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Excess current noise in random-walk models with a frequency-independent conductivity is stud-

ied from a general point of view. By introducing a "dynamical" diffusion constant, it is shown that
the current autocorrelation function in an external field probes the equilibrium dynamical
diffusion-constant autocorrelation function. From this a number of results, previously shown for
particular models, are derived. Also, it is shown that the external-field current autocorrelation
function is proportional to the equilibrium autocorrelation function for the absolute value of the
current. Thus, the excess-noise spectrum probes the equilibrium-speed autocorrelation function. In
the treatment advanced here, the study of excess current noise in random-walk models reduces to a
study of the stochastic point process constituted by the particle-jump times. This point process con-
tains all information about the noise. As an illustration of the general theory, the continuous-time
random-walk model is briefly reviewed and a simple derivation of the excess noise in the model is

given. Finally, the role of Fermi statistics in models for 1/f noise is discussed. It is argued that
number-fluctuation models, i.e., models with long trapping times, are incompatible with Fermi
statistics. On the other hand, it is shown there is a peculiar "single-particle" 1/f noise which is due

to Fermi statistics but has nothing to do with the observed 1/f current noise.

I. INTRODUCTION

Electrical 1/f noise has been a major puzzle in solid-
state physics for many years and is still far from being un-
derstood. ' " This noise is found at low frequencies in
apparently any conducting solid in an external electric
field. 1/f noise is always observed together with white
noise, the origin of which is well understood, and there-
fore 1/f noise is often referred to as excess noise. One
may speak of excess current noise in a constant-voltage
circuit or excess voltage noise in a constant-current cir-
cuit. The spectra of the two are always identical and only
excess current noise will be discussed here.

Experimentally, the spectrum of excess current noise is
given by

S,„,J(co)=K co

where (J )E is the average current in the electric field E,
V is the volume of the sample, j:is a constant, and the
exponent a is close to 1. The case a= 1 has given the
name to the subject: 1/f noise, where f is the frequency.
The fact that the noise is proportional to (J )z suggests
it is the resistance that fluctuates and consequently one
often speaks about 1/f resistance fluctuations. If the
resistance really fluctuates, however, there should be 1/f
fluctuations in the magnitude of the Nyquist noise in zero
external field. This was shown actually to be the case by
Voss and Clarke in 1976.' Their work was a major
breakthrough because it showed that 1/f noise is an
equilibrium phenomenon and is not created by the rather
strong electric fields usually applied when measuring 1/f
excess noise. The Voss and Clarke experiment raised the
obvious question: How can noise fluctuate, being itself

due to fluctuation? It was soon shown that fluctuations
in the magnitude of the Nyquist noise are due to nontrivi-
al fourth-order correlations in the equilibrium current or
voltage fluctuations, ' ' implying these fluctuations are
non-Gaussian.

During the 1980's there has been considerable interest
in random-walk models for 1/f noise. These models are
probably the simplest one can think of as a means of get-
ting a better understanding of the purely statistical prop-
erties of the noise. In particular, the appearance of non-

Gaussian equilibrium current fluctuations can be studied
in detail. In Sec. II of the present paper we study general
features of the current noise in random-walk models.
The treatment is centered around the concept of a
"dynamical" diffusion constant. In Sec. III the
continuous-time random-walk (CTRW) model for 1/f
noise is briefly reviewed as an illustration of the general
theory. Finally, Sec. IV contains a discussion where the
role of Fermi statistics for the application of random-
walk models is emphasized. It is argued that any model
for 1/f noise based on long trapping times, including the
CTR% model in its multiple trapping realization, is in-
compatible with Fermi statistics and is therefore unrealis-
tic.

