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The efkct of time-dependent fluctuations of a medium on the spectral intensity and intensity
fluctuations of light scattered from the medium is discussed. In the case that the light is multiply
scattered from the medium, it is possible in the difFusion approximation to relate the spectral in-

tensity in the scattered vvave to the angular-average structure factor of the medium. The relaxa-
tion time depends on the number of scattering events, i.e., on the lengths of the multiple-scattering

paths, and the scattered intensity thus exhibits a broad range of relaxation times. The spectral in-

tensity in coherent backscattering is also discussed.

I. INTRODUCTION

There has been considerable interest recently in the
propagation, multiple scattering, and localization of
waves in random media, with the observation of weak
localization effects and large intensity fluctuations in
light scattering. There has also been theoretical work on
deriving the coherent backscattering intensity and Suc-
tuations from the wave equation. Coherent backscatter-
ing has been discussed by Golubentsev, Akkermans,
Wolf, and Maynard, and Stephen and Cwilich, and in-
tensity Auctuations have been discussed by Shapiro and
Stephen and Cwilich. A large literature on the subject
of multiple scattering exists and for reviews of some of
this work we refer to Isbimaru' and Goodman. "

In this paper we investigate how the dynamical prop-
erties of the scattering medium determine the spectral
properties of the scattered intensity and the intensity
fluctuations. Often it is assumed that the scattering is
weak and can be treated in the Born approximation. In
this case the scattering is directly related to the dynami-
cal structure factor of the medium. Here we are in-
terested in the case in which the wave is multiply scat-
tered in the medium, which will occur if the mean free
path of the wave in the medium is much less than its di-
mensions. Owing to the multiple scattering the scattered
intensity will not depend in an important way on the
scattering angle but its spectral properties will be deter-
mined by the dynamics of the medium. The total scat-
tered intensity is obtained by summing the contributions
from a11 possible multiple-scattering paths. The relaxa-
tion time depends on the number of scattering events,
i.e., on the length of the multiple-scattering path. The
total intensity, therefore, contains a broad range of re-

II. COHERENCE FUNCTION

We consider a scalar field E (r, t ) propagating in a ran-
dom medium which obeys a wave equation

1 8V2 — [1+@(r,t)) E(r, t)=0.
c dt

(2.1)

The random part of the dielectric constant e has zero
mean and a correlation function

(2.2)

where ~0 is the frequency of the light. If it is assumed
that the scattering is weak and can be treated in the
Born approximation, the scattered intensity is related to
the Fourier transform of the correlation function C(q, co)
where q and m are the momentum and frequency
transfer, respectively. C(q, co) is often related to the den-
sity correlation function of the medium. In this paper

laxation times. The sum over all difFusion paths also de-
pends on the shape and size of the medium. The e8'ect
of particle dynamics on coherent backscattering has
been discussed by Golubentsev. Here we adopt the
same model but we are concerned with the time depen-
dence of the direct part of the scattering. A short dis-
cussion of backscattering is included for completeness.
Recently Maret and Wolf' have measured the time au-
tocorrelation function of the light intensity multiply
scattered from an aqueous suspension of diffusing polys-
tyrene spheres. They observed a fast decay of coherence
which they interpreted as resulting from the short relax-
ation times associated with long diffusion paths.
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we are interested in the case in which the wave is multi-

ply scattered many times in the medium. The intensity
of the di6'usely scattered light will not depend in an im-
portant way on the scattering angle, but its time depen-
dence will be determined by the properties of the medi-
um. We investigate here how the spectral properties of
the scattered intensity are related to the dynamic proper-
ties of the medium contained in C(r, t ).

It is useful to consider some simple exainples. (a) The
scatterers of mass m, polarizability o;, and density n have
a Maxwell-Boltzmann velocity distribution (P= 1 lk T)

C(a}(q t ) ge tiq —/2mP (2.3)

where

b, =(4@a) n( too/c)

that the Fourier-transformed structure factor C (q, t )

does not vary rapidly with q, i.e., the scatterers have di-
mensions smaller than k. When A, /I ~~1 the leading ap-
proximation to I is provided by the sum of the ladder
diagrams with the result

1(1,1')=fD(1—2)D'(1' —2')L(22'33')

xE, (3)E;(3')d2d2'd3d3', (2.8)

