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Ground-state energy of the polaron gas in two-dimensional semiconductor microstructures
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The properties of the ground-state energy of a gas of quasi-two-dimensional interacting polarons
are investigated by using the self-consistent theory of Singwi, Tosi, Land, and Sjolander to the
response function of the electron system. The electron-phonon contribution to the ground-state en-

ergy is calculated for the electron gas confined in GaAs-Al„Ga& As heterojunctions and quantum
wells with appropriate form factors to take the finite width of the electron layer into account. For
the sake of comparison, different approximations {Hubbard, random-phase approximation, and
Hartree-Fock) for the screening are also considered.

I. INTRODUCTION

A very exciting application of the polaron theory in-
volves many-body systems, where we have to include the
electron-electron interaction along with the electron-
phonon interaction. A suitable three-dimensional (3D)
system in which we must consider both interactions is a
highly doped polar semiconductor. ' In two dimensions
(2D), electrons trapped in GaAs-AI„Ga, „As hetero-
junctions and quantum wells have served as an ideal sys-
tem for studying the electron-phonon interaction
screened by the interacting electron gas. In these sys-
tems, the density of electrons can be experimentally
varied over a wide range and, in some modulation-doped
samples, the electrons are far apart from the impurities in
such a way that the high-temperature mobility is limited
only by the electron coupling to phonons. In addition,
correlation effects are much stronger in 2D than in
3D2 "

Das Sarma was the first to incorporate screening
effects in the polar-optical-phonon interaction in order to
understand surprising experimental results which indicat-
ed that polaronic effects in quasi-2D semiconductor
structures are much smaller than those in the 3D coun-
terpart. The screening was treated within the Thomas-
Fermi approximation (TFA), which has the undesirable
property of giving density-independent results for the po-
laronic quantities. Even though the effects of the finite
width of the electron layer, by itself, could not explain
the experimental data, it should also be included to inter-
pret correctly the cyclotron-resonance measurement.

More recently, Das Sarma and Mason have used the
static dielectric function e(q, O) in the random-phase ap-
proximation (RPA) to screen the electron-phonon in-
teraction in single-particle expressions of polaron quanti-
ties such as the binding energy and the renormalized
mass.

Screening effects in quasi-2D systems have also been
studied by Wu, Peeters, and Devreese by using a
different approach, which was previously developed to in-
vestigate the ground-state properties of an interacting po-
laron gas in degenerate semiconductors. ' In this theory,
the ground-state energy of the polaron gas is expressed in
terms of the structure factor of the electron system in the
absence of the electron-phonon interaction. Then, the
structure factor was evaluated within the RPA. Howev-
er, it is well known that the RPA only gives good results
at high densities and it has shown a number of quantita-
tive deficiencies. The failure of the RPA manifests itself
in the large negative values of the pair correlation func-
tion, the Fourier transform of the structure factor, at
small distances. As a consequence„ the RPA grossly
overestimates the correlation energy of the electron gas.
Another deficiency of the RPA is that, as in the TFA, it
leads to a free value of the screening length. This fact is
essential from the point of view of describing screening
effects on the electron-phonon interaction. Then, it is
necessary to go beyond RPA in order to get a quantita-
tive understanding of the screening of polaron effects.

In this paper we calculate the electron-phonon contri-
bution to the ground-state energy of a quasi-two-
dimensional polaron gas by treating the electron-electron
interaction effects in mean-field approximations beyond
RPA. The electron-phonon coupling is considered
within a lowest-order perturbation scheme. We use the
dynamical screening approach, as discussed in Ref. 9.
The structure factor of the interacting electron system is
calculated by a new method recently developed by de
Freitas et al. This approach provides an accurate way
to incorporate local-field corrections in several approxi-
mations to the density-density response function. The
local-field factors are calculated in the approximation of
Singwi, Tosi, Land, and Sjolander (STLS) and in the Hub-
bard approximation (HA). " Even though there is some
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experimental evidence' ' of the electron interaction
with interface modes in semiconductor heterojunctions,
we here consider only the coupling of the confined elec-
trons to the relevant bulk LO phonons. Previous studies
are concerned with polaron effects in the quasi-two-
dimensional electron gas (2D EG) in a single heterojunc-
tion only. We shall also extend these studies to include
the influence of the thickness of the electron layer in
semiconductor quantum wells.

