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We show how the density-functional theory (DFT) exchange-correlation potential V„,(r) of a
semiconductor is calculated from the self-energy operator X(r, r', co), and how X is obtained using

the one-particle Green s function and the screened Coulomb interaction (the GR'approximation).
We discuss the nature of V„, and the self-energy in real space, and investigate features and trends
found in Si, GaAs, A1As, and diamond. In each case the calculated quasiparticle band structure is

in good agreement with experiment, while the DFT band structure is surprisingly similar to that
with the common local-density approximation (LDA); in particular, about 80% of the severe LDA
band-gap error is shown to be inherent in DFT calculations, being accounted for by the discontinui-

ty b, in V„, upon addition of an electron. The relationship of the calculated V„, to the LDA and its
extensions is also examined.

I. INTRODUCTION AND FOUNDATIONS

In previous papers' we have given brief accounts of
some results of calculations of exchange-correlation po-
tentials and quasiparticle energies for silicon, gallium ar-
senide, aluminum arsenide, and diamond from the self-
energies X(r, r', to), which are calculated in the so-called
GW approximation using the one-particle Green's func-
tion and the screened Coulomb interaction. The pur-
pose of this paper is to give full details of these calcula-
tions and their results, and to present a more comprehen-
sive discussion.

A. Density-functional theory
and structural properties of solids

Much progress has been made in recent years in calcu-
lating structural properties of solids from first princi-
ples. Equilibrium crystal structures and lattice parame-
ters, dissolution and defect energies, phonon spectra,
cluster energies, chemisorption bond strengths, and sur--
face reconstructions are good example. Structural prop-
erties of the electronic ground state, since the Born-
Oppenheimer approximation permits one to calculate the
potential energy of the solid as a function of the
configuration of its nuclei by finding the ground-state to-
tal electronic energy with the nuclei frozen in each
configuration. This progress has been made possible by
density-functional theory, (DFT) ' in which the massive
problem of calculating the ground state of the true sys-
tem of 10 interacting electrons is rigorously
transformed into that of finding the ground state of a
much simpler system of noninteracting electrons moving
in a local effective potential V,s(r). The exact ground-
state electron density of the real system is then given by

the electron density of the fictitious noninteracting sys-
tem, and the exact ground-state total energy by a func-
tional of that electron density.

The total ground-state electronic energy is written as

E„,[n]=T, [n]+E„[n]+E„,[n]

where T, is the kinetic energy of the fictitious non-
interacting electrons, E„ the classical Coulomb electro-
static potential energy of the electron gas and the nuclei,
and E„, the remainder —the so-called exchange-
correlation energy. The basic theorem of DFT states that
apart from the classical external electrostatic potential
energy f n (r) V,„,(r)dr, E„,[n] is a universa/ functional
of the electron density n (r). The corresponding effective
one-electron Schrodinger equation, constructed by Kohn
and Sham to avoid needing to know the functional
T, [n], is

[ ——,'V + V,„,(r)+ VH(r)+ V„,(r) —E;DFT]Q; DFT(r)=0,
(&)

where VH is the Hartree potential fn(r')dr'/I r —r'
I

and V„, the exchange correlation potential 5E„,[n]/
5n(r) The electron .density is given by

n(r)= g I g;, DFT(r) I'.

The only complications are that the effective potential
in the fictitious system (i) is itself a functional of the elec-
tron density, so that the equations must be solved self-
consistently, and (ii) must, in practice, be approximated,
as the functional E„,[n] is not known exactly for most
densities. The first of these complications is trivial to
overcome to any desired degree of accuracy; the second is
not, but, in practice, very satisfactory results have been
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obtained by using the well-known local-density approxi-
mation (LDA}:

E„,=ELDA = n r whom n r dr (4)

and, correspondingly

V„,(r) = V„", (n(r))
—=p"„,' (n(r))

de"„' (n(r))
(n (r))+n (r)

where e„",' (n) is the exchange-correlation energy per
electron of a homogeneous electron gas of density n,
which is known accurately from numerical many-body
theory. Indeed, this works so well that two of the most
important unsolved problems of the fundamentals of
density-functional theory are (i) why does the LDA work
so well, and (ii) when and why does it break down? As
we shall see, this work will allow us to find the true V„, of
an extended system quite independently of any LDA, so
that the physical basis for their similarities and difference

may be studied.

B. Electronic excitations

The electronic and optical properties of a solid are
quite distinct from its structural properties. In the latter,
as described in the preceding section, one is keeping the
electrons in their ground state and asking what the
change is in the total energy of the system when one
moves the nuclei adiabatically. In one-electron proper-
ties, one is keeping the nuclei stationary (except for the
possibility of allowing some coupling to the phonons) and
asking with what possible energies one can add an elec-
tron to the system (or take one from it). In the language
of many-body theory, these energies are the energies of
the quasiparticles of the system; that is, the energies that
appear in a Schrodinger-like equation containing the non-
local, energy-dependent self-energy in place of the
exchange-correlation potential. In the case of an infinite,
periodic solid, the electron's momentum is well defined,
so that one can inquire about the quasiparticle energies as
a function of the momentum, k These functions E(k) are
generally known as the band structure of the solid.

Optical measurements involve excitations of the system
without adding or subtracting electrons. The simplest
linear-optical process involves two quasiparticles, one
electron and one hole, which attract each other, forming
an exciton. The inferred continuum edge of the optical
spectrum is taken to be the difference between quasiparti-
cle energies in the conduction and valence bands. With
this in mind we may talk about quasiparticle and excita-
tion energies interchangeably.

Calculating the quasiparticle energies is by no means
so refined a procedure as calculating the total energy.
Formally, the energies are the solutions E of the equa-
tion

[——,
' V'+ V,„,(r)+ VH(r) —E]g(r)

+ X rr'E r' dr'=0, 6

where VH is defined above, and X(r, r', E) is the self
energy, a nonlocal, energy-dependent operator. The com-
plexity of X has been the main reason for the difficulty of
realistic first-principles calculations of quasiparticle ener-
gies.

There has, however, been some exploration of the va-
lidity of various approximations to the self-energy for
semiconductors, insulators, and metals. Earlier work in-

cludes that of Strinati, Mattausch, and Hanke, ' who
used the GW approximation starting from a Hartree-
Fock calculation; Pickett and Wang, "' who implement-
ed the local-density approximation of Sham and Kohn'
for the self-energy operator; Horsch, Horsch, and
Fulde, ' who have taken a local-orbital-correlation ap-
proach; and Stern and Inkson, ' who performed an ana-
lytic calculation of the G W self-energy within an
extreme-tight-binding model. The best results have been
obtained using the GW approximation starting with LDA
wave functions and energies: Hybertsen and Louie'
obtained results for silicon, germanium, lithium chloride,
diamond, and a germanium surface using a plasrnon-pole

approximation for the frequency dependence of W, and
the present authors' calculated the quasiparticle ener-
gies of silicon, diamond, gallium arsenide, and aluminum
arsenide using a formally similar approach, but without
making any assumptions about the frequency dependence
of W. von der Linden and Horsch have performed GW
calculations using empirical-pseudopotential wave func-
tions and energies to calculate the corrections to the
LDA Kohn-Sham eigenvalues. Recently Gygi and Bal-
dereschi ' have completed LDA GWcalculations with re-
sults similar to those reported here and in Refs. 16-19.

C. The connections between quasiparticle
energies and DF theory

There is a formal resemblance of Eq. (6), which gives
the quasiparticle energies, to the Schrodinger equation (2)
for the effective-one-electron eigenvalues of density-
functional theory: each is a Schrodinger equation for
fictitious, noninteracting electrons moving in an effective
potential (although in one case this "potential" —the self
energy —is nonlocal and energy dependent). This has
suggested that there might be a connection between the
quasiparticle energies E; and the DFT eigenvalues E, ~FT.