((ko —i/2l )rDr, cv = 8
4mr

(2.9)

and L is the ladder propagator. In this propagator we
also introduce center of mass and relative coordinates

where 1=(ri,t(), etc. , D(r, t) is the average Green's
function of (2.1),

(b) The scatterers diffuse with diffusion constant D, , L(11'22')=L (RT,p, ~, ,pir2), (2.10)

C' '(q, t)=be (2.4)

In general we assume that the scatterers have an average
velocity v which is small compared with the wave veloci-
ty e. The frequency change on scattering is small
(-v/cc00) and we can consider the propagation of an
almost-monochromatic wave with frequency close to the
value tov=ckv. The mean free path of the wave I will
not depend on the motion of the scatterers and is deter-
mined by the density of scatterers, I =4irlh.

The quantity of interest is the correlation function of
the scattered field

I (r„r&,t ) = (E(ri, t )E'(r&, 0) ), (2.5)

averaged over the fluctuations in the medium. This is
defined as a cumulant (subscript c) so that the coherent
part of the incident field (E(r,t)) =E,(r, t) is omitted.
We introduce center of mass R=(r, +rz)/2 and relative
coordinates r=r, —r2 in (2.5) giving I (R, r, t). On tak-
ing ihe Fourier transform with respect to r and t we ob-
tain the spectral density or coherence function'
I (R„q,to). This has the meaning of the energy density
of the scattered field at R with wave vector q and fre-
quency co. The total scattered energy density at R is
1(R,r=O, t =0) and its spectral density is 1(R,r=O, t0).
We will mainly be concerned with the total scattered en-
ergy density I (R, r =0, t) = I (R, t).

Experimentally it is often more convenient to measure
the intensity correlation function

where R= —,'(r, +r', —rz —rz), p, =r, —r'„pz ——rz —rz, and
similarly for the time variables. The calculation of L is
discussed in the Appendix. In the diffusion approxima-
tion the Fourier transform of L, i.e., L( i', qco (, qi(vi) is
independent of the directions of q, and q2 and depends
on ~& —m2. Then setting q& ——q2

——ko and 0=0 we find

L (KQ =0,koto(y koNi) = L (K„CO( —(vp),

with

(2.11)

L(a, t)= 12m /I
(2.12)F (t)+v I

where F (t)=3[1 f(t)]If(t) a—nd f (t) is the angular
average of the correlation function (2.1),

f(t)= i f ds d s'C(kv(s —s'), t ),h

(4n )
(2.13)

where s and s' are unit vectors. In the two examples
(2.3) and (2.4) (Ref. 5)

f' '(t)= (1—e '), (2.14)

where v& is the time for a scatterer to move a wave-

length, i.e., r~' (rnP/2ko)'——, v'i '= I/4koD;. We now
consider the scattered intensity in two geometries.

I,(R, t ) = (
i
E(R, t )

i

'
i
E(R,O)

i
'), . (2.6)

In the leading approximation kol &1 this correlation
function factorizes and is determined by I (R, t):

I 2(R, t)=I (R, t)I '(R, t) . (2.7)

This function thus contains the same information as
I (R, t).

We now make the important assumption that the
propagation of the light in the medium is di8'usive. This
is valid provided k~~l ~gL where 1, is the light wave-
length, / is the light mean free path, and L is a charac-
teristic dimension of the medium. It is also assumed

A. Point source of waves

A point source of waves of unit strength is at the ori-
gin of an infinite medium. The coherent field is

E,(r, t ) =D(r, too)e

When this is substituted in (2.8) together with (2.9) and
(2.12) the spectral density at R ~ I is

I (R, t )=I(R)e (2. 15)
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I"2(R,t)-exp( —&6R
~

t
~

lrz") (2.16)

and the spectral distribution is a Lorentzian of width
W6R/l~i( '. In the single-scattering approximation it
would be Gaussian (2.3). In case (b)

I 2(R, t)-exp[ —(Rjl)(6~ t
~

/r'), ')' ] (2.17)

and is a stretched exponential. This is a consequence of
the distribution of relaxation times. In the single-
scattering approximation it would be an exponential
(2.4).

where I(R)=3j(4m) 1R is the total scattered intensity.
For static impurities F =0 and this reduces to Shapiro's
result. For t & r)„F (t) =3t /2r&' or 3

~
t

~

/2~'i ' in the
two cases (2.14), and the spectral density has a frequency
width (/3R/~2lr'z" or 3R /21 ~(„', respectively. As
the distance E. from the source increases, the lengths of
the diffusion paths increase leading to a larger spectral
width. In case (a)

C. Transmission through a slab

Radiation of unit amplitude is incident normally on
the plane z =0 of a slab of thickness L of the random
medium lying between the planes z =O,L.

