
PHYSICAL REVIEW B VOLUME 37, NUMBER 17 15 JUNE 1988-I

Theory of conductivity in superlattice minibands
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We have calculated the impurity-scattering —limited electrical conductivity for vertical transport
in superlattice minibands. For sufficiently small carrier density and/or "large" disorder the col-
lisional broadening I (p) can be larger than the chemical potential p. In such situations the quasi-
particle approximation breaks down, and use of the conventional Bloch-Boltzmann transport theory
is unreliable. Also, as the period of the superlattice increases, the ratio I (p)/p grows, resulting in a
reduction of the mobility, leading eventually to Anderson localization. In addition, the carriers in

the miniband become nondegenerate already at low temperatures, giving rise to a significant tem-

perature dependence of the mobility. Furthermore, due to the unique shape of the Fermi surface of
the superlattice the mobility becomes independent of the carrier density when the chemical poten-
tial exceeds the miniband width.

Many interesting transport properties' in superlattice
minibands, such as Bloch oscillations, are based on the
assumption that the Bloch states are well defined. Re-
cently Deveaud et al. have firmly established experi-
mentally that electron and hole transport in superlattice
minibands is indeed possible through extended Bloch
states. The transport along the superlattice axis is impor-
tant also from a device point of view. Superlattice photo-
conductors are one example of such an application. Un-
doubtedly, the investigation of miniband transport is
becoming a very active area of research.

Transport in superlattice minibands is unique and in-
teresting since the Fermi energy can be comparable to the
single-particle relaxation time and the temperature of the
system. This unusual condition is possible because the
miniband width falls exponentially with the increasing
superlattice period. For example, for holes in the
GaAs/Al„Ga, „As system the bandwidth is only 2.3
meV when the superlattice period is 60 A. Under these
unusual circumstances one must reexamine the quasipar-
ticle approximation used in deriving the conventional
Boltzmann equation. We believe that these features
make the miniband-transport problem a very interesting
fundamental problem.

Another interesting feature is the extreme anisotropy
of the superlattice Fermi surface, resulting from the very
different motions of a carrier parallel and perpendicular
to the superlattice axis (in this paper, we use the expres-
sion "parallel" to mean parallel to the superlattice axis).
The perpendicular motion is of the free-electron type.
However, the parallel motion, which is the subject of this
paper, is of the tight-binding type since the carrier moves
in the periodic superlattice potential. The density of
states can be shown to be Bat above a Van Hove singular-
ity, and we will investigate the effect of this on the con-
ductivity.

In this work we include both the relaxation time and
the anisotropic effects in the Kubo formula and compute
the conductivity without using the quasiparticle approxi-
rnation. At this stage we are restricting outselves to the

linear response region, and neglecting problems associat-
ed with localization physics, which becomes important as
the miniband width (disorder) decreases (increases). As
we show in this paper, there are a number of interesting
fundamental questions already in this diffusive
miniband-transport region.

There are four relevant scattering mechanisms that
may affect miniband transport at low temperatures: (1)
intralayer scattering, (2) fluctuations in the layer thick-
ness, (3) compositional fluctuations, and (4) impurities
and defects. A first-principles study including all these
processes is a diScult task. However, the most important
effect of these processes is that Bloch states acquire a
finite lifetime. In this paper we restrict ourselves to elas-
tic scattering only, so that this lifetime is a momentum
relaxation time. At higher temperatures phonon scatter-
ing will become important. Thus, for simplicity, we can
model these damping effects by a short-ranged interac-
tion (5-function impurity scattering). This model has the
advantage that one can find a simple analytical expres-
sion for the conductivity at zero temperature and, also,
the magnitude of the broadening can be incorporated in
the theory by a single parameter. This simple model cap-
tures some essential features of the system. In our study
the interminiband transitions are neglected and we keep a
single miniband in our calculations.

The salient features of our results are the following.
First, for sufficiently large impurity and/or small carrier
densities the quasiparticle approximation breaks down.
This is because the damping rate exceeds the chemical
potential ls, i.e., 1 (p)&p. Thus at these densities the
conventional Boltzrnann equation is unreliable. It should
be emphasized that in superlattice minibands the condi-
tion Pp)&p does not imply a strong disorder, i.e.,
1/(kFl ) & 1, where kF and l are, respectively, the Fermi
wave vector and the mean free path [see Eq. (15)]. Thus
quasiparticle approximation of conventional Bloch-
Boltzmann transport breaks down in rniniband transport
before strong localization effects become very important.

Second, the mobility decreases appreciably as 1 (p)/p,
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the ratio between the imaginary part of the self-energy
and the chemical potential, increases. Physically this is
because the large damping rate I (p) alters the carrier
distribution function significantly around the Fermi sur-
face, and thus the scattering is no longer limited just to
the Fermi surface. This reduction of the mobility is con-
sistent with experimental findings of Deveaud et al.