II. EXCESS CURRENT NOISE
IN RANDOM-WALK MODELS

To simplify the discussion we consider just one particle
which performs a random walk in one dimension on a lat-
tice with lattice constant a. No assumption is made
about the underlying dynamics which does not have to be
Markovian. It is assumed that the direction of any single
jump is random; via the fluctuation-dissipation theorem
this ensures a frequency-independent conductivity. If the
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particle jumps at times ~, we assign to it a dynamical
diffusion constant D (t) defined by

(2)

D (t) is characterized by

( u(t)v(t') )„=2D(t)5(t t'—),
where v is the velocity, or

D(t)= f ( u(t)v(t+ r))„,d r.

(3)

(4)

Here, ( )„denotes a "restricted ensemble average" by
which is meant an average over all trajectories with the
same D(t), i.e., with the same jump times. The time
average of D (t) is the ordinary diffusion constant D:

2g
(6)

where q is the particle charge, and k and T have their
usual meaning. The constant of proportionality follows
from requiring the time average of Eq. (6) to obey the
Nernst-Einstein relation. The measured current noise is
the cosine transform of the current autocorrelation func-
tion. Since the currents at different times within the re-
stricted ensemble are uncorrelated, one has

(J(t)J(0))@„——(J(t))~„(J(0))@„
2

D(t)D(0) (t &0) . (7)

When averaged over the whole ensemble of possible jump
times this leads to

TO

D=(D(t)) = lim f D(t)dt .
To~ oo Tp 0

The relevance of D(t) to the excess current noise be-
comes clear when the current in an external electric field
is evaluated. In a weak field it is slightly more probable
for the particle to jump to one side than to the other. To
lowest order in E the total jump probability does not
change, however, and the particle still jumps at times ~;.
The restricted ensemble average current is thus propor-
tional to the equilibrium D (t):

D(t)= y(t) .
2

(10)

While D(t) is of course different from D (t), their statisti-
cal properties are identical: For the average over a par-
ticular realization of y(t) it is easy to see that
(D(t~) . D(t„))r~,~

——D(t, ) D(t„). Averaging this
expression over all possible y(t)'s leads to

(D(t, ). D(t„))=(D(t, ) D(t„)) .

Da(D(t)D(0))= p(t ~0) (t)0),
2

where p(t
~

0) denotes the probability density for a jump
at time t given the particle jumped at t =0. Except for a
numerical constant, low-frequency excess noise is thus
the cosine transform of p(t

~

0). ' 1/f noise implies
long-time correlations in this probability. The particle or
the medium in which it jumps somehow has a long-term
memory. For an ordinary random walk, on the other
hand, p (t

~

0) is constant and there is no excess noise.
Generalizing the above results to more than one parti-

cle is straightforward. Assuming the particles are in-

dependent and noninteracting, one just lets ~, denote the
collection of jump times for all the particles. In general-
izing to d dimensions the factor 2 in Eq. (2), etc. , should
be replaced by 2d. Equations like (6) and (8) apply un-

changed where J is now, of course, the component of the
current in the direction of the field. No new features ap-
pear and in the rest of the paper only the one-dimensional
case will be considered. The important thing, which is
independent of the dimension and number of particles, is
that all information about the noise lies in the statistical
properties of the collection of jump times v;. In statistics
a stochastic collection of times is referred to as a "point
process. " The study of point processes is a mature
branch of the theory of stochastic processes. ' ' Point
processes have been applied in the study of photoelectron
statistics, cosmic-ray showers, kinetic theory, population
growth, telephone trafBc, etc. An important class of
point processes is the class of so-called doubly stochastic
Poisson processes. An example is the jump times ~; for a
particle performing a random walk where the jump prob-
ability at time t, y(t), is itself a stochastic process. Here
one may define a second kind of time-dependent diffusion
constant D(t) by

(J(t)J(0))~= (D(t)D(0)) (t &0),kT

where ( ) on the right-hand side denotes an equilibrium
average. To obtain the total current autocorrelation
function one should add to this expression a white-noise
term proportional to 5(t) This term .is not of interest
here. According to Eq. (8) the excess noise measures the
spectrum of dynamical diffusion constant fluctuations in
equilibrium.