This speculation can be put on a firmer footing by not-
ing that the quasiparticle energies within an Auger
threshold of the gap can, from their definition, be written
in terms of changes in the total ground-state energy of
the system when electrons are added or subtracted, and
DFT gives total ground-state energies exactly. Exploit-
ing this relationship has led to the result' that, in a large
system at zero temperature, the chemical potential p (the
Fermi energy, or, for metallic systems, the minimum en-

ergy to add an electron to the system; equal also to both
the electron affinity and the ionization potential}, is given
correctly by the highest occupied DFT eigenvalue:

BEBE
P BN

~ oFT

where (N) denotes the system containing N particles. No
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further exact relationship is known for energies away
from EF

In the case of semiconductors, however, there is an en-
ergy gap, and the electron afBnity and ionization potential
are not equal, as the energy change in adding an electron
to the system is not the same as in removing one. Never-
theless, the relationship (7) may be applied to the con-
tinuous changes N —1~N and N~N+1, giving

(8)

as shown by Sham and Schliiter22 and Perdew and
Levy. Both also showed that the difference between the
highest occupied and lowest unoccupied DFT eigenval-
ues in the ¹lectron system (which is what is usually
called the DFT band gap) is not the true quasiparticle
band gap E~, but differs from it by 5, the discontinuity in
the exchange-correlation potential when an electron is
added to the system:

~ =Eg
(9)

(independent of r), where V'„, ' is the exact DFT
exchange-correlation potential for the ¹lectron system.
This is because the exchange-correlation potential is the
only part of the D~ 1' one-electron potential that can be a
nonanalytic functional of the electron density —which
changes only infinitesimally in a large system when an ex-
tra electron is added —and therefore the only means by
which the Dt L' eigenvalues can be altered (by an amount
of order 1) when an electron is added (Fig. 1). Moreover,
V„, can only change by an r-independent constant, 5, be-
cause only this ensures that there is no effect (of relative
order 1) on the electron density.

6 has been shown to be a significant fraction of the

Eo

energy gap for a one-dimensional model semiconductor
within a two-plane-wave basis set, but its size for a real
semiconductor was not known. If b is small, exact DFT
will give accurate band structures, and attention should
be paid to going beyond the LDA in density-functional
theory; if 6 is large, no attempt to add nonlocal-density
corrections to the LDA will improve the calculated DFT
band structures, and one must either go outside DFT, or
take the discontinuity in V„, into account explicitly as a
correction to the DFT band structure when quasiparticle
energies are needed. Thus 6 lies at the heart of the rela-
tionship between the quasiparticles and DFT for semi-
conductors and insulators. In a periodic solid, where the
momentum k is a good quantum number for both the
DFT and quasiparticle wave functions, the rigorous ex-
tension b,(k) is possible to all the minimum direct band
gaps throughout the Brillouin zone with energies below
the Auger threshold.

D. Experimental facts

Owing to the general absence of true calculations of
quasiparticle energies, experimental measurements of
these energies (for example, in photoemission, optical ab-

sorption, and electronic transport) are usually compared
with DFT band structures. It is found that there is often
fairly good qualitative agreement. The worst quantitative
discrepancies shown by careful calculations using the
local-density approximation for exchange and correla-
tion, and eliminating any other source of error, are that
the energy gaps in semiconductors and insulators are al-
urcys much too small. For example, the minimum band

gap of silicon is 50% too small, and that of germanium
100% too small 6—the LDA causes the valence and con-
duction bands to overlap. After it was shown (see above)
that the energy gap is not given correctly by even the ex-
act DFT band structure for the N-particle ground state,
it was realized that the belief that this error occurred
wholly because of the use of the LDA in the DFT calcu-
lation was incorrect. However, the relative contributions
of these two sources of error was unknown. In addition,
the widths of individual bands, especially away from EF,
can be in error by up to about S0%.

ik

tr g.DFT

N electrons N +1 electrons
FIG. 1. Illustration of the significance of 5, the discontinuity

in V„,. The exact DFT Kohn-Sham one-electron energies are
shown in the form of a band structure for the X- and (%+1)-
particle systems. The two differ in a uniform increase of the ei-
genvalues by 5, as explained in the text. The quasiparticle gap
Eg is the difference between the two eigenvalues indicated:
Eg =E&++1'&~—EN &~. It is evident that E~ =Eg +A.

E. The role of this work

In this paper we attempt to answer the following ques-
tions: (i) Do the discrepancies between the DFT band
structures and the experimental quasiparticle band struc-
tures (especially the band gaps) arise from the use of the
local-density approximation, or are they inherent even in
exact DFT, or a combination of the two? %hat is the
form of b, (k)? (ii) What is the nature and physical origin
of the self-energy operator in real space, and which of its
features are important for the quasiparticle properties?
(iii) How does the true DFT exchange-correlation poten-
tial differ from the LDA approximation of it? Can the
physical origins of the difference be used to suggest better
approximations than the LDA?

The paper is organized as follows. En Sec. II we de-
scribe the calculation of the dielectric matrix e, the
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screened Coulomb interaction 8', the self-energy X, and
the exchange-correlation potential V„,. Then in Secs. III
and IV we give and discuss our detailed results. In Sec.
III we concentrate on the self-energy operators and the
quasiparticle properties calculated from them. In Sec. IV
we examine V„, in real space and the DVI' one-electron
energies, comparing the latter with the local-density ap-
proximation for V„, and the quasiparticle energies, and
determining the values of h. We also compare V„, with
previous extensions to the LDA.

II. THE CALCULATION

A. The dielectric function and screened Coulomb interaction

We begin with a well-converged LDA calculation for
the material at its experimental lattice constant, using a
plane-wave basis set and nonlocal pseudopotentials.
The whole calculation is performed within this plane-
wave basis. (The different stages in the calculation, start-
ing from the LDA band structure, are summarized as a
flow diagram in Fig. 2.) The plane-wave energy cutoff
was chosen to be 12.5 Ry for Si, GaAs, and A1As, and 50
Ry for diamond. Eigenvalues are generally converged to
0.1 eV, with the exception of the I 2 conduction band,
which converges very slowly as the number of plane
waves is increased. Here the convergence error is less
than 0.3 eV. Next, the LDA wave functions and energies
are used to form the random-phase approximation (RPA)
dielectric function, e(r, r', to). In each case about 169
reciprocal-lattice vectors and 65 bands were retained.
Because of the periodicity of the crystal, e (and all nonlo-
cal quantities considered here} can be written in the form

e(r, r', to)= dk g eGG(k, t0)
1

8n'0 G G

r((r+G) re —i(k+G') r'
(10)

where the unit-cell volume is Q, G and G' are
reciprocal-lattice vectors, and k is restricted to the first
Brillouin zone. We calculate the LDA band structure
and the self-energy at two and six special k points in the
wedge, and the dielectric function at the six and ten k
points, respectively, which are the difference vectors (not
themselves special points: for example k=0 is included}.
We first calculate e at the six k points, and then interpo-
late to obtain e at the ten k points}. Additionally,
e(k=O) requires the LDA band structure at ten rather
than two k points to be well converged. The final 8'used
in the calculation of X is the composite of these calcula-
tions (see below).

The inclusion of the off-diagonal terms in the dielectric
matrix eGG. corresponds to taking account of the so-
called local jteld-sects, since a purely diagonal dielectric
matrix would imply that e depended only on

~
r —r' ~,

thereby ignoring the fact that the unit cell is not homo-
geneous but can respond to a perturbation by setting up
locally varying fields. The local-field terms are crucial
(though, as we shall see later, mainly in their effect on the
strength of the screening hole rather than its shape) and
contribute directly to the differing strengths of the self-
energy operator at different points in the unit cell and
therefore to the band-gap correction

The RPA expression for e is @=1—Vg, where V is
the Coulomb interaction 1/

~

r —r'
~

and X the response
function,

P, (r )QJ'(r )P;(r')QJ (r')
X(r, r', t)v=2+( ;nn)—

E E to i—5——
lJ J

where n, , f, , and E; are the occupations (0,1), wave func-
tions, and energies of the one-electron states (in this case
the LDA Kohn-Sham states), and 5 is an infinitesimal.
Written in reciprocal space as described above, this be-
comes

& i.-""+"
i

)& i.'"+"'~ )
XGG (k, co) = g ( n; n)—

E; EJ to i5——— (12)

(where MQ is the crystal volume), which may be evalu-
ated conveniently in the plane-wave basis set. Only states
~i ) and

~ j) differing in k vector by k+Go (where Go is
any reciprocal-lattice vector) contribute, and each of the
two terms in the numerator is calculated most easily us-
ing a fast Fourier transform (FFT) by evaluating
g;(r)P~'(r) on the real-space grid.