The paper is organized as follows: in Sec. II, for the
sake of completeness, we present a brief outline of the
canonical transformation theory as generalized for a
many-polaron system in order to obtain the electron-
phonon correction to the ground-state energy. We re-
view the essentials of the calculation of the structure fac-
tor in the self-consistent STLS theory and in the HA.
Section III contains the numerical results, discussions,
and conclusions in the case of GaAs-Al„Ga& „As hetero-
junctions and quantum wells. For comparison, we also
show the results within the Hartree-Fock approximation
(HFA) and the RPA.
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is the form factor to the Coulomb interaction due to the
layer width. For electrons moving in the GaAs side in a
single heterojunction (SH), the lowest subband wave
function is well approximated by the Fang-Howard varia-
tional function, '
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Then, for a SH, we have
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where b is a variational parameter determined by minim-
izing the total energy. The result is

b =(487rppg +e Jy+/eh )
~

II. THEORETICAL FORMULATION
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We consider a 2D interacting polaron gas, at zero tem-
perature, which is described by the Hamiltonian

where m' and e are, respectively, the effective mass and
dielectric constant of GaAs, and N' =Nd + —,",n. Here Nd
is the depletion charge density in GaAs and n is the elec-
tron density. The second system to be considered here is
a double heterojunction which forms a quantum well
(QW) of width d. For a QW, the lowest subband wave
function is approximated by that of a square-well poten-
tial with infinitely deep barriers,

1/2

go(z) = 2

d
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In this case, we obtain (u =kd)
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(ld)
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Here a and a are the creation and annihilation opera-
tors for bulk LO phonons with energy ~LO and wave
number q, whereas ek and ek, respectively, create and an-
nihilate an electron with a 2D wave vector k, which is de-
scribed by the wave function

P(r, z) =$0(z)exp(ik r) . (2)

2 2

V(k)= F(k),
ek

where

We do not consider here the electron intersubband
scattering because the transition rate is quite small, and
we restrict ourselves to the extreme quantum limit, where
only the lowest subband is occupied. Ho includes both
the kinetic energy of the electrons and the contribution of
free phonons. H, , describes the interaction between
electrons and the interaction with the positive back-
ground (the term k =0 is omitted in the summation).
The potential V(k), which takes the finite thickness of
the electron layer into account, is given by

2 1+ — 1 ——(1—e "}
Q Q

(8)

In a purely 2D EG with 5-function probability density,
we must have F(k }= 1 in Eq. (3). The electron-phonon
coupling is represented by H, h in Eq. (ld). The interac-
tion strength is given by

' 1/2 ' 1/4
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nq2 &Pole

'
I 40&

(9)

where Q is the volume and a is the standard Frohlich
coupling constant of the electron-phonon interaction.

A. Ground-state energy of the polaron gas

We review briefly the canonical transformation theory,
discussed in earlier works, ' as applied to the many-
polaron system. The method consists in subjecting the
bare Hamiltonian [Eq. (1}]to a similarity transformation
given by
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U=expg, (10) B. Structure factor of the quasi-20 EG

with

V,l(k) = V(k) 2(M—),fk'+Mk fk —fit()Lofk fk ) . (12)

The second term of Eq. (12}corresponds to the contribu-
tion of the electron-phonon coupling to the electron-
electron interaction. Next, the ground-state energy is ob-
tained by calculating the expectation value of the reduced
Hamiltonian over the ground-state wave function of the
electron gas. Finally, fk are determined by minimizing
the ground-state energy. The calculation is straightfor-
ward and gives the following result to the ground-state
energy per particle:

E =I(:+ g V(k)[S (k}—1]+E, ,
k

(13)

where the first two terms correspond to the usual
ground-state energy of the electron gas, including the ex-
change and correlation contribution, and

~
M„~ 'S(k)

fico„o+h k /2mS(k)
(14a)

or

S (k)E = —akcoLpkLp dk
0 S(k}+k k&&2

(14b)

is the correction of the electron-phonon interaction to the
ground-state energy. In Eq. (14b), kto ——(2m())Lo/fi)'~ .
The static structure factor is a key quantity in determin-
ing the screening properties of the interacting system. In
Eq. (14), S(k) is the structure factor of the electron gas in
the absence of the electron-phonon interaction.