The autocorrelation function (D(t)D(0) ) has a simple
physical interpretation. From Eq. (2) it follows immedi-
ately that

N= f D(t')dt'.
a

For the variance of N one has

(12)

Thus, our definition of D (t) in Eq. (2) is consistent in the
case where the ordinary diffusion constant really does
fluctuate in time via a time-dependent jurnp probability.

We now turn to the problem of expressing the current
autocorrelation function in an external field in terms of
equilibrium current fluctuations. Focusing attention on
difFusion-constant fiuctuations according to Eq. (8), we
note that the integrated dynamical diffusion constant
counts the number of jumps N in time t:
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((gN)') = f f (D(t')D(t"))dt'dt"
a 0 0

(((((x' '(t)) =a [3((bN) ), —2(N ), ] . (18)

f (D(t'))dt'
0

Since (N ), is always proportional to t, Eq. (18) in con-
junction with Eq. (15}implies'

a
(13)

d2
C,(t)= (ax'"(t)) .

24 dt'
(19)

where Cu(r) is the autocorrelation function for the
dynamical diffusion constant,

C (r)—= (D(r)D(0)) D— (14)

Equation (13) leads to

a4 d'
Cv(t)=

8 dt'
(15)

The next step is to relate the right-hand side to averages
of the displacement in time t, Ax(t) Th.e quantity
(e' "'") is an average of a product of independent fac-
tors e +—' 'and thus

(e'"'"'")=( cos"(ka) &

Equation (19) was first derived by Kuzovlev and
Bochkov as a consequence of

(e'" *'")=(exp —k' jD(( (d( '', (20)
0

derived for "slowly fluctuating" D(t). Their definition
of D(t) is not obvious, but Eq. (20) is not valid for any
reasonable definition of D(t) as long as a )0, since it
does not apply even in the case of an ordinary random
walk with a constant D (t): For D (t) =D Eq. (20) reduces
to ln(e' "'")= kD—t which implies (hx' '(t) ) =0. In
reality ( bx ' '(t) ) cc t in this case since cumulants are ad-
ditive and b,x(t) is a sum of independent increments. In-
stead, Eq. (20) must be replaced by

From this equation averages of all powers of bx (t) can
be found. For the first two nonzero averages one finds ( e ik ax(t) )

21n[cos(ka)] f ~

a 0
(21)

d2
((bx) (t)) = — ( cos (ka}),

~

=a (N), ,

(17)
d4

((tI(x)'(t)) =, & cos (ka)),
~ „0

dk

=a (3(N ), —2(N), ) .

In particular, the fourth-order cumulant of hx(t),
(gx~~~(t)) —((&x )4(t) ) —3((hx)2(t})2, is given by

which just combines Eqs. (12} and (16). For a~0 Eq.
(21}reduces to Eq. (20). This limit, however, is only per-
missible in certain models. From Eq. (21) it is possible to
derive Eq. (19) directly by expanding the logarithm of the
equation to fourth order in k, but we found it more in-
structive and also useful below to arrive at Eq. (19) via
averages of N and its fluctuations.

Defining as usual the fourth-order cumulant of the ve-
locity by

(v(t&), u(t2), u(t3), u(t4)) =(v(t ) 1(ut )v2(t )v3(t )4) —(v(t, )v(t2))(v(t3)v(t4))

—(u(t, )u(t3) ) ( v(t2 )v(t~) ) —( u(ti )u(t4) ) ( v(tz)v (t3) ), (22)

Eq. (19) can be rewritten as

Cn(t)= f dr'f dr" (u(t), u(r'), v(r"), v(0)) .
0 0

(23)

The right-hand side is the Burnett coefficient. ~' Equation (23) was derived by Kuzovlev and Bochkov from Eq. (20),
and also by Nieuwenhuizen and Ernst from a different point of view. The latter authors define a "fluctuating diffusion

coefficient, "D ( t, r), by

D(t, r)= ——I[x(t)—x(r)] ) .1

2 at
(24)

They then proceed to show that for the Markovian random-walk model under study Cv =—(D(t, r)D(t', r') ) D is ac-—
tually a function of t t' only whic—h obeys Eq. (23).