For k=O ( which is one point in the mesh used) the
first (second) term in the numerator vanishes when G=O
(G' =0), but it is important to calculate the limiting be-
havior as k~0 as 7 will later be combined with the
Coulomb interaction V(k) =4m /k We follow Re.f. 30
and use the identity

lim &f„,n (e '"'~ g), +„,n')

=i &kg , ()nV ) Pq, ')n/(E(, „Eq „) (13)—

(where n and n
' are the band indices), which may be eval-

uated easily when f is expressed in a plane-wave basis set.
We omit the small correction to this expression arising
from the nonlocality of the pseudopotential, which we ex-
pect to be insignificant when e is combined into X.

Despite the simplifications of periodicity, the evalua-
tion of e is still very demanding computationally, and
only in the last few years have calculations of eoG (q, co)

been published, ' and then only for a very limited range
of G, G', q, or co. We achieve a considerable reduction in
computation while maintaining full accuracy by calculat-
ing e for imaginary, rather than real, co, using the analytic
continuation of the RPA expression to imaginary fre-
quencies, so that there is no need to take elaborate pre-
cautions for handling the poles of e that lie just off the
real co axis. This is possible because the calculation of X
involves an integration over frequencies, and we choose
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(N+ I)
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(N)

XC

FIG. 3. (a) The contour of integration in the complex co'

plane for the frequency integral performed in calculating X(co)
(the "correlation" part of X: see the Appendix). The energy
zero is chosen to be in the middle of the LDA band gap. The
poles of the integrand are shown as crosses. The choice of
contour —enclosing the poles to the left of the imaginary axis of
both W and G—indicates the analytic continuation of the GS'
expression for X to imaginary frequencies. (b) The contour in

the co plane for the integral for Y (involved in calculating V„,:
see the Appendix). In this case the integrand has the poles as
shown. The contour along the negative real axis up to zero is
deformed to the negative imaginary axis as indicated. It is evi-

dent that in each case the chosen contour avoids the structure in

the integrand as far as possible.

FIG. 2. Flow diagram of the calculation, starting from the
self-consistent LDA pseudopotential calculation, forming the
screened Coulomb interaction 8' and the Green's function G,
combining them to form X, and then using X to obtain the
quasiparticle energies E; and also the true exchange-correlation
potential V„,.

X(r, r', co) = f e'" 8'(r, r', co')G(r, r', co+co')dco'
4m

(14)

to do this along the imaginary axis (Fig. 3}where the zero
of real energy is the middle of the LDA minimum band

gap. e for imaginary co has only weak structure: the de-
tails of the sampling of the Brillouin zone are much less

crucial, and the number of frequencies at which it must
be evaluated are fewer. Nevertheless, the calculation of
the dielectric function represents a major computational
effort in the whole work and simplifications without
sacrificing accuracy are needed. ' We note that the use

of imaginary-axis integration has avoided the need to
make a model ansatz for the frequency dependence of 8',
as was done, for example, in the plasmonpole models
used in Refs. 16-20. This is especially important for our
intention to use X to calculate V„„as this procedure in-

volves an integration of X from —~ to the band gap, and
the plasmon-pole models are expected' ' to break down
at energies of the order of —co, where co is the plasmon

energy.
We then form inuerse dielectric function e ' and the

screened Coulomb interaction $V(r, r', co)=e 'V, again in
reciprocal space, by straightforward matrix inversion and
multiplication for each k. e, e ', and 8' are calculated
from ten values of co along the positive imaginary axis,
chosen according to the requirements of the integration
scheme to be used later for X (see the Appendix).

B. The self-energy operator

,t,LDA
( r ),t,LDA

( ri )&nk, DM &nk, DM
LDA

Q) —E k DFT kl 5
(15)

where the negative sign app1ies for occupied states, and n

labels the bands. This procedure can be regarded as the
first term in an iterative expansion

f lVGLDA+ f PrGLDA(X VLDA)GLDA+. . . (16}

(omitting the prefactor for clarity); as we shall see later,
G&FT is so close to G that the truncation

X(co)= f e' W(co')GDFT (co+co')dco'
4m

is justified.
The bare-exchange term

(where 5 is a positive infinitesimal), which is the leading
term in an expansion of X in powers of the relatively
weak screened Coulomb interaction (as opposed to the
strong bare Coulomb interaction) and corresponds to set-
ting the so-called vertex function I to a 5 function (see
Ref. 4). The remaining terms in the series, which are
termed vertex corrections, correspond to successive
corrections to the vertex function.

Additionally, we approximate G, the many-body-
theory one-particle Green's function, by its LDA coun-
terpart,

8' is then used in the GR' approximation ' for the
self-energy:

X„(r,r'}= V(r —r') f e' GDFT(r, r', co'}dco' (18)
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is calculated separately because of the different frequency
dependence of the integrand. In order to gain insight
into the physics, we also calculate the "statically screened
exchange" self-energy

cally integrating the divergence through a sphere of
equivalent volume for the term k'=0.

C. The quasiparticle energies and true V„,

X„„= W(co=0) f e' GDFr (co')den' . (19)
4n

This is the dominant term in another approximation for

X, the Coulomb hole plus screened exchange (COHSEX)

approximation, the remainder of which is the Coulomb

hole term which is obtained by setting co equal to the

one-electron energy in each term that comes from the

contribution of the poles of W to the integral f WG.

This approximation has been found' to give a somewhat

smaller difference (and opposite in sign) from the experi-

mental band gap than the LDA.
In principle, both 6 and 8' have contributions from

the core, dominated by the core-valence exchange
V J G„„. All core terms are omitted from these

pseudopotential-based calculations, except insofar as they
are included in the pseudopotential, which should have
negligible effects, except in GaAs, where the gallium 3d
core has significant overlap with the valence electrons.
This is discussed further in Sec. III A.

The bare-exchange frequency integral V jG is evalu-

ated analytically, and the remainder f(W —V)G (thus

made well behaved at infinity) is evaluated numerically.
As mentioned, we perform the frequency integral along
the imaginary axis, in order to avoid the strong structure
that occurs in 8' and G along the real axis, as described
in the Appendix. In forming the product 68', we make
use of the efficiency of fast Fourier transforms (FFT's) by
observing that 8', 6, and X can all be decomposed into
terms that are strictly periodic in the six-dimensional
space (r, r'). (The full quantities are periodic only in the
three-dimensional vector r —r'. ) The decomposition
proceeds as follows:

X(r, r', k, co)= ' g f" W(r, r', q, m')
4m

q

XG(r, r', k —q, co+co')den',

(20}

The calculated self-energy is then used in two ways.
First, the quasiparticle energies E are found, using
second-order perturbation theory in X—V„",

[Mii.(E; )
i

i i, DFT+ ii i + X LDA LDAj»' i, DFT j,DFT

where the M; are the matrix elements of X—V„",

(23)

(24)

which are determined self-consistently within the Taylor
expansion,

M, (E)=M,"(0)+EMJ(0)+ ,'E M —'(0)+,'E M —"(0),

(25)

where the derivatives M': dM/d—E, etc. are evaluated
numerically along the imaginary axis from E =0 (the
middle of the band gap). This analytic continuation is
correct strictly only for the determination of band edges,
i.e., energies outside the E(k) spectrum. The second-
order terms in (23) are very small ( (0.03 eV), demon-
strating the closeness of the LDA and quasiparticle wave
functions. The calculated quasiparticle energies are
found to be in excellent agreement with experiment (see
Sec. III).

