pand I are in units of 10 s ', D is in units of cm2/s.

with larger P value than that obtained here. This fact is
in accordance with our previous experiments where de-
generate electron-hole plasma decays very fast by bi-
molecular recombination with the rate of P=(5—7)
X10 cm /s corresponding to p=(l —1.4) X10" s
for the initial plasma density of 2X10' cm, and
changes into nondegenerate plasma at 100—150 ps after
the excitation. Thereafter, optical gain as well as a
luminescence line due to the recombination of exciton
rnolecules are observed. " For nondegenerate plasma the
recombination of free carriers is of minor importance,
and the recombination of exciton molecules determines
the decay of the free carrier and the exciton system. '

Present P values listed in Table 1 are about one-order of
magnitude smaller than those for degenerate plasma and
correspond to nondegenerate plasma. Taking these facts
into consideration we can conclude that the P values
presently obtained are determined mainly by the free-
carrier-exciton Mott transition.

B. Results at T»,h &60K
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Figure 5 shows experimental data for the ratio
Id f/Id'f me'asured at Tb„h—60 and 70 K for three exci-
tation intensities and for three A values: 7.9, 4.0, and
2.9 ium. (The diff'raction intensity for I,„,=0.18 pJ at
Tb„h——75 K is too weak to be measured. ) The decay of
Id'f itself, although not shown, is characterized by a fast
initial and a slower exponential component in the time re-
gime later than 100 ps, whereas the decay of Id;f is ex-
ponential in the entire time regime with nearly the same
time constant as that for Id;f, giving rise to the results in
the later time regime shown in Fig. 5. According to the
theoretical prediction in Eq. (4}, the time dependence of
Id;f again cannot be described by the second-order
diffraction due to a sinusoidal grating. All of the ob-
served ratios show almost no time dependence in the time
regime later than about 100 ps. This fact is different from
the observed data at lower temperatures (cf. Fig. 4). Note
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FIG. 5. Observed ratio Id;f'/Id';f' as a function of time delay
measured at Tb„h——60 and 75 K for three excitation intensities
and for three grating spacings.



10 242 HIROSHI SAITO AND AKIRA WATANABE 37

- 10

o 1st order
540ps

(x50)

~ 10

2nd order
270ps

10

Tb~, h =140K

(exc O &pJ

A =2.9 pm
I I

0 200 400 600
t(ps)

FIG. 6. Observed diffraction intensity in the first-order, Iz';z

(solid circles) and the second-order, Id;& (open circles), and the
ratio Idjf /Idjf (squares) as a function of time delay for
A=2. 9 pm measured at Tb„h——140 K. Solid and dotted lines
indicate the exponential decay with the time constant of 540
and 270 ps, respectively.

that the value of the ratio increases with increasing I,„,
and decreases with increasing temperature for the corre-
sponding I,„,. These results are in accordance with the
theory for higher temperatures [Eq. (16), Sec. II B 2]; the
ratio has no time dependence but increases with increas-
ing No and g, corresponding to higher I,„,and lower
temperature, respectively. The value of the ratio, howev-
er, increases with increasing A, which is in contradiction
to the present theory in which the value of the ratio is in-

dependent of the A value.
For comparison we also performed the calculation of

the ratio using Eq. (11). In the case of smaller D value

the ratio shows somewhat similar temporal behavior
among the different A values because of insufficient
diffusion effect (cf. Fig. 1). This resembles the observed
data in Fig. 5. For smaller P value, however, the absolute
value for the ratio decreases considerably, especially in
the time regime earlier than about 150 ps. It is found
that no calculations fit well to the experimental results.
This fact provides further confirmation to the interpreta-
tion that the exciton molecule is already thermally disso-
ciated, and the thermal equilibrium is established be-
tween the exciton and the nondegenerate free carrier at
these temperatures. ' By analyzing the exponential decay
component of Id';& observed in the later time regime for

Tb„h——60 K using Eq. (14), we obtained the D and I
values as listed also in Table I.

Figure 6 depicts experimental results for Tb„„=140K.
The solid and open circles correspond to the first- and
second-order diffracted beams, respectively. Both signals

decay exponentially, with decay constants of 540 and
270 ps for Id'I& and Id;&, respectively. In Fig. 6 the ratio of
the second-order to the first-order diffraction intensity,
Id;r'/Id f is also plotted (see open squares). The solid line
indicates the exponential decay with the same time con-
stant for I'„';&,i.e., 540 ps, and is found to fit well to the
experimental points for the ratio. At this temperature
the exciton density becomes negligibly small because of
thermal dissociation. The deformation from the
sinusoidal grating can then be neglected, i.e., no higher-
order Fourier components result. Thus the observed re-
sults are in perfect agreement with the theoretical predic-
tions for an ideal sinusoidal grating.