0= Xfq&40 I
e '

I lo&((tq (2 q}—ckck+q
k, q

where fk are unknown functions. The canonical trans-
formation U is referred to as the Lee-Low-Pines transfor-
mation. The expectation value of the transformed Ham-
iltonian over the vacuum phonon state leads to a reduced
Hamiltonian, which has the same form as the original
one, but with an effective potential between electrons
given by

A new method has been proposed recently to deter-
mine the structure factor of the quasi-2D EG in the
mean-field approximation. Here we give only the essen-
tials of the method and we refer the reader to Ref. 3 for
details. The structure factor is related to the density
response function through the fluctuation-dissipation
theorem as

S(k)= — f X(k, it())dry .
2mn

(15}

The density response function is written as

X(k, t0)= i f—dt e' '([pk",p' ), ]),
0

where the electron-density operator is

pk(t)= g ck+~(t)cz(t) .

(16)

(17)

As pointed out in Ref. 9, it is worthwhile to remark that
S(k) is different from S(k,O), the static limit of the dy-
namic structure factor S(k, ro), since S(k), which appears
in Eq. (15), is obtained from the evaluation of X(q, c0} for
all frequencies. In this sense, this approach could be
called a dynamical screening" to make the distinction
with the usual procedure which consists of replacing the
strength coefficients

~
Mk

~
by

~
Mk

~

/e (k, O) with

1/e(k, O) —1=V(k)X(k, O). In general, X(k, co) could be
calculated in terms of a diagrammatic formalism. How-
ever, in the mean-field theory, the density response func-
tion can be written as

X()(k, co )

1 —V(k)[1—G (k)]XO(k, co)
(18)

where Xo(k, t()) is the response function in the absence of
the Coulomb interaction. G(k) is the local-field correc-
tion which takes the short-range exchange-correlation
effects into account in the density response function. The
effect of G(k) is to reduce the electron-electron interac-
tion at small distances. Note that if we set G(k) =0, we
recover the RPA response function. Thus, the RPA
neglects all short-range correlations in the system. This
is the underlying reason why we must go beyond the
RPA.

Using a very simple expression for Xo(k, it()), obtained
by a suitable transformation to new coordinates, de Frei-
tas and Studart showed that the structure factor can be
written as

S(k)= k f ~(k)
(4k 2 k 2sin28)1/2 F4k cot 0 (1—cos8) dO,

irkF o (4kF2 —kisin 8}'~ 1+ V(k}[l—G(k)](1—cos8)m lvrR
(19)

where

~/2, k (2kF
a(k) =

sin '(2kF/k), k &2kF .

I

The Fermi wave number kF ——(2irn )
' ~ in 2D. It is im-

portant to note that Eq. (19) contains a single integral
over a finite interval; thus, it can be numerically calculat-
ed with great accuracy. By making G(k)=1 in Eq. (19),
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where e(x) is the step function. In the self-consistent
STLS approximation, the choice of G(k) arises from an
ansatz in decoupling the two-body Wigner distribution
function. " The local-field function in STLS is given by

G(k)= ——f dq
1 1 V(q) qk [S(k—q) —1] .

(2n ) I'(k) k' (21)

The local field G(k) and the structure factor S(k) are
calculated by solving self-consistently Eqs. (19) and (21).
In the HA, G(k) is determined by substituting S„F~(k)
from Eq. (20) into Eq. (21).