Third, the mobility depends significantly on the tem-
perature even in the low-temperature nonphonon regime.
Again this is due to the change of the carrier distribution
function in the temperature range T around the chemical
potential. In superlattice minibands this change is
significant since the chemical potential is unusually small,
i.e., the carriers become nondegenerate already at low
temperatures. This is in sharp contrast to the corre-
sponding three-dimensional situation where the tempera-
ture dependence of mobility is small at low temperatures.

Fourth, even when the chemical potential exceeds the
miniband width, the current will be nonzero. This is a
consequence of the geometrical shape of the Fermi sur-
face with a flat density of states above the Van Hove
singularity at the bandwidth.

We now proceed to sketch our theory and calculations.
The real (b, ) and imaginary (I ) parts of the retarded
self-energy due to the impurity scattering can be com-
puted in the renormalized Born approximation
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In computing the conductivity there is no vertex
correction since impurity scattering is isotropic in our
model. The conductivity is then given by

0' =0'
) +0 2

where

f d k ~(k ) I„(k)I.2~ a. (2~}3 r(. )

de df-
o 2

———2'
—oo 2' BC

d kx f ",[ReG'„,(k, e)]
I v, (k)

I

',
(2vr)

2W is the bandwidth of the superlattice miniband. We
note that both b,(e) and I (e) develop cusps at the mini-
band width and this reflects the Van Hove singularity in
the density of states at c.=2 W;
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and the dressed spectral function is given by
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The Fermi function and the velocity along the superlat-
tice axis are given by

1
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Here we have taken the impurity scattering to be zero
ranged in real space so that it is a constant in momentum
space. The constants c, n;, mII, and a are, respectively,
the strength of the renormalized impurity scattering in
momentum space, the impurity density, the in-plane
effective mass, and the period of the superlattice. In our
theory, A=n;

~

c
I

, is a convenient measure of the
strength of disorder in the problem. We parametrize all
scattering by this single parameter. In Eqs. (1) and (2), e
and 8' are, respectively, the carrier energy and half the
miniband width.

The energy-momentum dependence in the miniband is
taken to be of the simple tight-binding form
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Combining o. , and 0.2, we find

d k

(12}

The chemical potential p is obtained from the particle
conservation

n =2+ f A(k, s)f(k),
k
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where n is the density of carriers.
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In the limit I ~0 the second part of the conductivity,
o2, vanishes, i.e., cr =o.

&, which gives us the usual quasi-
particle approximation of the conventional Bloch-
Boltzman transport theory. With this quasiparticle ap-
proximation,

x

—- = Vz(k}

A (k, e)=2n5(e —ek —h(e)), (14)

where
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For 1&a, the Bloch-Boltzmann transport picture fails
and the Ioffe-Reggel criterion is satisfied, leading to An-
derson localization.

Since the general result for the conductivity has to be
obtained numerically, it is desirable to have a simple
analytical expression. We find, using the quasiparticle ap-
proximation, that at T =0 the conductivity can be writ-
ten in the Drude form

in 0.
&

we recover the usual result for the conductivity de-
rived from the Boltzmann equation. However, in super-
lattice minibands I is not always smaller than the chemi-
cal potential, and, therefore, it is important to include 02
in o as we do in this paper.

The basic assumption of our theory is the validity of
the Bloch picture. Thus, the mean free path l must be
larger than the superlattice period v, (p)v(p) & a or
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FIG. 1. A schematic drawing of a cross section of the Fermi
surface when p&2W or p&2$'. Many particles on the Fermi
surface have finite velocities along the superlattice axis. The
sum of the absolute values of these velocities is independent of p
when p & 2$'.

2000 4000

change (see Fig. 1). Thus the effective carrier density n'
along the superlattice axis remains the same. Further-
more, I (p) remains unchanged when p, &2W, refiecting
the constant density of states. These two effects lead to a
conductivity which is independent of p when p & 28'.

We now present our results. We fix the typical value of
the free parameter of our model Ao

——n;
~
c

~
by fitting to

Deveaud et al. 's experimental value for the hole mobility,
900 cm2/Vs at T=15 K, a=40 A, and no=10' cm
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Note that b, (I|L)=0 for 0 &p & 2 W. We find numerical-
ly that, as long as 1 (u ) & p, this approximation is excel-
lent.