Second, we use X to calculate a DFT exchange-
correlation potential, V„„for the semiconductor, using
an exact relationship between X and the DFT V„, that
was derived by Sham and Schluter. ' This results from
the fact that DFT is formulated so that the electron den-
sity of the system of effective noninteracting electrons is
the same as that of the true, many-body system. Sham
and Schluter noted that the electron density is the in-
tegrated local density of states, which is, in turn,
(I/n)ImG(r, r), where G is the Green's function. They
then used a Dyson equation to relate 6, the many-body
Green's function, to GDF&, the DFT Green's function,
finally obtaining the integral equation

where (taking W as an example) Imf" [GDFT(X V„, ) G]-, , d~= 0, (26)

W(r, r', q, co)= g e' 'e ' ' Woo (q, co),
G, G'

(21}

Xoo (k, ru) =V(X(r, r', k, co)),

where 8'GG. are the reciprocal-space matrices described
above. The quantities W(r, r', q, co), etc. can be calculated
using the FFT. The calculation of X then consists of
summing the products of pairs of these quantities [Eq.
(20)], and taking the inverse FFT to obtain the k-space
representation of X, XGz (k, co): fdr'M(r, r') V„,(r') = U(r),

wl ere

(27)

where [ ], , denotes matrix multiplication inside the
square brackets, with the r = r' matrix element then tak-
en. In order to make this tractable, we replace both 6
and GD~ by G D~. Tests indicate that this is of lit tie
consequence in the final V„,. Equation (26) can be writ-
ten as a set of linear equations for V„, of the form
MV„,=U, where M is a matrix and U a vector:

where p means to take the fast Fourier transform. The
bare Coulomb (k') divergence as k'~0 in the bare-
exchange term is handled in the obvious way by analyti-

M(r, r')=Im f den fdr"GDFT(r, r",co)

XGDFT(r, r, co), (28)
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(29)

M and U are evaluated in a basis of plane waves. We
write X=X +X„where X is the co-independent bare-
exchange self-energy, and perform the frequency integrals
for M and the X„part of U analytically, and the integral
for the remainder of U on the imaginary axis as described
before for X (see Appendix). The inversion of the matrix
M is somewhat sensitive to numerical noise in the calcu-
lation; however, this is reflected much more strongly in
the detailed form of V„,(r) in some parts of real space
(where the uncertainty appears to be up to about 0.5 eV)
than in its matrix elements (l(

~
V„,

~
l() (which seem

stable to about 0.05 eV). We again use second-order per-
turbation theory, now in V„,—V„", ", to calculate the
DFT eigenvalues using this V„,:

LDA iM,, (

i, DFT i, DFT™ii + X
Ei,DFT Ej,DFT

J+l

where the M; are the matrix elements of V„,—V„",

( yLDA
~

V VLDA
~

yLDA )

(30)

(3l)

As is obvious from its derivation, Eq. (26) does not deter-
mine the G=O component (i.e., an additive constant) in
V„,. This is calculated separately by using the fact that
the DFT chemical potential is correct: the constant is
chosen so that E;D~ is identical to the corresponding
quasiparticle energy E; either (i) at the valence-band max-
imum, if V„', ' is wanted, or (ii) at the conduction-band
minimum, if V'„, +" is wanted. The results given later
show V'„~'.

U(r)=Im f" de fdr" fdr"'GP~(r, r",to)

XX(r",r"', tu)GoFr (r'", r, tu) .

III. QUASIPARTICLE ENERGIES
AND SELF-ENERGY OPERATORS

A. Quasiparticle energies

Table I gives the calculated quasiparticle energies for
silicon and, for comparison, the LDA eigenvalues and the
experimental values. The DFT eigenvalues with the cal-
culated V„, are also given, and will be discussed in Sec.
IV. Tables II, III, and IV are the corresponding results
for gallium arsenide, aluminum arsenide, and diamond,
respectively.

The general trends are immediately obvious, and are
the same for each of the four materials: The quasiparticle
energies calculated using the GF self-energies are in ex-
cellent agreement with experiment (generally within 0.1

eV), and differ from the LDA eigenvalues mainly in a
very approximately rigid vertical displacement of the
conduction bands relative to the valence bands. In the
remainder of this section we discuss the energies in more
detail and relate them to the self-energy operators from
which they are calculated.

In comparing the quasiparticle energies with experi-
ment, it is important to bear in mind that optical experi-
ments contain excitonic contributions (see Sec. I B). On
the other hand, some of the experimental data come from
photoemission (or inverse photoemission) in which the
final (initial) state of the electron is essentially outside the
crystal, so that the true quasiparticle energy is measured.
We have not distinguished between the two in the
"Expt." column of the tables, and the good agreement
obtained with all measurements indicates that the correc-
tions to the quasiparticle energy differences here are
small.

In silicon (Table I) the GW energies are usually well
within 0.1 eV of experiment. At L„and L3„where
there are significant variations between different experi-

TABLE I. Quasiparticle energies (GW) at I, column X, and L, and the minimum gap in silicon, in

eV. The experimental (Expt. ) energies (at T =0 where known), and the DFT eigenvalues using (i) V„",
("LDA") and (ii) the V„, calculated form X ("True DFT") are also shown.

I 2s.
L3,

c-band minimum
I is

I2,
Lie
L3c

Minimum gap

LDA'

—0.07
—1.29

0.45
2.50
3.49
1.46
3.30

0.52

True DFTb

0.00
—1.21

0.66
2.68
3.66
1.62
3.49

0.66

0.00
—1.19

1.24
3.30
4.27
2.30
4.11

1.24

Expt.

0.00'
—1.2+0.2, —1.5'

3.40
419

2.1', 2.4'
4.3+0.2, 4.0"'

68 —DFT

0.00
0.02

0.58
0.62
0.61
0.68
0.62

'Hedin RPA LDA (Ref. 33); the more accurate Ceperley-Alder LDA (Ref. 9) would increase the eigen-
values by 0.49 eV and leave the gaps unaffected.
The V„,(r) calculated from X~~.

'Aligned with the quasiparticle valence-band maximum.
Reference 37.

'Reference 38.
Reference 39.
Equal to 6, the discontinuity V'„, +"—V'„, '.
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TABLE II. Quasiparticle and other energies in GaAs. (See Table I for details. )

r„
Xl,
X3,
LI,
Minimum gap

LDA~ b

—0.13
—2.70
—1.20

0.54
1.36
1.53
1.02

0.67

True DFT'~

0.00
—2.55
—1.06

0.91
1.59
1.74
1.30

0.91

0.00
—2.64
—1.11

1.58
2.19
2.41
1.93

1.58

Expt.

0.00' {+0.11, —0.22)
—2.80'~ (+0.05, —0.02)

—1.30 '~ (+0.05)

1.63"
2.09"

2.498'"

1 93"

1.63"

GH —DFT

0.00
—0.09
—0.05

0.67
0.60
0.67
0.63

0.67'

'Hedin RPA LDA (Ref. 33); the more accurate Ceperley-Alder LDA (Ref. 9) would increase the eigen-

values by 0.49 eV and leave the gaps unaffected.
Pseudopotential calcu)ation omits core relaxation —see text.

'The V„,(r) calculated from X&~.
Core-valence exchange-correlation contribution to self-energy omitted —see text.

'Aligned with the quasiparticle valence-band maximum.
'Spin-orbit splitting (shown in parentheses) removed.
IReference 37.
"Reference 40.
'Equal to b„ the discontinuity V'„", +"—V'„", '.

ments, the calculated energies are between the two.
In GaAs (Table II) it should be noted that two non-

negligible but partly canceling effects have been omitted
from the calculations: core relaxation (which has been
found in LDA calculations to decrease the band gaps by
about 0.02-0.27 eV) and valence-core exchange and
correlation (which we estimate from the symmetry of the
wave functions and the atomic germanium calculations in
Ref. 18 to increase the band gaps by about 0.1 eV). The
partial cancellation of these terms leads to excellent
agreement with experiment.

Another interesting but rarely discussed point concerns
the ordering of the two lowest conduction bands at X in
GaAs, which differ in energy by only about 0.2 eV. Ex-
periments in GaP on the valley-orbit splitting of
different substitutional impurities suggest that the lower
band has the character of anion s orbitals. Examination
of the calculated wave functions in GaAs shows that the
lower band indeed has s-like symmetry about the As

atoms, while the upper band has a higher projection onto
Ga s orbitals in both the LDA and GW calculations (and,
incidentally, with the true V„,). The calculated ordering
is thus X&,X3 in GaAs and consistent with experiments
on GaP. No similar experiments are known in GaAs.