Combining Eqs. (8), (14), and (23) we finally arrive at

2

(J(t)J(0) & = & J &' + f dr' f dr" ( J(t),J(r'), J(r"),J(0) & (t )0) .
kT o o

(25)
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Since cumulants are additive, this equation implies the

excess current noise is proportional to (J )z / V as in ex-

periment [Eq. (1)]. Actually, this follows also directly
from Eq. (8). It was first shown for a random-walk model

by Tunaley. Equations like Eq. (25) have been derived

by a number of authors, ' ' ' ' thereby greatly clari-

fying and simplifying the subject by reducing the current
noise in an external field to equilibrium current fluctua-

tions. We note here that it is actually possible to express

( J(t)J(0))z in terms of equilibrium ttoo-point correla-

tion functions. Since

~

J(t)
~

=qa +5(t —r, )= D(t),
a

(26)

Eq. (8) can be rewritten as
'2

(J(t)J(0)),= (
~

J(t)
~ ~

J(0)
~

) (t &0),

S,„,J(to) &q a qaE
(30)

In linear-response theory qaE/kT &&1 and the criterion
for measurable excess noise reduces to Eq. (28). This con-
dition is independent of the size of the system since both
sides of Eq. (28) are additive.

III. EXAMPLE: EXCESS NOISE IN THE
CONTINUOUS-TIME RANDOM-WALK MODEL

course independent of t. In a weak external field there is
a slight increase in the white noise which, however, is
insignificant for the present calculation. ' Since CD{t)
varies only very slowly one has SD(to) ~4tCD(t) and Eq.
(13) implies CD(t)=(a /4)[((bN )), /t ], where
t =co '. Combining these results we get for the excess
current noise

(27)

where the right-hand side is, as usual, an equilibrium
average. This result is simpler than Eq. (25} and,
perhaps, more aesthetically pleasing. But it is less gen-
eral than Eq. (25) since it explicitly involves the lattice
constant and thus depends on the existence of a lattice.

For the generation of 1/f noise one needs long-time
correlations in the fluctuations of D(t). Actually, noise
that varies approximately as 1/f is obtained only if CD(t)
is almost constant, typically varying as log(t) to some
negative power. One may imagine two different ways of
generating 1/f noise. The one case is that of "genuine"
mobility fluctuations, i.e., when the random walk is a
doubly stochastic Poisson point process with 1/f noise in
the D(t) fluctuations of Eq. (10). The other case is when
long-time correlations in D (t) arise because of occasional
long trapping times of the particles. Here one must as-
surne the existence of a broad spectrum of trapping times
exceeding the longest experimental times. This may be
regarded as the case of number fluctuations since a
charge carrier trapped for the whole period of observa-
tion for all practical purposes is nonexistent.

We close this section by showing that only 1/f noise
with strong fluctuations in the number of jumps is ob-
servable. By strong noise we mean noise obeying

One way or the other 1/f noise arises from long-time
correlations in the diffusion constant fluctuations. This
may occur, for instance, via occasional very long trap-
ping times for the change carriers. The simplest example
of this is the CTRW model of Montroll and Weiss.
Here the jump probability at any time is a function only
of the time elapsed since the preceding jump. The
CTRW model was first applied to the 1/f noise problem
by Tunaley and later by Nelkin and co-workers.
The central quantity in this model is the waiting time dis-
tribution function, P(t), which is the probability density
for jumps the time t after the latest jump. In the
language of stochastic point processes, the sequence of
waiting times is a so-called renewal process. ' ' In this
section we calculate the excess noise from P(t). This was
done by Tunaley but is repeated here as an illustration
of the general theory of Sec. II and also because the
below derivation is simpler than that of Tunaley.

