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Conductance of an array of elastic scatterers: A scattering-matrix approach
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In the past, the conductance of disordered systems has been extensively studied with use of the

Anderson tight-binding Hamiltonian. In this paper we use a different model, which views the semi-

conductor as regions of free propagation with occasional elastic scattering by a random array of
scatterers. Each impurity is characterized by a scattering matrix which can, in principle, be derived

for any arbitrary scattering potential. The randomness is introduced through the impurity location.

The overall scattering matrix of the device is calculated by combining (using the appropriate law of
composition) the scattering matrices of successive sections. The conductance is then evaluated with

use of the multichannel Landauer formula. One advantage of this approach is that the quantum

conductance can be compared with the semiclassical conductance, which is determined by combin-

ing the probability scattering matrices obtained by replacing each element of the (amplitude)

scattering matrices by its squared magnitude. This comparison allows us to see clearly the effects of
quantum interference. Numerical examples illustrating the onset of weak and strong localization, as

well as conductance fluctuations, are presented. Even for samples shorter than the electron elastic

mean free path, the size of the conductance fluctuations is close to the universal value if the two-

probe conductance formula is used, though it is much larger when the four-probe formula is used.

I. INTRODUCTION

Over the past few years, many experiments on the con-
ductance of disordered metals and semiconductors have
been reported in favor of the scaling theory of localiza-
tion. ' More recently, the presence of universal conduc-
tance fluctuations in disordered systems has been estab-
lished both experimentally and theoretically.
$uch fluctuations have a universal magnitude -e /It in
the weak-localization regime (where 6 )e /It } and have
been observed by varying the chemical potential in silicon
metal-oxide-semiconductor field-efFect transistors
(MOSFET's}, ' and by varying the magnetic field in both
metallic samples~ and Al„Ga, „As/GaAs heterostruc-
tures. ' ' Theoretically, it has also been shown that such
conductance fluctuations could occur in metals, due to
the motion of a single carrier. The conductance fluctua-
tions arise from a quantum-interference effect which re-
quires phase coherence of the wave functions over large
regions of the sample. Most of the theoretical work con-
cerned with the problem of localization and with the size
of the conductance fluctuations has been based on the
Anderson tight-binding model. ' ' The results of nu-
merical simulations agree fairly well with the universal
value predicted by the perturbative calculations. Anoth-
er model that has been studied is a purely-one-
dimensional (single moded) disordered system, in which
the randomness is introduced through the average spac-
ing between impurities (spatial disorder} or through the
actual shape of the potential (potential shape disor-
der). ' ' In the present paper we generalize this model
to allow for multimoded propagation in the disordered
material, and we use it to study both localization and
conductance fluctuations. The maximum number of

the k signs describing an electron traveling in the posi-
tive (negative) x direction, respectively. For simplicity,
we assume a parabolic dispersion relation for each mode,

Ak
F =c. +

2m
(2)

c being the energy eigenvalues corresponding to the
mth subband.

At zero temperature, the normalized conductance g of
the two-dimensional resistor is deduced from the Lan-
dauer formula '

6 M Mg=, =2 g g ~t ~ (E=EF)i',e'/~, )
m ™

where t ~ js the amplitude for an electron injected from

propagating modes considered in our numerica1 examples
is 40. This corresponds to the number of propagating
modes at the Fermi level in a two-dimensional GaAs
resistor [see Fig. 1(a)] with a width of 5 X 10 A and car-
rier density of 10' cm . Our model is thus well suited
to describe the transport properties of realistic semicon-
ductor microstructures such as narrow MOSFET's,
GaAs wires, and Aharanov-Bohm structures grown by
molecular-beam epitaxy (MBE).

The transport of electrons in a two-dimensional resis-
tor is modeled as regions of free propagation with oc-
casional elastic scattering by a random array of scatterers
[see Fig. 1(a)]. We assume the existence of a confining
potential in the y direction leading to a set of transverse
modes or subbands m = 1,2, . . . [see Fig. 1(b)] with wave

functions of the form

f*(x,y)=P (y)e
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placing each individual element of the (amplitude)
scattering matrices by its squared magnitude. In Sec.
III we present the results of a numerical study of the con-
ductance behavior in the weak- and strong-localization
regimes using the two models of impurity scattering de-
scribed in Sec. II. Conductance fluctuations are studied
by varying the position of a single impurity out of a large
array. The size of the conductance fluctuations is found
to be approximately constant in the weak-localization re-
gime, as the number of propagating modes in the sample
is changed from 10 to 40. In the strong-localization re-
gime, the size of the fluctuations decreases, as expected.
For samples shorter than the elastic mean free path, the
size of the fluctuations is close to the universal value if
the two-probe formula is used to calculate the conduc-
tance; however, fluctuations are much larger if the four-
probe formula is used. The main conclusions are summa-
rized in Sec. IV.