AlAs is similar to GaAs, except in having an indirect
rather than direct minimum band gap, and the quasipar-
ticle energies are again mostly in good agreement with
experiment, although less data are available. The notable
exception is at the L point, where the conduction-band
local minimum L„ is placed 0.54 eV higher (relative to
I'&») by the GW calculations than by experiment, al-
though the direct gap L3„~L„is within 0.11 eV of ex-
periment. We have proposed that the resolution of this
disagreement should be a revision of the "experimental"
value, as investigation shows that the accepted indirect
gap is based on no firmer evidence than a quadratic extra-
polation in x, the alloy parameter in the alloy series
Ga, „Al„As, which is already widely accepted to be in-

TABLE III. Quasi particle and other energies in A1As. (See Table I for details).

LDA' True DFT~ Expt. GS' —DFT

Il,
Xl,
LI,

Minimum gap

—0.04
—2.21
—0.85

2.38
1.33
2.18

1.37

0.00
—2.17
—0.82

2.56
1.55
2.38

1.55

0.00
—2.30

0.89 ( =L l c —4.01 )

3.35
2.18
3.12

2.18

0.00' (+0.09, —0. 18)
—2.32' (+0.12, —0.06)

L I, —4.00

3.22'
2.32'
2.58'

2.32' (+0.18, —0.09)

0.00
—0.13
—0.07

0.79
0.63
0.74

0.63'

'Hedin RPA LDA (Ref. 33); the more accurate Ceperley-Alder LDA (Ref. 9) would increase the eigen-
values by 0.49 eV and leave the gaps unaffected.
'The V„,(r) calculated from XG~.
Aligned with the quasiparticle valence-band maximum.
Spin-orbit splitting (shown in parentheses) removed.

'Reference 37.
Equal to 6, the discontinuity V'„, +"—V'„~'.
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TABLE IV. Quasiparticle and other energies in diamond. (See Table I for details. )

I zs.
X4,
L3U

0.05
—6.31
—2.79

0.00
—6.26
—2.79

LDA' True DFT

0.00
—6.71
—2.98

Expt.

0.00'

GW —DFT

0.00
—0.45
—0.19

c-band minimum

r„,
I q,

X),
L3c
Ll,

Minimum gap

3.85
5.57

13.11
4.53
8.38
8.68

3.90

4.21
5.72

13.24
4.81
8.48
8.86

4.21

5.33
7.26

14.83
5.84 ( =X4„+12.55)
9.63 ( =L3„+12.61)

10.55

5.33

5.48"
7.12

15.3%0.5'

X4„+12.55

L3, +12.0

5.48a

1 ~ 12
1.54
1.59
1.03
1.15
1.69

'Hedin RPA LDA (Ref. 33); the more accurate Ceperley-Alder LDA (Ref. 9) would increase the eigen-
values by 0.52 eV and leave the gaps unaffected. Calculated using Refs. 18 and 41.
The V„,(r) calculated from Xo~.

'Aligned with the quasiparticle valence-band maximum.
aReference 37.
'Reference 42.
'Equal to 5, the discontinuity V'„, +"—V'„, '.

valid for the I &, minimum. There is to our knowledge no
direct measurement of L„.

Comparing our results for the valence-band top for
bulk GaAs and bulk A1As, we may infer a many-body
correction to the GaAs/A1As heterojunction band offset.
From Tables II and III we obtain a lowering of A1As
with respect to GaAs of 0.09 eV, which is a small correc-
tion (probably within our error bars) to the LDA band
offset.

We included diamond in this study as an example of a
more covalent and wide-band-gap material. Table IV
shows that the GS' quasiparticle energies are again
within about 0.1 eV of the experimental values, except
that the calculated direct band gap at I is 0.6 eV greater
than the value in Ref. 37.

It has been known for some time that the main
discrepancies between the LDA energies in silicon and
the experimentally measured quasiparticle energies can
be corrected by simply adding a constant (about 0.7 eV)
to the LDA energies above the band gap. This pro-
cedure is often referred to as a scissors operator, because it
can be thought of as cutting the band structure along the
band gap and moving the conduction bands rigidly up-
wards. Now that it is possible to calculate the quasiparti-
cle energies accurately from first principles, the quasipar-
ticle and LDA energies may be compared at many more
points in the Brillouin zone, so that the origins and range
of applicability of the scissors operator can be studied.
For this purpose we have plotted in Fig. 4 the difference
between the quasiparticle and LDA energies as a function
of k for the top valence band and bottom conduction
band for each of the four materials. We shall consider
the question of the alignment of the valence-band maxi-
ma later, but in this figure we have aligned them
artificiall for clarity (so that the plotted quantity is au-
tomatically zero at I in the valence band). Clearly, if the
scissors operator is to be valid, the curves should be a k-
independent constant for the conduction band, and zero

in the valence band. It is evident that the scissors opera-
tor is indeed accurate to about 0.1 eV in silicon for the
bands shown, but that its accuracy is substantially dimin-
ished for the other materials, particularly diamond. (We
note, however, that the validity of the scissors operator is
substantially better in A1As than comparison of the LDA
results with the usual experimental values would indicate,
because of the proposed correction of the quasiparticle
L „energy mentioned above. )

't

GoA

LLI

I

hJ

= GQAs-
A4As—

FIG. 4. The varying validity of the "scissors operator. " The
difference between the calculated quasiparticle energies and the
LDA energies (relative to the valence-band maximum) in the
lowest conduction band and highest valence band is plotted
against k for each material. If the scissors operator is valid, this

quantity should be independent of k. It is evident that the scis-
sors operator is accurate to about 0.1 eV in silicon, but only to
0.2, 0.2, and 0.4 eV, respectively, in GaAs, AlAs, and diamond.
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When the ingredients of the plotted energy correction
are considered (see next section), it becomes clear that for
the scissors operator to be applicable there has to be a re-
markable cancellation between separate terms of the
equations, one which could not be expected to cancel au-
tomatically. In particular, the energy dependence of the
self-energy leads to a strongly state-dependent energy
correction, which is partially, though by no means com-
pletely, canceled by the difference between the nonlocal
self-energy and the local exchange-correlation potential.
Thus the natural expectation is that the net energy
correction would have a strong state dependence within
each band as well as across the band gap, so that the ap-
proximate validity of the scissors operator in silicon must
be regarded as a coincidence.

Since X is determined in full by the GW expression,
there is no need to align any two points in the quasiparti-
cle and LDA band structures artificially. If both the
self-energy operator and exchange-correlation potential
were exact, the chemical potential [the quasiparticle ener-

gy at the valence-band maximum or the conduction-band
minimum, depending on whether the N or (N-+1)-
particle system is being considered] would be equal to the
corresponding highest occupied DFT eigenvalue. ' Here
neither is exact, yet we note that the quasiparticle
valence-band maxima are close to the LDA (RPA)
valence-band maxima, suggesting that V„, is closer to
V'„, ' than to V'„, +" (which differs by a constant, 6).
The RPA LDA, which is essentially the GW approxima-
tion applied to the homogeneous electron gas, is known
to be a constant 0.49 eV (0.52 eV) below the LDA used
here [which we take from the accurate Monte Carlo cal-
culations for I, =2 (I,=1.3) jellium in Ref. 9] over the
range of densities found in these materials. Since the
quasiparticle energy differences are already well repro-
duced by the GW self-energy operator, corrections to the
G W approximation (the so-called vertex corrections)
must merely raise all the quasiparticle energies by about
0.5 eV if the alignment of the valence-band maxima is to
be!naintained. (We note that although we go on to cal-
culate a more accurate V„, from X, we cannot use this

V„, to address the accuracy of the alignment of the
valence-band maxima, as this alignment is perfect by con-
struction. )

We end this section with a brief comment on the quasi-
particle energies corresponding to the other self-energy
operators calculated: the bare exchange (Hartree-Fock)
operator X and the statically screened exchange opera-
tor X„„,each of which is energy independent. In each of
the four materials the bare-exchange gaps and widths of
the individual bands are much too large: the minimum
gaps are approximately 5, 6, 7, and 12 eV in Si, GaAs,
A1As, and diamond. Screening with the static dielectric
matrix reduces the gaps (to 0.4, 1.2, 1.2, and 4.7 eV), but
does not fully correct for the lack of energy dependence.
Dynamical screening, as included in the GW calculations,
is essential in calculating accurate quasiparticle energies.