A similar calculation from (2.9) gives for the diffusely
transmitted light on the plane z =L

3 sinhF(t)
I L, t =

2n-
slnh

(2.21)

In this case a characteristic length L enters the problem
and together with ~& determines the spectral width.
Thus in case (a)

In each case the characteristic time is ~&. In reQection
there are contributions from diffusion paths of all
lengths so that no characteristic length enters (2.19) or
(2.20) as in (2.15).

8. Re8ection from a half-syace

Radiation of unit amplitude is incident normally on a
random medium occupying the half-space z&0. The
coherent field in (2.8) is

1,(L,t)- sinh( &3t /&2~()') )

sinh(v 3Lt /&21~&')
(2.22)

0'

[1+F(t)]' [1+F(t)]4
(2.1S)

The time dependence is different from (2.15) because of
the different geometry but is again determined by the
average correlation function (2.13). In case (a} for
t ~w~' we have

1l,(t)—
(1+&3[t

~

/&2 '„')' (2.19)

and shows a power-law decay in time. In case (b) I 2(t)
also shows a power-law decay with

I,(t)— 1

[1+(3
~

t
~

/2~(,b)))"]4

(ik0 —i /2I )z i ruor—
F., r, t =e

The diffusely reilected light does not depend importantly
on the scattering angle so we evaluate it in the backward
direction. The boundary conditions at z =0 are satisfied
by writing the diffusion propagation (2.12} in real space
and using the method of images to impose the condition
that it vanish on the plane z =0. ' Using (2.9), we find
the diffusely re6ected intensity on the plane z =0 is

and in case (b)

I,(L,t)- sinh(3
~

t
~

/2r() ')'

sinh —(3
~

t
~

/2r(b)))/2

'2

(2.23)

In diffuse reAection it is now well established that in
the backward direction the constructive interference of
time-reversed waves leads to an increase in the intensity
by about a factor of 2. This effect also gives an increase
in the intensity fluctuations in the backward direction.
The motion of the scatterers breaks the symmetry of the
medium for time-reversed waves so that these waves no
longer interfere constructively. In this section we dis-
cuss the spectral distribution of the scattered intensityI" resulting from the interference of time-reversed
waves.

For the case of radiation of frequency co0 incident nor-
mally on a half-space the interference contribution to the
scattered intensity close to the backward direction is

and the decay of the correlation function is essentially
exponential and similar to that for the point source
(2.15).

III. COHERENT BACKSCATTKRING

Qf (i)(t) 0 f d I f d f(t+tf)f(t tl) e
—D(g I +ll )( /i —) ((,( )l' 0

'
0 (I+u )

(3.1)

In the purely elastic case f = 1, and (3.1) gives

I"=6m /(1+ql)
which is equal to (2.18} (for t =0) in the backward direc-
tion q =0. In the two cases (2.14)

where D=cl/3 is the diffusion constant, q=k, sin8,
where 8 is the scattering angle (6) is close to nfor back-.
scattering), and

y{t,t')= —f dt"[1—f(t")] .
2l
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y")(t, t') =[(t+t')' —(t —t')' j/~~')3,

y" )(t, t')=4
[
t

i
t'/r& ',

i
t [ & t'

2(t2+ t 2)/r(4)2
~

t
~
( t

where the phase-coherence time is

r(a) (6~r(a)2)1/3 (b) (4 (b) )1/2TTg ) Tf 7 Tg )

(3.3)

(3.4)

(3.5)

and r=l/c is the wave-scattering time. The phase-
coherence time cuts off the long diffusion paths and
reduces the intensity of the coherent backscattering by
factors

' ]/3
1 24m ~(, )1/2 (b)