II. THEORY

A. Combining scattering matrices

kx
Referring to Fig. 1(a), we wish to calculate the scatter-

ing matrix [s] for the resistor, connecting the incoming
amplitudes [a+! and [b ! to the outgoing amplitudes
[b+! and [a

t r' a+
r t' b

(4)

I3 ITI4 Al5

(c)

FIG. 1. (a) A two-dimensional resistor. (b) Dispersion rela-
tions for different transverse modes. (c) A typical Feynman
path from subband m at the left to subband m' at the right.

the left into subband m to be transmitted to subband m'

on the right. I is the total number of modes that are oc-
cupied at the Fermi level EF. In previous theoretical
work using the tight-binding Hamiltonian, the various
transmission coefficients t ~ were calculated using a re-
cursive Green's-function technique. ' ' Here, we obtain

from the overall scattering matrix of the device,
which is calculated by combining (using the appropriate
law of composition) the scattering matrices of successive
sections. In Sec. II we describe the technique used
to combine scattering matrices and the two models for
impurity scattering that we use in our numerical simula-
tions. %'e also describe how the semiclassical result
(neglecting interference between successive impurities)
can be derived from the same formalism simply by com-

bining the probability scattering matrices, obtained by re-

t&2 t2[l —r', r2] t~, ———1

r)q ——r( t+Ir [Iz—r Ir2] 't),
tI& ——t[[I+r2[I rIr2] 'r&]t2-
r I 2

= r p + t2 [I—
I r]r2r I t p

(6a)

(6b)

(6d)

~e can thus combine [p & ] and [s, ] to get a composite
matrix which we then combine with [pz], and so on until
we get the overall matrix [s] of the resistor from Eq. (5).
To use Eq. (5) we need the scattering matrices associated

where [a +—j, [b +—

! are each (M)&1) column vectors and
[t], [r], [t'], and [r'] are each M)&M matrices; M is the
number of propagating modes available at the Fermi lev-
el. The amplitudes are defined so that the probability
currents are proportional to their squared magnitudes;
conservation of probability then requires that the scatter-
ing matrix be unitary. The matrix [t] gives us the M
quantities that are needed to evaluate the conductance
from Eq. (3). The overall scattering matrix [s] is ob-
tained by combining the scattering matrices of successive
sections,

[s]= [p [ ]S[s
& ]S[pz ]8[sz ]8

[s;] is the scattering matrix associated with the ith
scatterer and [p;] is the scattering matrix associated with
the region of free propagation between the (i —1)th and
ith scatterer. The symbol (3) is used to denote combining
according to the following law of composition for two
scat terers in series. If s]2 ——s, s2, then
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with the individual scatterers and with the regions of free
propagation between them. For the latter, since the elec-
trons propagate freely over varying distances d &, d 2, . ~ . ,
the corresponding scattering matrices [p, ],[p2], . . . can
be written as follows:

8. S matrix for an individual scatterer

Assuming that the impurity scat te ring potential V (p )

is weak, we can write the scattering matrix [st] of an in-
dividual scatterer using the Born approximation,

Q++ Q+
[st]-I+i [a]=I+i

—+
(13)

The only nonzero elements are the appropriate phase
shifts along the diagonal, i.e.,

(8)

The problem of calculating the scattering matrix of an in-
dividual scatterer is more difficult and will be discussed in
Sec. II B.

It will be noted that each of the transmission ampli-
tudes t ~ appearing in the total scattering matrix
defined in Eq. (4) is actually the sum over the complex
amplitudes z' ' of numerous Feynman paths, originat-
ing in subband m at the left and ending in subband m' at
the right,

Tm', m =
I

tm', m I X zm', m (9)

The superscript X labels the different paths; a typical
path is shown in Fig. 1(c). The number of paths is denu-
merably infinite and we could, in principle, perform the
summation in Eq. (9) to calculate T, but combining
the scattering matrices as described earlier automatically
performs this summation for us. In the semiclassical ap-
proximation we neglect the interference between scatter-
ers, that is, between the different Feynman paths.