B. Self-energy operators

As discussed in the Introduction, X is central to the
quasiparticle properties of the system. We show in other

sections of this paper that the GW approximation for X
may be used successfully both to calculate quasiparticle
energies and related properties, and to generate an
exchange-correlation potential. However, it is also im-
perative to understand the underlying physics for a range
of materials, as the size of the GW calculations makes
them prohibitively expensive for complex systems, and it
is likely that progress will be made through gaining a
more thorough understanding of X. In this section,
therefore, we concentrate on X itself, and examine the ex-
tent to which it may be understood in terms of simpler
models.

We shall take as a point of reference the detailed calcu-
lations by Hedin of the self-energy operator (within the
same G W approximation) of the homogeneous electron
gas. In order to focus on the physics, we consider the
contributions to the first-order expression for the quasi-
particle energy [obtained from Eq. (23)]:

ELD&+(!'
(
X(~ E ) (!') (!'

)

VLD+ (!) (32)

The last two terms, to which we shall refer as (X(E;))
and ( V„, ) for brevity, are plotted !ndividually as a
function of quasiparticle energy in Fig. 5(a) for silicon
and Fig. 6(a) for diamond. Although each of the two
quantities has a strong state dependence, the difference
between them (which represents the energy correction) is
much closer to a step function (the so-called scissors
operator), especially in silicon [(Figs. 5(b) and 6(b)].

This simple form of the energy correction is not
present if one compares ( V„", ) with the self-energy
evaluated at the midgap energy (X(0)) [also Figs. 5(b)
and 6(b)], illustrating the importance of including the en-
ergy dependence of the self-energy. As can be seen, the
effect of including the energy dependence is to alter great-
ly the dispersion of the individual bands, and to reduce
the band gap slightly. So although the energy depen-
dence is important, it is clearly not primarily the fact that
X is energy dependent (while V„, is not) that leads to
the band-gap correction. Figures 5(c) and 6(c) show the
matrix elements for jellium corresponding to those for sil-
icon and diamond in Figs. 5(b) and 6(b). Neither (X)
and ( V„, ) individually nor their difference reproduce
details of the same quantities in silicon and diamond; in
particular, the discontinuity in the difference across the
band gap is not present at the Fermi energy in jellium.

The other way in which X is essentially different from
V„, is that X is a nonlocal operator, while V„", is a local
potential. Since many years of experience with empirical
potentials (which were never able to reproduce both the
ground-state electron density and the quasiparticle band
structure, as the true self-energy operator must) show
that no local potential contains the entire physics of X,
we conclude that the nonlocality is essential in determin-
ing the correct quasiparticle energies (and, in particular,
the correct band gap).

To investigate the nonlocality of X further, we have
plotted the self-energy operator in real space as a func-
tion of r, keeping r fixed at a particular point in the unit
cell. This is shown in Fig. 7 for each of the four materi-
als. Despite the complexity of the calculation of X, the
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operator has a relatively simple structure when viewed in
this way. The operator is dominated by a single "hole, "
centered about r=r' and approximately spherical. More-
over, the shape of the hole (though not its amplitude) is
approximately independent of the location of r. This sug-
gests the following model form for X:

X(r, r', co) = ,'[f—(r,cu}+f(r', cu)]g{
I
r —r'

I » (33}

I I I I t I I I 1 t f f I I

ik

~ X(E} '

LDA
Xc

X(E) -
V~C

I I 1

-{a)C

-16- „
I I I ~} ) i I

ll

a a L a l
I r r I

a —(b) C

where the form of the terms in the square brackets is
chosen to reproduce the correct r~r' symmetry. This is
an operator whose nonlocality is a universal function of
r —r'. The function g is also very similar to the corre-
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FIG. 5. {a) The real parts of the matrix elements of the GS'
self-energy operator of silicon (XGs,(co=E)) and the LDA
exchange-correlation potential (VLDA), plotted against the
quasiparticle energy E. (b) The difFerences (XG~(co =E) )
—( VLDA ) (essentially the quasiparticle-energy correction) and
(XDII(co=0))—( V„, ). The importance of the energy depen-
dence of X can be seen. (c) For comparison,
( Xhom(~ E) ) ( VLDA ) and ( Xhom(~ E ) ) ( VLDA )
plotted against the quasiparticle energy E for jellium of the
average density of silicon (r, =2.0). (Data from Ref. 33.) (EF is
aligned with the rniddle of the band gap. ) Both are relatively
featureless and clearly do not share the sharp discontinuities
present in (a). (d) The real parts of the matrix elements of the
bare-exchange (Hartree-Fock) self-energy operator of silicon
(X ) and the statically screened exchange self-energy operator
(X„„).( VL, ) is subtracted as in (b). (e) The real parts of the
matrix elements in silicon and jellium (r, =2.0) (Ref. 33) of the
frequency derivative of the self-energy (BX&~(co=midgap)/
BOP ).
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FIG. 6. Same as Fig. 5, but for diamond.
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FIG. 7. Contour plots of the self-energy X(r, r', co=midgap)
in eV a.u. ' for r fixed at the bond center and r' shown in the
(110) plane, for (a) silicon, (b) gallium arsenide, (c) aluminum ar-
senide, and (d) diamond. For silicon the corresponding plots
with r fixed at the tetrahedral interstitial site is also shown

[panel (e)]. For comparison, the self-energy operator of jellium
with r, =2.0 (the average density of silicon) is shown in (P (from
Ref. 33).

sponding function extracted from the self-energy opera-
tor for jellium of the average density of the semiconductor
This is shown by comparing the "holes" in Figs. 7(a) and
7(e) (silicon) with the "hole" in Fig. 7(f) [jellium with

r, =2.0 (Ref. 33)]. This "nonlocality hole" contains the
essential nonlocality of X as far as the quasiparticle ener-
gies are concerned: for example, in silicon more than
99% of the matrix element (lit

~

X
~
g) originates from

~
r —r'

~
& r„, where rz is the radius of the nonlocality

hole.
The range (to the first zero) of the "nonlocality func-

tion" g (r) is seen (by referring to the jellium calculations
in Ref. 33 or by direct inspection of Fig. 7) to be approxi-
mately 2.0 r, for the jellium of the corresponding average

0

density; for example, 4. 1 a.u. (2.1 A) in silicon. This
length is comparable with the wavelength of the wave
functions near the band gap,

' thus providing further
proof that the nonlocality of X is essential, since only if
the range of X were much less than the wavelengths
would the matrix elements (P

~

X
~
g) be preserved if X

were approximated by a local operator of the correct
weight. Thus our picture of the physical origins of the
quasiparticle-energy corrections to the LDA energies is
the following: The npnlpcality pf the operator X—V„",
is an essential feature, and is well reproduced by that of
the self-energy operator in jellium of the average density
of the semiconductor, but the interaction of the urave

functions with this nonlocality is not contained within the
jellium calculations.

To examine this point in more detail, we consider a
tight-binding approximation to the band structure of sil-
icon. The states in the highest valence band and lowest
conduction band are of quite distinct character in this
picture: At I, for example, the valence-band maximum
is bonding p, while the lowest conduction band is anti-
bonding p. Thus the conduction-band wave functions
have an extra node between the atoms and the eftective
wavelength in this important part of the unit cell (where
the self-energy operator has greatest strength) is smaller.
The matrix elements (g

~

X
~
g) are therefore less nega-

tive in the conduction band than they would be if X were
of the same strength but local, and so the quasiparticle
energies in the conduction bands are raised and the band
gap increases. (This point is illustrated in Fig. 2 of Ref.
1, which shows the wave functions and self-energy opera-
tor concerned. ) An increased band gap is therefore an
immediate consequence of the essential nonlocality of X.

In Table V we show how well the nonlocality of X is
reproduced by the self-energy operator of jellium of the
average density of the semiconductor. The final column
shows the corresponding "local-density" approximation
for the range of X, in which the jellium with the local
density at r is used. It is evident that this approximation
severely overestimates the range of X in low-density re-
gions and underestimates it in high-density regions. The
approximation suggested in Ref. 13, in which X is ap-
proximated by the value of the self-energy operator of jel-
lium at —,(r+r') (suitably aligned in energy), will clearly

TABLE V. The density dependence of the nonlocality of X. The rangel of X [defined as the spheri-
cally averaged distance to the first zero in the oscillatory function X(r, r', co=midgap) with r fixed at the
site shown] compared with the corresponding ranges of the self-energy operators at the Fermi energy in

jellium (Ref. 33) with (i) the average density of the semiconductor and (ii) the local density at r in the
semiconductor. The sites shown for r are the bond centers and the tetrahedral interstitial sites.