If the particle jumps at t =0 we let 1(„(t) denote the
probability density for the nth jump hereafter occurring
at time t. Obviously one has

(31)

For the function f (t) defined by

((&N)'), (N ), (28} (32)

, , (N),
S„h;„J(to)=2qa, t =to (29)

where the number of jumps per unit time, (N ), /t, is of

on the relevant time scale. This is the criterion for N
fluctuations much larger than for an ordinary random
walk, where there is equality in Eq. (28) on account of the
Poisson statistics. Both the mobility and the trapping
mechanism may satisfy Eq. (28) which rules out only the
case of very weak mobility fluctuations. To show Eq. (28)
we calculate first the white noise in equilibrium. From
J =qa g, +5( t —r, ) we get immediately

Eq. (31) implies

f(t) —p(t)= f f(t r)Q(r)«. —
0

(33)

Taking the Laplace transform of this equation one gets
f(s) —f(s) =f(s)Q(s), or

p( )

1 —g{s}
(34)

The quantity p(t
~

0) occurring in Eq. (9) is just f (t) and
thus
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S,„,D(co)
S,„,(ro):—

D2
4J f(t) cos(rot)dt,

0

20
ReJ(ice)

2a 1

1 g(—i co)
(35)

above y;„, which implies a logarithmically divergent
average waiting time. The excess noise of the standard
model is identical in functional form to the expression de-
rived by Kuzovlev and Bochkov for a scale-invariant ran-
dom walk. ' Their derivation is based on Eq. (20)
which has been criticized above. The derivation is not
quite transparent; also, the factor 1nA. in Eq. (39) is absent
in their calculation of the excess noise.

DN y+&N
(36}

1.e.,

S,„,(~}= Im4&r '& 1

N y+LN
(37}

A simple example yielding 1/f noise is the case of all
y's equally likely:

(38)

where y;„&&y0 is assumed. One may think of y0 as a
phonon frequency and y;„as corresponding to long
waiting times, e.g., one day or one year. For the whole
range of intermediate frequencies ( ( r +i co )

=ro 'ln(rolico) and

S,„,(co) =—ink, Im
4 1 2m ink, 1

co ln ro/ice ln (ro/~) co
(39)

where A, =ro/r;„. We thus find S,„,(co) ~ oi, where

a=1— 2

ln(ro/co)
(40}

At ordinary laboratory frequencies one has a =0.9. This
model may be termed the "standard model of 1/f noise"
since it is probably the simplest exact soluble random-
walk model giving 1/f excess noise. Of course 1/f noise
is built into the model via Eq. (38). This is equivalent to a
waiting time distribution function P(t)~t (Ref. 28)

This is Tunaley's result for the excess noise. It is con-
venient to write P(t) as a sum of exponential decays,
f(t)=(re r'&, where the average is over a distribution
of jump rates. ' From this hatt(s)=(r/(r+s)& and

D = —,'ai(r '
&

' which substituted into Eq. (35) yields

2a'
Re

D 1

)
lN

y+lN

IV. DISCUSSION

Random-walk models provide a simple framework for
understanding the fluctuation-dissipation theorem. It is
therefore an obvious idea also to use these models for get-
ting a better understanding of low-frequency resistance
fluctuations. Various random-walk models have been
studied with this purpose 19-24,26, 28-30 In this paper a
general framework for discussing excess noise in
random-walk models has been proposed. Following pre-
vious work, in Sec. II we focused on the concept of a fluc-
tuating diffusion constant, the dynamical diffusion con-
stant D(t). While the exact definition of D(t) hitherto
has not been clear, we here use a definition of D (t) which
is simpler than previous implicit definitions. For all prac-
tical purposes, however, it is identical to these since the
expressions for (D(t)D(0)& in Eqs. (19) and (23) are
identical to those given by Kuzovlev and Bochkov, '

and Machta, Nelkin, Nieuwenhuizen, and Ernst. ' The
relevance of D (t) to excess current noise is shown by Eq.
(8) according to which the current fluctuations in an
external field directly probes the equilibrium
(D(t)D(0)&. An important general property of
random-walk models is the fact that the noise is propor-
tional to (J &E and inversely proportional to the volume
or any other extensive property like the number of charge
carriers. This follows immediately from Eq. (8) since
D (t) and autocorrelation functions are additive.