(N) 2
( Tm', m )semiclassical g I

~m', m
N

(10)

Therefore, the semiclassical T can be calculated in exact-
ly the same way as we calculate the quantum T, except
that we combine probability scattering matrices [St],
which are obtained from the amplitude scattering ma-
trices [st] by replacing each element by its magnitude
squared,

X Idx f dy lI(*'(p) V(p)p„*(p), (14)

where P*(p) is the wave function of an electron in sub-
band m with energy E traveling in the positive (+ ) or
negative ( —) x direction, and k is the x component of
the wave vector [Eq. (2)]. The integration in Eq. (14) ex-
tends over the region where the impurity potential is
nonzero. If y is the parameter characterizing the
strength of the interaction V(p), the scattering matrix in
Eq. (13) is only unitary to order y. In order to make it
exactly unitary (as it should be), one could use the follow-
ing ansatz:

[s,]=e' 'i [a] (15)

Indeed, since [a] is Hermitian, e'('l is exactly unitary.
Furthermore, to lowest order in y, the expression in Eq.
(15) agrees with Eq. (13). For our numerical simulations,
we have used two different models of impurity scattering
based on two different choices for the matrix [a]. These
are described below.

Model A: In the first model, we assume that each itn-
purity has the same scattering matrix [st] given by Eq.
(15), where [a] is a Hermitian matrix with all its elements
equal:

[a] „=a for m, n =1,2, . . . , 2M .

The exponentiation appearing in Eq. (15) can then be per-
formed analytically. One obtains

where [a+ + ] are M )&M matrices, and I is the identity
matrix of dimension 2M)&2M; the matrix elements of
[a+ + ] can be shown to be

m' 1~ [k k ]l/2

Hence the semiclassical scattering matrix [S,] for the de-
vice is given by [st]=I+ —[a], (17)

[S,]= [P, ]a [S, ]l8 [P2]e [S,]e

=[$,]g [$, ]~8 [$,]e . (12)

since it is apparent from Eqs. (7) and (8) that the proba-
bility scattering matrices corresponding to free propaga-
tion are identity matrices. The semiclassical conductance
thus depends only on the number of impurities Nl and is
independent of the spacing d „d2, . . . between the impur-
ities and the wave numbers k &, k2, . . . of the different
modes. This is expected, since in the semiclassical ap-
proach we neglect any interference between the succes-
sive seatterers.

where

2il a

2M
(18)

Thus our choice of scattering matrix implies that at each
impurity the incident mode is reflected equally into each
of M modes with probability

I p I; it is also transmitted
equally into each of the other M —1 modes with proba-
bility

I pI . One advantage of this model is that the
semiclassical conductance of a sample containing NI im-
purities can be calculated exactly using Eqs. (3) and (12)
(see Appendix A),
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2MA, I

A„+N
(19}
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where A„ is the dimensionless elastic mean free path,

A, i
——(1 —M

[ P i
)/M

i
13

i
(20)

It is thus evident that the semiclassical conductance for
this model obeys Ohm's law: The resistance g,

' in-
creases linearly with NI (or sample length}. For NI=0,
the resistance is nonzero (=1/2M), which can be viewed
as the constant resistance.

Model B: Here we assume that each impurity has a 5-
function scattering potential given by

D
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N
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C
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6-
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V(p) =y5(x —x; )5(y —y; ), (21)

(x;,y; ) being the position of the ith impurity. The
scattering matrix across the 5 impurity can be calculated
according to the general procedure described above, i.e.,
using Eqs. (14) and (15). However, for this special case,
we do not need the ansatz in Eq. (15); the scattering ma-
trix can be derived exactly (see Appendix B):

[I+ia++ ] ' —[I+ia++ ) '(la++ )

—[I+ia++ ] '(la++ ) [I +ia++ ]

(22)

where a++ is an M )&M matrix with matrix elements

r.„
(a )„=

2(k.k„)'" '

and the coupling parameters I „are given by

(23)

(24)

We can see from Eq. (24) that, unlike model A, the
scattering matrix depends on the y location of the scatter-
er giving rise to an additional degree of randomization in
model B. In model 8 even the semiclassical conductance
[Eq. (12)] changes with impurity configuration.