Material Site Range of X (a.u. )

Range of X in jellium (a.u. )

Average density Local density

Si
Si

GaAs
GaAs
AlAs
A1As

C
C

bond center
interstitial

bond center
interstitial

bond center
interstitial

bond center
interstitial

4.1

4.7
4.2
4.3
4.3
4.6
2.8
3.5

3.9
3.9
4.0
4.0
4.0
4.0
2.7
2.7

2.8
8.8
2.8
9.0
2.8
9.0
2.2
4.7
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be a better approximation here than the "local" column
in the table because of the averaging effect of taking
—,'(r+r'), but is nevertheless seen to be poor: in particu-

lar, the shape of the nonlocality hole will be far too aniso-
tropic. This approximation is (as is stated in that paper)
valid in the limit of slowly varying density, and these ma-
terials (in which the density varies appreciably over the
range of the nonlocality hole) are outside the domain of
its applicability.

Figures 8(a~ and 8(b) indicate the origin of the simple
form of the "nonlocality" hole. The self-energy is essen-
tially G times 8' in real space, and its range is therefore
that of the shorter ranged of the two. This is the
screened Coulomb interaction, 8', shown in Fig. 8(a) for
silicon. G, in contrast, is long ranged and considerably
more anisotropic, as demonstrated by Fig. 8(b), which
shows the bare-exchange self-energy X, in which the
screened W has been replaced by the long-ranged bare
Coulomb interaction I/

~

r —r' ~, so that X acquires the
range of G. It is, therefore, the nonlocality of the screen
ing (though not, of course, its strength) that is so
transferrable from the jellium calculations.

In Figs. 5(d) and 6(d) we show the matrix elements of
the other self-energy operators calculated for silicon and
diamond: the bare-exchange (Hartree-Fock) and statical-
ly screened exchange self-energies. To assist comparison,
the matrix elements of V„, are subtracted, and the
quasiparticle energies used on the horizontal axis are the
GS'energies. There are some interesting features. First,
as was reported in the section on the quasiparticle ener-
gies, the band gap is substantially increased when the
bare exchange is used, because (X„)has a large discon-
tinuity across the band gap. Also, its state dependence
within each band (none of which can come from its ener-

gy dependence since X„ is energy independent) is very
similar to that of the GIV self-energy at axed frequency
[Figs. 5(b) and 6(b)], but not to that of the GIV self-energy
evaluated at the correct quasiparticle energy, resulting in
the Hartree-Fock bands being too wide. The statically
screened self-energy has a greatly reduced discontinuity
at the band gap, caused by the screening, which therefore
improves the band gap. However, the dispersion of the

individual bands is quite wrong, indicating the impor-
tance of including properly dynamical screening in the
calculation.

The energy dependence of the calculated GW self-

energy can also be modeled successfully using the corre-
sponding quantity calculated for jellium. Figure 5(e)
shows the matrix elements of BX/Bco for both silicon and
jellium (r, =2.0), and while (as stated earlier) the ener-

gy dependence is significantly different from zero, it is ap-
proximately the same in each of the two cases. The same
is true for diamond and its corresponding jellium [Fig.
6(e)]. [It is important to distinguish the tnatrix element
of the energy derivative of the self-energy —which is con-
sidered here —from the variation from state to state of
the matrix elements of the self-energy, which was plotted
in Figs. 5(a), 5(b), 6(a), and 6(b), and is not at all well de-
scribed by jellium. ] The energy dependence is also exam-
ined in Fig. 8(c), which shows the energy derivative of the
self-energy of silicon in real space. The fact that it resem-
bles Fig. 7(a) shows that the energy dependence of X is, to
a good approximation, separable. The complete model
for X is therefore

X(r, r', co)= ,'[f (r)+f—(r')]g(
~

r —r'
~

)h(co), (34)

which we believe may serve well as an ansatz in more
efficient methods for calculating X, since g and h may be
conveniently taken from jellium calculations. The validi-

ty of this model is shown by fitting the calculated XG~ to
this form, with g and h taken from jellium and f deter-
mined by optimizing the fit of the k-averaged band gap.
The resulting dispersion of the individual quasiparticle
bands, which was not fitted, reproduces the GS' results to
within 0.05 eV in the bands within several eV of the gap.

The quantity plotted in Figs. 5(e) and 6(e) is also
1 —Z ', where Z is the well-known wave-function renor-
malization, which has a simple physical interpretation:
the extent to which the single-particle-like quasiparticle
excitations are valid descriptions of the true excitations.
Z is the area under the peak in the spectral function,
which is 1 if the excitation is exactly single-particle-like.
Thus our results indicate that the renormalization con-
stant in these materials is obtainable from jellium calcula-
tions in which the density is the average density of the
semiconductor and the Fermi energy is aligned with the
middle of the band gap.

IV. THE "TRUE" EXCHANGE-CORRELATION
POTENTIAL

A. The potential and the DFT Kohn-Sham energies

FIG. 8. Contour plots of quantities related to the self-energy
of silicon for r fixed at the bond center and r' shown in the (110)
plane: (a) the screened Coulomb interac'. ion

W(r, r', co=midgap) in eV a.u. ', (b) the bare exchange
X (r, r', co=midgap) in eV a.u. , and (c) BX&~(r,r', ~
= midgap)/Bco in a.u.

The DFT eigenvalues using the calculated "true" V„,
are shown in Tables I—IV for each material, and in addi-
tion silicon's V„,(r) is compared with V"„, (r) in Fig. 9.
In each case the true V„, shown is that for the N-particle
system —the semiconductor with its valence bands exact-
ly filled. The corresponding potential and eigenvalues for
the (N +)-Ip rtaicle system would, as explained in Sec.
IC, differ from those given by an r-independent con-
stant b; that is, E —E, where Eg is the calculated
quasiparticle minimum gap and Eg ~ is the gap when
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TABLE VI. 5, the discontinuity in the exchange-correlation
potential; Eg, the calculated minimum quasiparticle band gap;
and the LDA gap error E, —E, "for the four materials.

Material (eV) (eV)

LDA
gap error b/(LDA gap error)

(eV) (%)

Si
GaAs
AlAs
Diamond

0.58
0.67
0.65
1.12

1.24
1.58
2.18
5.33

0.72
0.91
0.81
1.43

81
74
80
78

C. Comparison with other non-LDA potentials

FIG. 9. The LDA and true exchange-correlation potentials,

(a) V„, and (b) V„", ", for silicon (the N-particle system), shown

in eV in the (110)plane containing the bond chains as indicated.

V„, is used.
In Tables I—IV and Fig. 9 the LDA exchange-

correlation potential used is Hedin's RPA V"„, , which
originates in GW calculations for jellium. This makes
our X and V„, properly comparable, as in the homogene-
ous limit our procedure for determining V„, reduces to
the GW calculation for jellium. In particular, the overall
alignment of the true DFT and LDA band structures
(and also, at the top of the valence band, the quasiparticle
band structure) can be seen to be very similar. For exam-
ple, the LDA and DFT valence-band maxima are within
0.07, 0.13, 0.04, and 0.05 eV of each other in Si, GaAs,
A1As, and diamond, respectively, which is within our er-
ror bars. This alignment of the valence-band maximum
clearly becomes perfect in the homogeneous limit since
V„, is then the true V„,.

The similarity of the two potentials in Fig. 9 is striking,
especially when one considers their quite different origins,
and the fact that they have not been aligned in energy.
The main difference is that the true V„, is slightly deeper
in the bond region, which leads to the slightly larger band
gap (since the valence-band wave functions are concen-
trated there and are therefore lowered in energy). The
curious but numerically insignificant structure in V„, in
the interstitial region is probably caused by numerical
noise in solving the integral equation.