When the chemical potential exceeds the miniband
width, although unoccupied (k„,kr) states get filled,

v, (k) of these new states on the Fermi surface does not

FIG. 2. Dependence of the hole mobility on the superlattice
period a. The solid and dashed lines are, respectively, numeri-
cal and analytical (Eq. 16) results. The lines 1 and 1' are for (A,,
n)=(2. 3+, 0.3no) and the lines 2 and 2' are for (A,, n)=(Q,
0. 1no ). The results for a & 50 A are unreliable since
vF(p)gp) &a. The diS'erence between solid and dashed lines
shows the failure of the quasiparticle approximation.
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These two values of A,o and no will be our reference values
for impurity and carrier densities. We study superlattices
whose widths of GaAs and A1GaAs layers are the same.
Since the heavy- and light-hole subband coupling leads to
a larger in-plane effective mass, the in-plane mass m~I is
taken to be the average of GaAs heavy-hole masses nor-
mal and parallel to the superlattice axis. The electron (as
against the holes) minibands in Ref. 2 have widths of the
order of 100 meV and, as such, obey the standard trans-
port theory.

In Fig. 2 we show the dependence of the hole mobility
on the superlattice period a for (A, , n)=(2. 3Ao, 0.3no}
and (Ao, 0. 1no). The value A. can be increased from )(o by
introducing more disorder. We see that the mobility ob-
tained using the quasiparticle approximation deviates
significantly from the exact numerical result. Thus we
conclude that the quasiparticle approximation is unreli-
able when A, is increased and/or n is decreased. At these
densities the mean free paths are still larger than the su-
perlattice periods. We find that at a =40 A,
W[U, ()Lt)/v, „]=5.4 meV and 1 (p)=2.9 meV for curves
1 and 1'. For curves 2 and 2' these values are
8'[v, (p)/v, „]=3.9 meV and f'(p)=0. 9 meV. Above
a-50 A the Bloch picture breaks down, so the results
shown are not reliable. We believe that localization con-

0
trois transport in these systems for a & 50 A, which is
consistent with the findings of Ref. 2.

Figure 3(a}displays dependence of the hole mobility on
the superlattice period a for A, =A,o and n =no We. find
the condition f'(p, }&p to be satisfied for all the results
shown in Fig. 3(a). Thus our calculation shows an excel-
lent agreement between the numerical and analytical re-
sults. As the superlattice period a increases, the mobilit~f
becomes smaller because both m, and I'(p)/p increase.
At a =50 A the reduction due to the increase of f'(p)/tu
is about 30% of the value at a =40 A. Thus a simple for-
mula for mobility p, =ex/m„where r is a constant,
would be wrong by a factor of 2 due to the quasiparticle
corrections discussed in this paper. Figure 3(b) shows the
temperature dependence of the hole mobility. We ob-
serve that the value at T=15 K is di6'erent from the
T=0 value by as much as 40%. This is because the mag-
nitude of the chemical potential is comparable to kz T.

Figure 4 displays how the conductivity depends on the
carrier density. As we have already anticipated from Eq.
(16}, the conductivity shows a flat dependence on p for
p&28'. The reason that the conductivity drops for
Itt & 2 W is because b (p) & 0 above the bandwidth.
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FIG. 3. (a) Dependence of the hole mobility on the superlat-
tice period a for (A., n) =(Q, no). The solid lines are numerical
results for T=O, 15 K. The dashed line is the analytical result
obtained from Eq. (16) at T =0. For a & 50 A results are unreli-

able since UF(p)Hp, ) &a. (b) Temperature dependence of the
hole mobility at a =40 A.
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FIG. 4. Dependence of the hole conductivity on the carrier
density, at T=O and X=2.6A,O. The dashed and solid lines are
analytical and numerical results. At n -8& 10' cm the mini-
band becomes filled. The period is a =45 A.
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Before concluding, we want to emphasize the many ap-
proximations made in our theory which should be taken
as the zeroth-order transport theory for diffusive mini-
band transport. In the next order, localization effects will

be important even for I &a (i.e., before the Ioffe-Reggel
criterion is satisfied) due to the maximally crossed
Langer-Neal diagrams left out of our calculations. Thus
the actual experimental mobilities can be lower than our
calculated theoretical results due to these weak localiza-
tion corrections. %e have also neglected phonon scatter-
ing effects which are important in GaAs at higher tem-
peratures (&100 K) where the polar optical-phonon
scattering dominates. The impurity-renormalization
effects included in this paper are much less important for
electronic miniband transport in superlattices due to the
lighter mass of electrons. We find that localization effects
dominate electronic transport by the time the quasiparti-
cle corrections treated in this paper are significant
(around a = 100—120 A).

In conclusion, our study shows that for transport in su-

perlattice minibands the quasiparticle approximation can
be unreliable because I (p) & p. In addition, we find that
as the period of the superlattice increases the ratio
I (p ) /p grows substantially, resulting in a reduction of
the mobility. Also, since the Fermi energy is small the
carriers become nondegenerate already at low tempera-
tures, leading to a significant temperature dependence of
the mobility. Another interesting feature is that the con-
ductivity shows very little dependence on the carrier den-
sity when the chemical potential exceeds the miniband
width.
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