In the next section we will mainly use model A to
study localization and universal conductance fluctuations
due to the motion of a single impurity in disordered sam-
ples. Numerical results using model B are also presented
showing the influence of the y location of the impurities
on the conductance of two-dimensional (2D) resistors.

III. NUMERICAL EXAMPLES

A. Model A

Figure 2 shows the resistance (g ') of two samples
(M=30, A, ~

——33.33) as a function of the number of im-
purities Nz', the two samples differ in their impurity
configuration, which is chosen at random. The distances
d„were distributed uniformly over some range such that
k;d„(i =1,2, . . . , M) vary between 50m and 250vr. Also
shown for comparison is the semiclassical result (g, '),
which is independent of the impurity configuration [Eq.
(19)]. The weak- and strong-localization regions are evi-

FIG. 2. Normalized quantum-mechanical resistance for two
different samples (labeled A and B) vs number of impurities, N&

(model A: M=30, A, i
——33.33). The straight line represents the

semiclassical result deduced from Eq. (19) in the text.

dent. The localization length is defined as the length for
which the reduced quantum conductance is about unity,
and is given approximately by the following relation:

A,.,=MA„. (25)

To study the fluctuations in the conductance, it is neces-
sary to calculate g for samples with a fixed number of im-
purities, but with totally different impurity
configurations. However, it has been shown that moving
a single impurity leads to conductance fluctuations of the
same size. Since this is much less time consuming nu-
merically, we calculated the quantum-mechanical con-
ductance g for diff'erent samples (M=30, A, ~

——33.33)
with fixed number of impurities Nz, but with the middle
impurity moved by varying distances d such that k, d for
the lowest mode changed from zero to 200m. . It is evident
from Fig. 3 that the conductance is uncorrelated when
k, d is changed by —m. It will be noted that the average
conductance is less than the semiclassical conductance by
—1. We have checked this for samples with different
numbers of impurities, and we find that the quantum con-

4.0-

30 ————————
hl

o 1.0

0
O

0.0

Semicla ssica I

g +~9
t

~ g

g —Ag

50~ 100m 150m

Phase shift of Lowest Transverse Mode (k~d)

FIG. 3. Universal conductance fluctuations (in a sample con-
taining 600 impurities) due to the motion of the middle impurity
a distance d to the right from its original position (M=30,
A, l

——33.33). The semiclassical conductance is also shown for
comparison.
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ductance is consistently smaller than the semiclassical
conductance. We believe this to be due to coherent back-
scattering, ' so that the reflection probability R,, into the
incident mode is enhanced over those into the other
modes R;, as shown in Fig. 4.

In Fig. 3 we notice the large conductance fluctuations
whose variance 0.52e /h is in close agreement with the
universal value calculated by diagrammatic techniques.
This variance was calculated for samples with different
numbers of impurities. As seen in Fig. 5, the size of the
conductance fluctuations is approximately constant over
the weak-localization regime and gradually decreases
below its universal value in the strong-localization re-
gime. This is in agreement with the numerical simula-
tions performed on an Anderson tight-binding Hamiltoni-

13, 15

Figure 6 shows that the size of the conductance fluc-
tuations stays approximately constant ( -0.5e /h) when
the number of propagating modes is increased. All the
samples considered in this simulation contain a number
of impurities, NI, equal to half the (dimensionless) locali-
zation length (NI ——MA, i/2). They are all characterized
by the same value of the parameter a entering the impur-
ity scattering matrix (17), so that the mean free path A, i

is different for different values of M (Fig. 6). Lee showed
that the ratio hg/g should decrease as —1/M if the
transmission coefficients T,„,„were uncorrelated random
variables; ' the numerical results show that bg/g is near-
ly constant independent of M, indicating that the
coefficients T ~,„are correlated.

In the ballistic regime, i.e., for L gA„, the conduc-
tance fluctuations were also calculated using the two-
probe Landauer formula (3). However, recent ex peri-
ments performed on metallic rings have employed a
four-probe measuring configuration to measure the size
of the conductance fluctuations in the presence of an
external magnetic field. It has been suggested that a
more appropriate Landauer formula to describe these
measurements is given by "
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FIG. 5. Variance of the universal conductance fluctuations
(due to the motion of the middle impurity) for different sample
lengths from weak to strong localization (M=30, A, l

——33.33).