B. The discontinuity 5

As discussed in Sec. II, the discontinuity b in V„, upon
addition of an electron to the ¹lectron system may be
obtained by subtracting the calculated DFT minimum

gap from the calculated GW minimum quasiparticle gap.
5 is shown in Table VI and graphically in Fig. 10. Al-
though 6 increases with the band gap, it is a remarkably
constant proportion of the error in the LDA band gap,
showing that even diamond is sufficiently free-electron-
like for the LDA to be a good approximation to the true
DFT potential. The fact that 6 is in each case a substan-
tial proportion of the band gap shows that attempts to
calculate improved quasiparticle energies within DFT by
going beyond the LDA are futile.

~ G

~ y

Oy

07

4

Cl
LLI 3—

2
Si

I

0 I I

2 3 4
EXP ER I IVIENTAL Eg (ey)

FIG. 10. The calculated minimum band gap in (i) the 68'ap-
proximation, (ii) DFT, and (iii) the LDA plotted against the ex-
perimental band gap. The 45 line is a guide to the eye. 6, the
discontinuity in the exchange-correlation potential, is indicated.

It is interesting to compare our V„, with previous at-
tempts to go beyond the LDA. The most successful such
potentials that have stayed within the general framework
of DFT have been the weighted-density approximation
(WDA), the average-density approximation (ADA), and
gradient-expansion techniques (but only when explicitly
designed to obey the important sum rule on the
exchange-correlation hole ' ). The WDA has been ap-
plied to semiconductors by Kerker, Manghi et al. ,
and Hybertsen and Louie. Since Ref. 52 makes an un-
reasonable further approximation, ' we shall concen-
trate on Refs. 53 and 54.

In Ref. 53 the WDA was used to calculate the DFT
band structure of GaAs, and in Ref. 54 that of silicon and
germanium. (In Ref. 54, the calculations were performed
for several lattice constants, and the total energy was also
calculated; the agreement with the experimental lattice
constant, bulk modulus, and cohesive energy was general-
ly good, but no better than with the LDA. ) In each case
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the Kohn-Sham eigenvalues changed: the band gaps in-
creased somewhat, especially when the exchange-
correlation hole corresponding to the Levine-Louie mod-
el semiconductor dielectric function (instead of jellium)
was used in the WDA.

In Table VII we compare some sample band gaps in
the LDA, WDA, and with our V„,. The general trend is
the same with each of the three non-LDA V„,'s: the
band gaps are increased by between 0.05 and 0.34 eV, so
that the 55% error in the LDA minimum gap in silicon,
for example, is reduced to 26-43 %. A detailed examina-
tion sho~s a surprising agreement between our V„, and
the WDA in silicon: they are within about 0.02 eV of
each other. However, this excellent agreement is not ob-
tained in silicon with the WDA using the Levine-Louie
exchange-correlation hole, nor using the ordinary WDA
in GaAs. The reason for the agreement is unclear, but
one possible interpretation is that both the WDA and our
V„„ though calculated in quite different ways, are very
close to the exact DF'I' V„, in silicon.

V. CONCLUSIONS

potential upon addition of an extra electron) accounting
for about 80%%uo of the severe and well-known error in the
LDA minimum gap. There are also consider-
able discrepancies in other parts of the energy spec-
trum. Thus, improving the density-functional-theory
exchange-correlation potential beyond the local-density
approximation will not lead to the correct quasiparticle
energies, but the G 8' method, which goes outside
density-functional theory, is capable of giving good quasi-
particle properties. On the other hand, the LDA is seen
to be an even better approximation to the true DFT
exchange-correlation potential than it was previously
known to be.

ACKNO%'LKDGMKNTS

One of us (R.W.G.) was supported in part by the Sci-
ence and Engineering Research Council (United King-
dom). Another of us (L.J.S.) was supported in part by the
U.S. National Science Foundation (NSF}, Division of
Materials Research, under Grant No. 85-14159, and in

part by a NSF Supercomputer Supplement.

We have shown how the self-energy operator of a semi-
conductor may be calculated within the GW' approxima-
tion and then used to calculate both the quasiparticle en-
ergies and a density-functional-theory exchange-
correlation potential. In the four materials studied (Si,
GaAs, AIAs, and diamond) the quasiparticle energies are
in good agreement with reliable experimental data. How-
ever, the one-electron density-functional-theory eigenval-
ues corresponding to the calculated exchange-correlation
potential are significantly different, and are instead close
to the eigenvalues obtained using the conventional local-
density approximation for exchange and correlation. In
particular, the DFT minimum band gap is substantially
smaller than the quasiparticle gap, with the difference
(equal to 5, the discontinuity in the exchange-correlation

APPENDIX: THE FREQUENCY INTEGRALS

(part of the self-energy X: see Sec. II B) and

Y = Im f 6 (co)[X(cu)—X„]G(tu)dco (A2)

(part of the vector U: see Sec. II C).
In the case of X, we first define the analytic continua-

tion of X(co) (and thus X) to complex frequencies as the

The frequency-dependent quantities E', E' ', W, G, X,
and U are calculated and integrated on the imaginary fre-
quency axis, as explained in Sec. II A. The two frequency
integrals to be performed numerically are (symbolically}

X(co)=f [8'(co') —V]G(co+co')de'

TABLE VII. The direct band gaps and the minimum gap of Si and GaAs, in eV, in (i) experiment
(Expt. ) and (ii) the LDA, and the corrections to the LDA values in (iii) the weighted-density approxima-
tion (using a jellium exchange-correlation hole) (WDA), (iv) the WDA using a Levine-Louie-model
exchange-correlation hole [WDA(LL)], and (v) the V„, calculated here from the self-energy (DFT).

Si
I
X
L

Gap Expt.

3.40'
4.25'
3 3a, d, e

LDA

2.57
3.53
2.75

WDA

+ 0.12

+ 0.10'
+ 0.04'

Corrections to LDA
WDA(LL)

+ 0.24'
+ 0.23'
+ 0.13

DFT

+ 0.11

+ 0.11

+ 0.08

Minimum gap 1 17' 0.52 + 0.15' + 0.34' + 0.14

GaAs
I (=minimum gap)
X
L

'Reference 37.
Reference 54.

'Reference 43.
Reference 38.

4.89"
3 23a, f

0.67g

4.06g

2.22g

+ 0.06"
+ 013"
+ 0.08"

'Reference 39.
'Spin-orbit splitting omitted —see text.
~Core relaxation omitted —see text.
"Reference 53.

+ 0.24
+ 0.08
+ 0.14
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same expression, integrated along a contour that encloses
the poles of 8 and 6 corresponding to those above the
real axis when co is real. For imaginary cu this is con-
veniently evaluated along the imaginary axis [Fig. 3(a)],
since the presence of W —V rather than W makes the
contribution from the circle at in6nity vanish,

Thus both X and Y have been transformed into in-
tegrals of the form

I= co dc' .
0

This is split into

X(co)= f [W(co') —V]G(co+co')dco',
—Ioo

which can be written as

(A3)

X(co)=f [IV(co') —V][G(co+co')+G(co—co')]dco'
0

(A4)

I =I, +I2,
I, = f f(cu)da),

0

I2 ——f f(co)dco
h

(A9)

Y =Im f™G(co*)[X(co*)—X„)G(co')d~ .
0

(A7)

using the fact that

W( —co) = W(co) (Imco~O),

which follows from its RPA formulation (1 1).
For Y, we deform the contour of integration from the

negative real axis to the negative imaginary axis, since no
poles are crossed and the integral over the circle at
infinity again vanishes [Fig. 3(b)],

Y =Im f G(m)[X(co) —X„]G(co)dco, (A6)—)oo

which can be written as

(where h is on the imaginary axis), which are transformed
onto the range —1 to 1 using the transformation s
u =2y/h —1 and v =2h/y —1, respectively, so that stan-
dard Gaussian quadrature may be used with n/2 points
in each of the two parts. We set h =13 6i eV. and use the
n =10 and 30 sets of frequencies. For example, the
n =10 set is co=0.62i, 3.13i, 680i, 10.47i, 12.97i, 14.28i,
17.68i, 27.20i, 58.94i, and 289.92i eV. As explained in
the main text, G (which appears in each integral) is found
to have a stronger variation along the imaginary co axis
than either W or X, so that while the n =30 is used for
the main integration, X and W are calculated at the
n = 10 set of imaginary frequencies, and interpolated us-
ing splines to the n =30 set.
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