0.09

we get the structure factor in the HFA. The analytical
result is

III. RESULTS

The structure factor obtained by the solution of Eqs.
(19) and (21} is substituted into Eq. (14b) to get the
polaronic-binding energy. The physical parameters that
we use in our calculations are those of the GaAs, i.e.,
Acj)QQ —36.77 meV, e = 10.9, m *=0.0657m 0, and
+=0.068. In Fig. 1 we show the electron-phonon contri-
bution to the ground-state energy of a purely 2D polaron
gas in the self-consistent STLS approximation, the HA,
the RPA, and the HFA. It is noted that in all of these
approximations, the polaronic-binding energy

~

E de-
creases as the density increases. As we expected, the
screening effects on the electron-phonon interaction in-
crease with increasing density. However, it is clear from
Fig. 1, that the RPA (HFA) overestimates (underesti-
mates) the screening effects. As we include the short-
range correlations, first through the HA, which only
takes the Pauli-hole exchange effect into account, and
then through the STLS scheme, we observe a gradual
reduction of the screening on the electron-phonon in-
teraction. This result arises from a more correct treat-
ment of the short-range correlation effects provided by
the STLS approach. In the limit of very low density, we
recover the 2D single-polaron limit E~=mairicoLo/2, as
may be easily seen by neglecting interaction effects [set
S(k)=1] and taking the zero-thickness approximation
[set F (k) = 1] in Eq. (14).

In the next figures, we show the influence of the sub-
band confinement by considering the electron gas in a sin-
gle heterojunction (Fig. 2) and in quantum wells of 50-
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FIG. 1. Polaronic-binding energy as a function of the elec-
tron density within different approximations in a purely 2D sys-
tern.
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FIG. 2. Polaronic-binding energy vs the electron density in
the GaAs-Al„Ga, „As heterojunction.
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FIG. 3. Same as Fig. 1, but now showing the effects of
screening in the polaronic energy in quantum wells of 50 A
(dashed lines) and 150 A (solid lines).

mation and the HA give the same results and approach
the RPA values of the binding energy. When n goes to
infinity, the electron-phonon interaction is fully screened
out and

~ E~ ~
goes to zero. As we can see from Fig. 3,

the results of
~ E~ ~

for a quantum well show a smaller
reduction as compared with those of the 2D EG in a
heterojunction. Furthermore, the binding energy is quite
sensitive to the thickness of the electron layer. As we in-
crease the well width for a fixed density, the wave func-
tion spreads out, and the binding energy decreases. How-
ever, we cannot get, in this model, the bulk value of the
binding energy, which could be obtained, in principle, by
taking the limiting value of F(k) as b goes to zero or d
goes to infinity. When b is small or d is large, the energy
difference between the levels of the lowest subbands be-
comes comparable and we have to include the population
of higher subbands. We must recall that in this limit the
electron-electron interaction behaves like lnr, the poten-
tial of an infinite string of charges, instead of the actual
3D 1/r potential. Then, we have to sum up over all elec-
tron subbands in Eq. (4) in order to get the correct result.
Furthermore, in this case, we also have to consider ex-
plicitly the z dependence of the screening in our ap-
proach.

Even though the correction to the subband energy due
to the electron-phonon interaction is quite small for ex-
perimental electron densities in GaAs systems, it could be
important in heterostructures of more polar materials, as
discussed by Das Sarma and Mason.

In conclusion, we have shown that screening and
subband-confinement effects are important to reduce the
electron-phonon interaction, and an improved treatment
of the short-range correlations in the polaron gas is
necessary to obtain a quantitative picture of the
electron-phonon interaction in semiconductor micro-
structures.

and 150-A widths (Fig. 3). We see in Fig. 2 that
~ E~ ~

is
substantially reduced (by a factor of 5) from the strictly
2D results because of the combinations of the effects of
the electron-electron interaction and the subband
confinement. Again it is clearly observed that

~ E~ ~

monotonically decreases with increasing density, and
both effects contribute to reducing the electron-phonon
interaction. This is in contrast to the result of the static
RPA approach (screening of the electron-phonon interac-
tion by the wave-vector-dependent dielectric function at
zero frequency), which exhibits a minimum in

~ Ez ~

at
n =3X10"cm . At high densities, the STI.S approxi-
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