M

g=2 g
m =1

(26)

where T,„and R,„are the total transmission and
reflection probabilities into the mth mode, i,e.,

T = g T,„,„and R,„=gR (27)
m' m'

Since it is in the ballistic regime that Eqs. (3) and (26)
give very different results, we have calculated the size of
the conductance fluctuations in this regime using both
Eqs. (3) and (26) (Fig. 7). The conductance fluctuations
obtained using Eq. (3) decrease slightly below the univer-
sal result in the ballistic regime (we expect kg=0 for
samples containing a single impurity). This agrees with
the results obtained using a tight-binding Hamiltonian, '

for which the universality of the conductance fluctuations
was found to be quite robust and valid even for very short
samples. On the other hand, the value of hg obtained
from Eq. (26) increases rapidly as the sample length is de-
creased.

The theoretical predictions concerning the universality
of the conductance fluctuations have been deduced from
perturbation theory ' to lowest order in ( kF A, 1

)

where kF is the Fermi wave vector and A, 1
is the elastic

mean free path. In all our numerical calculations, too,
kFA, i && 1, since the average spacing Id„ I between im-

purities was chosen such that kFd„=50~ for the mode
with the highest transverse energy. We find that in mod-
el A failure to meet the requirement that kFd„&~1 can
introduce spurious results, since there is no other source
of randomization. In fact, if we set the average spacing
between scatterers, d„, to zero, each scattering matrix for
the free propagation between impurities reduces to

FIG. 4. Average diagonal and off'-diagonal reflection
coefficients for a specific sample with M=30, A„l ——33.33.

I 0
b]=

O
(28)
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FIG. 6. Conductance fluctuations due to displacement of the middle impurity for different numbers of propagating modes. The
number of impurities, Xi, was chosen equal to MA, .]/2 so that the semiclassical conductance is equal to 2M (1+0.5M).

Physically, this means that a11 the phases of the different
modes are small and not fully randomized over 2m. be-
tween scatterers. In that case, the scattering matrices [p]
can be neglected when combining the scattering matrices.
We must then combine the scattering matrix [s, ] [in Eq.
(17)] with itself a number of times equal to N, . This can

60

be done analytically. As the number of impurities in the
sample goes to infinity, the conductance can then be
shown to converge to the following limit,

g~2(M —1), (29)

independent of the constant a in Eq. (17). This is a spuri-
ous eft'ect arising from the special form of si in model A
and it goes away as the average spacing between impuri-
ties is increased.

QP
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45
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N

E

Q)o 30
CO

0
O
0
Qo 1 5
C
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00
0

I

25

0 Four-probe Formula
& Two-probe Formula

0
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h b, g g h h
I

50 75
Number of impurities )n each arm

100

FIG. 7. Conductance fluctuations (due to the motion of a sin-
gle impurity) calculated using a two-probe [Eq. (3)] and a four-
probe [Eq. (26)] conductance formula (M= 30, A,.t

=33.33).

B. Model B

The resistance versus length of a two-dimensional (2D)
resistor (GaAs) with nr =10" cm. was calculated for
samples of width 2X10' A (M=15). Figure 8 shows a
typical sample 2)&10' A wide and 2&10 A long, in
which the positions of the 6 scatterers are chosen ran-
domly with a uniform distribution in both x and y direc-
tions for a given impurity concentration. The scattering
matrix elements were calculated from Eq. (24) using the
eigenfunctions P„,(y) appropriate for a particle-in-a-box
type of confinement in the y direction. The strength of
scattering from a single impurity was chosen so that
A,~-400. Figure 9 shows the quantum resistance cal-
culated for two samples with different impurity
configurations. For comparison, the semiclassical resis-
tance was also calculated for the same samples using the
technique of combining probability scattering matrices,
as described in Sec. II A. It is evident that the quantum-
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FIG. 9. Resistance vs length for two different samples such
as the one shown in Fig. 8 differing by their impurity
configuration (the samples are 2)&10' A wide). The straight
lines represent the semiclassical results (M = 15, A,.l