C. DISCUSSION ON D VALUES

Free carriers suffer several kinds of scatterings, e.g.,
polar-optical(LO)-phonon, acoustic-phonon, piezoelectric
and impurity scatterings. ' At the effective carrier tem-
perature T,z, below -50 K, the piezoelectric and impuri-
ty scatterings dominate the processes which determine
the mobility of free carriers in CdS. At T,z &70 K, on
the other hand, the carrier mobility is determined mostly
by the scattering with LO phonons. Contribution of the
acoustic phonon-scattering is less important for the entire
temperature range for CdS. The diffusion coefficient of
the electron and the hole can be calculated from the mo-
bility using the Einstein relation employing the Maxwell
distribution for the free carrier. Ambipolar diffusion
coefficient D is defined as 1/D =(1/D, +1/D„)/2, where

D, and Dz are the diffusion coefficients of the electron
and the hole, respectively. The resultant D value is
D =13 cm /s at T,z ——50 K for the neutral impurity con-
centration of 10' cm . The D value decreases with in-
creasing T,s, and D =7 cm /s at T,s 70 K and D——=3
cm /s at T,rr 100 K for t——he same impurity concentra-
tion. For larger impurity concentration the D value de-
creases further at low temperature, but is less afFected for
T ff )70 K. The observed diffusion coefficients listed in
Table I are found to be in good agreement with these cal-
culated values. Furthermore, the observed D values at
Tb„h——10 K are found to be in good agreement with the
ambipolar diffusion coefficient estimated from the ob-
served Hall mobility of electrons in CdS (Refs. 11 and
17), i.e., D -9.8 cm /s for T,s 40 K. ——

In the above calculation, we assumed the Maxwell dis-
tribution for free carriers, which leads to the fact that the
resultant D values are independent of the carrier density.
This, however, is different from the experimental results
where the D value. becomes larger with increasing excita-
tion density. Experimentally, the free-carrier density en-
countered here is too high and the temperature is too low
to be expressed by the Maxwell distribution. Further-
more, the calculation was performed assuming that the
free carrier is in thermal equilibrium with the lattice, i.e.,
T,ff —Tb tQ which is in contradiction with the experimen-
tal results ( T,s & Tb„h). Calculations which take these
facts into consideration are required for a more detailed
drscussron.

The scattering matrix element between excitons and
LO phonons is essentially the same as that between bare
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charged particles and LO phonons, but is multiplied by
factors which represent the extent of the overlap of the
Wannier envelop functions involved in the scattering. '

For the collision of a 1s exciton with the kinetic energy of
0.2fla)Lo 2AtoLp (Pleat p= 37.2 meV) with an LO phonon,
the scattering probability becomes about 2 orders of mag-
nitude larger than that of free carriers with the same ki-
netic energy. Qualitatively speaking, the diffusion
coefficient (or the mobility) is inversely proportional to
the scattering probability, resulting in the fact that the
diffusion coefficient of the exciton becomes about 2 orders
of magnitude smaller than that of the electron or the
hole. This is the reason why we ignored the exciton
diffusion in calculating the diffraction intensity in Sec.
II B.

V. CONCLUSION

We have demonstrated that the simultaneous detection
of the decay of different diffraction orders in transient-
induced grating experiments provides a detailed insight
into the dynamics of excited carrier systems. With the
aid of theoretical calculations we have shown the follow-
ing results for CdS: Nonlinear processes such as the bi-
molecular recombination of electrons and holes in the de-
generate plasma and the free-carrier —exciton Mott tran-
sition in the nondegenerate plasma cause the occurrence
of higher-order Fourier components in the grating at low
temperatures. The obtained transformation rate of

(1—1.5)X10' s ' is much smaller than the bimolecular
recombination rate for the degenerate plasma of about
1011

At higher temperatures where the exciton molecule is
thermally dissociated, thermal equilibrium is established
between the exciton and the free carrier. The nonlinear
relation between the exciton density and the free-carrier
density also brings about the exciton grating with dou-
bled period in the free-carrier grating. With further in-
crease of the temperature, the exciton density becomes
negligibly small because of thermal dissociation, and no
higher-order Fourier components result.

These results demonstrate that the spatial resolution in
transient-induced grating experiments can be extended to
a microscopic scale by inclusion of higher diffraction or-
ders, thus opening a new potential for the study of carrier
dynamics in solids on picosecond and subpicosecond time
scales.
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