As an application of the general formalism, note that
Eq. (6) is valid also in a time-dependent external field.
From this it is straightforward to show that in a sinusodi-
al field one finds the so-called 1/hf noise ' which is
directly proportional to the magnitude of the 1/f noise
in a constant field. A weakness of the formalism of Sec.
II should be mentioned, namely, that it does not easily al-
low for an exact calculation of the white noise in an
external field. Though insignificant in the linear regime,
there is an interesting small increase in the white noise
when the field is turned on.

The dynamical diffusion constant is proportional to the
absolute value of the current. This leads to a simple ex-
pression for the current fluctuations in an external field in
terms of equilibrium fluctuations [Eq. (27)], a result
which can be rewritten in terms of autocorrelation func-
tions as

([J(t)—(J&~][J(0)—(J &g]&,= '„([I
J(r)

I

—
&

I
J

I &][ I
J(o)

I

—
&

I
J

I &]& (41)
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p(e) o: exp(e/kT) . (42)

Though this implies only very few deep trapping states,
in the course of time all energies are equally likely to be
occupied because of the Boltzmann factor to be multi-
plied with Eq. (42) to get the probability. Thus, the stan-
dard model is just another example of the old idea of 1/f
noise arising when all activation energies are equally like-
ly. At the same time the standard model satisfies the re-
quirement for 1/f noise given by Nieuwenhuizen and
Ernst, namely, an exponential density of states.

A temperature-dependent density of states as in Eq.
(42) arises in a system of fermions. Here a single particle
senses, in a mean-field approximation, a density of avail-

Analogous to the frequency-dependent conductivity
which probes the equilibrium velocity autocorrelation
function, the excess-noise spectrum thus probes the equi-
librium speed autocorrelation function. But it should be
remembered that a frequency-independent conductivity
must be assumed to derive Eq. (41), and also that the ran-
dom walk takes place on a lattice. Equation (41) cannot
be expected to apply more generally. For this to be the
case, one should be able to define a characteristic length
to play the role of the lattice constant a in Eq. (41). The
only possibility for this seems to be to let a be the length
for which qaE=kT at fields marking the onset of non-
linearities. Since, however, nonlinearities involve new
physics which is in general unco r related to linear-
response phenomena, there is little hope that this ap-
proach can be generally valid. Thus, Eq. (41) must be
limited to lattice models.

The unified formalism for excess current noise in
random-walk models developed above provides a con-
venient starting point for a discussion of general proper-
ties of 1/f noise. In particular, the point process ap-
proach makes it possible to throw some light on the old
controversy as to whether 1/f noise is due to mobility or
to number fluctuations. ' We end this paper by giving a
general argument to the effect that Fermi statistics rules
out the number-fluctuation mechanism. Mobility fluctua-
tions correspond to noise in the effective charge-carrier
Hamiltonian, whereas number fluctuations due to oc-
casional deep trapping is noise generated by the Hamil-
tonian itself. In the language of point processes, the stan-
dard example of mobility fluctuations is the case when
the jump times r; constitute a doubly stochastic Poisson
process, while the standard example of trapping noise is
the case when ~, is a renewal process, i.e., when we have
a continuous-time random-walk. This case is non-
Markovian and therefore in a sense unphysical, admitted-
ly, but the CTRW model is equivalent to a Markovian
multistate trapping model where the noise then is indeed
generated by the Hamiltonian.