-400) ~

mechanical resistance depends strongly on the impurity
configuration. Actually, the semiclassical resistances are
also slightly different for different samples. This is be-
cause, unlike model A, the scattering matrix of an indivi-
dual scatterer depends on its y location. We expect the
variation of the semiclassical resistance from sample to
sample (with a fixed number of impurities) to get smaller
for wider samples. Quantum mechanically, however, the
universal conductance result predicts that the conduc-
tance fluctuations for different samples should be of the
order of e /h, regardless of the width of the samples.
Obtaining the variance of the conductance fluctuations
over a statistically meaningful number of completely
different samples is quite time consuming. However,
since conductance fluctuations of the same magnitude
can be obtained by the motion of a single impurity, we
calculated (both semiclassically and quantum mechani-
cally) the variance of the conductance fluctuations by
changing the y position of the middle impurity only from
one side of the resistor to the other in steps of 10 A (Fig.
10). The quantum-mechanical fluctuations are seen to be

FIG. 10. Semiclassical and quantum-mechanical conduc-
tance of a sample such as the one shown in Fig. 8 after moving
the middle impurity from one side of the resistor to the other
(the x position of the impurity is unchanged). The sample con-
tains 2)& 10' impurities (M=15, A,.l-400).

quite large (bG =0.2e /h), whereas no sensible fluctua-
tion is perceptible in the classical case.

IV. CONCLUSIONS

We have studied the problem of localization and con-
ductance fluctuations in a random array of elastic scatter-
ers, neglecting any inelastic scattering. The overall
scattering matrix of the device is calculated by combining
the scattering matrices associated with the individual
scatterers, and with the regions of free propagation be-
tween them. One advantage of combining scattering ma-
trices is that the semiclassical conductance can be derived
simply by replacing all amplitude scattering matrices by
probability scattering matrices; this allows us to see clear-
ly the effects of quantum interference.

Numerical results for the length dependence of the
conductance are in agreement with the scaling theory of
localization. In the weak-localization regime, the
quantum-mechanical conductance (after averaging over
many samples) is shown to be consistently smaller than
the semiclassical result. Furthermore, for samples longer
than the localization length, the quantum resistance is
found to increase exponentially. We investigated the con-
ductance fluctuations due to the motion of a single irn-

purity out of a large array. For sample lengths in the
weak-localization regime (i.e., A„&L &A„,.), the size of
the conductance fluctuations agrees fairly well with the
theoretical universal value for quasi-one-dimensional sys-
tems, i.e., 0.53e /h; the size of the fluctuations is found
to decrease in the strong-localization regime. In the
ballistic regime, the conductance fluctuations are found
to be much larger than e /h if we use a four-probe for-
rnula; with a two-probe formula the conductance fluctua-
tions are close to the universal result. In the weak-
localization regime the conductance fluctuations are
found to be independent of the number of propagating
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modes M in the sample (10&M&40). Therefore, our
simulations support the recent qualitative arguments

showing that the various transmission coefticients are
correlated random variables. Finally, we have shown
that even the semiclassical conductance can vary slightly
from sample to sample. This is because the individual
impurity scattering matrix depends on the exact location
of the impurity as a result of the confining potential per-
pendicular to the direction of propagation of the current.

One important feature of our model is that it can, in

principle, be applied to any arbitrary scattering potential
with finite range; it can thus be used in modeling realistic
semiconductor microstructures. Recently, various
groups have reported the observation of universal con-
ductance fluctuations in ultrasmall GaAs wires and in
Aharanov-Bohm heterostructures. In these devices, the
spatial quantization reduces the number of propagating
channels available at the Fermi level to be of the order of
a few tens, which is quite tractable numerically.
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APPENDIX A: OHM'S LAW

[u]=
1 0 ~ ~

1 1

Equation (A5a) is simplified to yield

(A5d)

In Sec. II A, we argued that the semiclassical conduc-
tance of a random array of scatterers could be deduced
by combining probability scattering matrices rather than
amplitude scattering matrices. In this appendix, we
prove for model A that this leads to Ohm's law for the
conductance of a random array of scatterers [Eq. (19)].