'rk,

We have shown that when a wave is multiply scat-
tered in a medium the time dependence of the intensity
and its Auctuations are determined by the angular aver-
age (2.13) of the dynamic correlation function. The im-

portant assumptions made are (a) the propagation of the
light in the medium is diffusive [see discussion after Eq.
(2.7)], and (b) the frequency change of the light is small
[see discussion after Eq. (2.4)]. Both these situations are
readily realized in suspensions of rnacromolecules or La-
tex spheres in solution. The scattered intensity is ob-
tained by summing over all the multiple-scattering paths
and then depends on the shape and size of ihe medium.
The relaxation time depends on the number of scattering
events and, hence, depends on the length of the path and
gets shorter the longer the path. However, even in the
multiple-scattering case it is possible to obtain informa-
tion about the dynamics of the medium although this is
not as direct as when the scattering is weak and is
directly related to the correlation function (2.1). These
results also allow us to obtain information on the dy-
namics of concentrated solutions when the single-

l

in the two cases (3.3) and (3.4) when r(r), . The time
dependence of the coherently backscattered intensity is
determined by ~&, and not ~&, as found in Sec. II for the
direct waves. As the contributions of long diffusion
paths are cut off in (3.1) the spectrum resembles that ob-
tained in the single-scattering approximation, i.e., Gauss-
ian and Lorentzian in the two cases (3.3) and (3.4), re-
spectively.

IV. MSCUSSION

scattering Born approximation breaks down. Some of
the detailed predictions which can be experimentally
tested are the length dependence of the spectrum (2.15)
or (2.19), and the time dependence of the homodyne
spectrum (2.16), (2.17), (2.20), or (2.21). The dynamics of
concentrated solutions may not be represented by these
simple cases and the more general results (2.15) and
(2.19) can be used.

We considered two special cases in which the scatter-
ers have a Maxwell-Boltzmann velocity distribution or in
which their motion is diffusive. The above results
should also apply for other forms of dynamics of the
scatterers. For example, if the scattering is due to
thermal phonons of speed s it is easily shown that

f(t)=
2

[cos(2kost ) —1+2kost sin(2kost )], (4.1)
1

2(kost )

and r& ——(kos) '. The phase-coherence time in (3.1) is
(3r/k——os )'/.

Another possible situation is where the scattering is
due to impurities fixed in space but having some internal
dynamics which modify the dielectric constant. In this
case the correlation function (2.2) can be written in the
form

C(r r', t t') =C—(r—r')f, (t —t'), —

where f, (0)=1, and f;(t) is the function replacing (2.13)
in (2.12) and subsequent formulas. The time decay of
the intensity correlation functions is now determined by
the internal dynamics of the scatterers contained in

f, (t). For example, if f, (t)=e '''/' the decay of the
correlation function (2.15) is like (2.17).

The above results should also apply to the scattering
of other types of waves, e.ga) electrons. The important
assumption made is that the frequency change of the
wave on scattering is small, i.ea) the scattering is almost
elastic. This is the case for electrons scattering from
atoms or from low-frequency phonons. We have con-
sidered only the case of scalar waves, but as the contri-
butions from long diffusion paths are the most interest-
ing, the case of transverse vector waves will give the
same results apart from certain contributions from short
diffusion paths.
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APPENDIX

The Fourier transform of the sum of ladder diagrams
(2.1) satisfies the integral equation

L(«q(~( q2~2) =C(q( —q2 ~( —~2)
I+ 4 dpdco C(qi —p, co( —a))D(p+a/2, co+QI2)D'(p a/2, co Q/2)L(—aQ, pc@,q—2ar2) .

(2n. )

(Al)
In L and C we may set q&

——kos„qz ——kos2, and p=kos where the s are unit vectors. Also I. will not depend impor-
tantly on the directions of s, and s2. Then averaging over the directions of s, and s2 and retaining only the spherical
part, L(«,co( —F02), of L, Eq. (Al) becomes
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4m 1
L(aQ, co, —r02)= f(co, —a)q)+ dr0 f(ro, r—o)Q(lrQ)L(lrQ, r0 co2),

I 2m

where

l xI
Q(aQ) = I d p D(p+Ir/2, co+ Q/2)D'(p —k /2, co —Q/2) = 1 — +iQr .

(2m ) 3

(A2)

(A3)

The approximation (A2) neglects a small contribution to the difFusion constant arising from higher harmonics of
C(ko(s, —s2),co). Equation (A2) is easily solved by taking its Fourier transform and it gives (2.12).
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