In Sec. III the excess noise in the CTRW model was
calculated. A simple example termed the standard model
was worked out in detail. This model is one out of the
class of CTRW models discussed by Nelkin arid Har-
rison. In the multistate trapping realization of the
CTRW, the standard model corresponds to a density of
energies, c., given by

able states below the Fermi energy, p, tr(r. ), which is given

by
(c—cF )j/kT

p,s(e) = n (e)e (e & eF ), (43)

where n( e) is the ordinary density of states. For a con-
stant n(c) Eq. (42) is obtained. Equation (43) implies 1/f
noise in the motion of the single particles, a point we will
return to below. While interesting on its own, this has
nothing to do with the observed 1/f resistance fluctua-
tions, however. This is because the mean-field approxi-
mation does not apply due to strong interparticle correla-
tions: Below the Fermi level the particle number fluctua-
tions (in one energy level} are exponentially small,
((bn) ) =(n )( I —n ) «(n } (Ref. 34), while for in-

dependent particles one would have ( ( b, n ) ) = ( n ) be-
cause of the Poisson statistics, i.e., much larger fluctua-
tions.

We now extend the above and argue that Fermi statis-
tics actually rules out any 1/f noise model based on the
trapping mechanism. Basically, one may imagine two
different ways of producing long trapping times. The first
case involves hopping between localized states of similar
energy separated by various long tunneling distances or
large energy barriers. In this case, inevitably, there is a
strong frequency dependence of the conductivity and
models of this kind cannot explain the usual case of 1/f
fluctuations of a frequency-independent conductivity.
(Note that McWhorter's model based on tunneling to sur-
face states is not ruled out by this argument which is
only concerned with bulk and isotropic 1/f noise. ) The
second way of having long trapping times is that of trap-
ping into deep energies. This only works for independent
particles with the peculiar density-of-states of Eq. (42).
For fermions, the density-of-states above the Fermi ener-

gy is not temperature dependent, and below the Fermi
level, where Eq. (43) does apply in a mean-field sense, the
particles are not independent as discussed already.

To summarize the effect of Fermi statistics, it has been
argued that for Fermi systems 1/f resistance fluctuations
cannot be due to occasional deep trapping of the charge
carriers. The number-fluctuation rnechanisrn thus can be
ruled out on general grounds, and, e.g., the CTRW model
in the multiple trapping realization is not realistic. Thus,
the noise must be caused by mobility fluctuations. The
central problem, which until today remains largely un-
solved, is to identify the origin of the mobility fluctua-
tions.

While Fermi statistics rules out number fluctuations, it
implies on the other hand a peculiar kind of "single-
particle" 1/f noise: The motion of a single localized fer-
mion exhibits 1/f noise as a consequence of Eq. (43). In
principle this is observable, since, for a system of fer-
mions described by a master equation (an implicit as-
sumption in the argument}, there are no quantum coher-
ence effects and, in effect, the particles are classical and
distinguishable. Similarly, atoms or ions diffusing in a
disordered medium with a distribution of available poten-
tial minima also exhibit single-particle 1/f noise, since
they behave as fermions because of their strong repulsion.
This should be observable by monitoring the motion of
tracer atoms or ions in time.
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Except for the above arguments ruling out number
fluctuations, the cause of 1/f noise has not been dis-
cussed in the present paper. We feel there is no simple
and generally valid mechanism explaining 1/f noise.
Rather, 1/f noise may arise from a number of different
mechanisms which probably, one way or the other, in-

volve lattice defects overcoming or tunneling through
barriers. Following this line of thought, 1/f noise and its
dependence on temperature, etc. , provide important in-

formation about the solid under study. Note that while

S,„,(cu) probes only (D(t)D(0)) there is an enormous
amount of information hidden in the higher-order corre-
lations of D(t). This is illustrated by the fact that the to-
tal amount of information in the noise is contained in a
function of two variables

emphasized already ten years ago by Voss in a discussion
of linearity of the 1/f noise mechanism. The higher-
order correlations of J(t) and thereby D(t) are accessible
today by digital techniques and their determination
should provide a means of distinguishing between various
models for 1/f noise. Other promising lines of research
is the measurement of 1/f noise anisotropy, " and the
problem of stationarity of the noise and the dependence
of the noise on the annealing state (in any system with
long relaxation times the possibility of "glass transitions"
should not be forgotten); 1/f noise is still mainly an ex-
perimental Geld and it seems that a lot of work remains to
be done here before reliable theories can be proposed.
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