Let us consider a random array of scat terers, all
characterized by the same scattering matrix [see Eq. (17)
in the text]. Using the prescription in Eq. (11), the proba-
bility scattering matrix for each scatterer is written as

T R

[R j=[R]+ [T][R][T].
1 —M 5

(A6)

Here we have used the relation

[u]2=M [u] . (A7}

[T][R][T]=[T](1—M5)[R j

=(1—M5) [R] . (A8)

Equation (A6) can be simplified further using Eqs.
(ASa}—(ASd} and Eq. (A7),

where

[R]=
~ ~ ~

~ ~ ~

1 —(2M —1)5 . 5 5

(A 1) Hence,

[Rz]=
1

[R] .
2

1+M5
Thus [Rz] can be written as

[R,]=5,[u],
where(A2)

25
2

(A9)

(A 10)

(A 1 1)

5 1 —(2M —1)6 Note that

where

2iMa

2M
(A3)

(A12}

Similarly, by combining two sections, each having two
scatterers, we can show that

For free propagation between the scatterers, the probabil-
ity scattering matrix is given by [see Eqs. (7) and (8)] [R4]=54[u],

where

(A13)
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M54 M52 M5
1 —M 54 1 —M5z 1 —M5

=2 =4 (A14) 8
, +E~(y) P (y)=e P (y) .

2m By
(83)

We can continue this process indefinitely to get

[Rx ]=5m [u], (A15)

The (normalized) functions P (y} form a complete set of
eigenstates which can be used to write the general solu-
tion of Eq. (Bl) in the form

where

M5~

1 —M5~
I

M5
I (A16)

Equations (A15) and (A16) are, in fact, valid for all NI, as
can be shown by induction. The conductance g, of a
sample containing Nl impurities is obtained from Eq. (3)
in the text,

g, =2M(1 —M5~ )

M

@(p)= g C„(x)P„(y) .
n=l

M" +k„(x)C„= g I „(x)C (85)

We limit the summation to include only the M propaga-
ting modes. Using Eq. (84) and making use of the ortho-
normality of the functions P,„, the Schrodinger equation
(Bl) can be written as

1 —M5
1+(Ni —1)M5

which can be rewritten as

A, l

g, =2M
el + I

by introducing the elastic mean free path

(A17)

(A18)

where

k„(x)= 2 [E—e„—E,"(x)]

and

I „(x}= f dy({}„'(y)V(p)P (y) .

(86)

(87)

1 —M
el (A19)

This proves Eq. (19) in the text.

APPENDIX B: SCATTERING MATRIX
FOR A 5 IMPURITY

In this appendix we derive the exact analytical form of
the scattering matrix across a 5 impurity. Our starting
point is the one-electron, effective-mass, time-
independent Schrodinger equation,

V(x,y) =y5(x —x; )5(y —y; ), (88)

then Eqs. (85) can be written as

Equation (85) is our main result. The problem of solving
the scattering problem is then reduced to the calculation
of the coefficients I „(x)and to the solution of the sys-
tem of M coupled differential equations (85).

In general, both the k„'s and the I „'s are functions of
the variable x, and depend, respectively, on the exact
shape of the conduction-band-energy profile and the in-

teracting potential. If we model the impurity scattering
in a 2D sample (x-y plane} by a 5-impurity interaction

O' 8'
, +, +E,(x,y)+V(p) 4(p)=E@(p),

2m ' Bx By
2

(81)

d C„
+k„C„=g I „5(x—x, )C

dX ]n

(89)

E,(x,y) =E,"(x)+E~(y) . (82)

written for an electron propagating through a two-
dimensional device with arbitrary conduction-
band —energy profile E,(x,y) (x being the direction of
propagation of the current and y being the direction of
confinement of the two-dimensional resistor}. In Eq.
(Bl), V(p) is the scattering part of the Hamiltonian due
to the presence of impurities in the sample (the following
derivation is readily extended to 3D structures}. For elas-
tic scattering, the electron total energy is conserved while
traversing the device. If V is identically equal to zero, the
band-energy profile (or external potential energy) is as-
sumed to be separable, i.e.,

dC„
C„+' (x)=«„C„+ (810)

which can easily be inverted to give

C„= (C„+C„),1

~n
(8 1 la)

where I „ is given by Eq. (24) in the text. A scattering
matrix relates the amplitudes of the modes incident on an
obstacle from either direction of the amplitudes of the
modes leaving the obstacle in either direction. In order
to calculate the scattering matrix across a 5 impurity, we
first introduce the following new set of variables,

The eigenfunctions P (y) and the eigenvalues c of the
y-dependent part of the Hamiltonian can, in principle, be
calculated from the equation

dC„

dx

ik„" (c+—c-),
n

where, by definition,

(8 1 lb)
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Ak„
K

m

' 1/2

(812)
small positive quantity}, and taking into account the as-
sumed continuity of the C„'s, we obtain

J(x)= g J„+—J„ (813a)

where

The C„+' represent the amplitude of the current density
in mode n traveling along the positive and negative x
axis, respectively. Indeed, one can easily show using the
definitions (Bl la) and (Bl lb) that the current density can
be written as follows,

Ejc„

x, +c

dC„
x —c

= Q I „C (x, +e}, (814)

which we rewrite as

dC„dC„
+ Q I „C (x;+E) . (815)

dx x;+c d& x,. —c

In Eq. (814), we have assumed that all C„'s are continu-
ous:

J+=(C+)"C+ and J„=(C„)*C„ (813b) C„(x;+s) =C„(x;) =C„(x;—s) . (816)

Assuming E, (x) to be piecewise continuous, integrat-
ing both sides of Eq. (89) from x; —e to x, +E (e being a

Dividing Eq. (815) by ik„and adding the result to Eq.
(816), we get

C+(x;+E)=C„(x;+s)+ = C+(x; —s)+ g C (x, +e) .
&n gk„dx x. + c &k„

Now, using Eqs. (Bl la) and (Bl lb), we have

C (x;+e)= [C+(x, +e)+C,„(x;+e)].
1

2Km

Inserting this last result into Eq. (817), we finally derive

r„.C+(x, +E)=C+(x;—e)+ g ™
~&z

[C+(x;+s)+C,„(x;+e)],
2i (k k„)'~

or, equivalently,

F„ r„.
2i (k k)'~ " ' " '

2i (k k)'~

(817)

(818}

(819)

(820)

valid for all modes n. The equations for the different modes can be written in a matrix form (which is done here for the
case of two modes only for simplicity),

1—
2ik,

I2i
2i (k, kz)'"

~12

2i(k, kz)'

1—I 22

2ik2

C~+ (x;+e}
Cz+ (x;+s }

1 0

0 1

2ik,

Izi
2i (k, kz)'

Ii2
2i (k/kz)'

Iz2

2ik2

Ci+ (x; —s)
Cz+ (x; —e)
C, (x;+e)
Cz (x;+e}

(821)

which we write more simply as

C~+ (x, —e}
C,+ (x;+E) Cz+ (x; —s)[I+(ia++ )] +

' =[I, (ia++ )]-
Cz (x, +E)

(822)

I being the unit (2&(2) matrix, and the matrix a++ is given by

2k,

2(k, k2)'

2(k, k, }'"

2k2

(823)
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From Eq. (822), we then deduce

C~+ (x, —E)

C,+ (x,+E), C~+ (x, —E)

)
[I——+ia++ ] '[I, ia—++ ]

C~ (x, +E)

(824)

or, equivalently,

C~+ (x; —e)

=[(I+ia ) ', (I+—'a ) '(ia )]
C~+ x, +e) ++ ' ++ ++ C, x, +e)

C~ (x;+e)

(825}

Similarly, dividing Eq. (815) by ik„, subtracting the obtained result from Eq. (816), and following a similar derivation,
we get

C)+(x, —e)

=[—(I +ia++ ) '(ia++ ), (I+ia++ ) ']
Cz x, —e C) x(+e

C~ (x;+e)

(826)

Grouping the results (825) and (826), we obtain the final relation

C, (x; —e)
Cz (x; —e}
C~+ (x;+e)
Cz+(x, +e)

(I +ia++ ) —'(ia++ )

(I +ia++ )

(I +ia++ )

(I +ia++—) '(ia++ )

Ct+ (x;—e)
Cz+ (x; —e)
C& (x;+e)
Cz (x;+e)

(827)

where the square matrix is the required scattering matrix [see Eq. (22} in the text].
For the general case of M modes, we can easily generalize the 2 X 2 matrix given in Eq. (823). The general expression

of the matrix elements of a++ can be written as

r,„„
(a )

2 (k k )'~~
n m

(828)
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