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Electronic structure and plasma excitations at the surface of small voids in jellium
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Calculation of the electronic structure and plasma excitations at the surfaces of microscopic voids
in a metal are reported. The electronic structure is computed using a jellium model for the conduc-
tion electrons of a metal and the local-density-functional formalism. The excitation of this electronic
system is treated by using a truncated ("long-wavelength" ) version of the random-phase approxima-
tion. The surface plasma excitations are a prominent feature of the electron-energy-loss spectra of
rare-gas bubbles in aluminum and, hence, an understanding of these excitations can aid in the
characteristics of the gas-filled voids that form in irradiated metals. Our calculations are for voids
with radii of 4, 7, 14, and 20 a.u. and metallic densities with r, =2, 4, and 6 a.u.

I. INTRODUCTION

Several recent experimental studies' have reported
electron-energy-loss spectroscopy studies of helium and
other rare-gas bubbles in aluminum. These bubbles are
formed when the metal is irradiated with neutrons or
ions, and they result in a swelling and deterioration of the
metal structure. Hence, the characterization of the num-
ber, size, and structure of these bubbles provides impor-
tant information concerning the integrity of metal struc-
tures in radiation environments. The interaction of elec-
trons or photons with these bubbles results in excitations
of the gas in the bubble and plasma excitations at the met-
al surface ' surrounding the gas. Here we report calcu-
lations of electronic structure at the surface of microscop-
ic voids in a metal and the plasma excitations at the sur-
face of these voids.

We employ the widely used jellium model to describe
the behavior of the conduction electrons in a metal. In
this model the ions are replaced by a uniform positive
background of charge into which the interacting electrons
are introduced. The ground-state properties of the in-
teracting electrons are obtained using the density-
functional formalism" with a local-density approximation
(LDA) for the exchange-correlation energy. ' This model
has been used very successfully in computing the electron-
ic structure and response for other inhomogeneous elec-
tron systems, ' i.e., metal surfaces' ' and metal parti-
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The self-consistent procedure' for the solution of the
LDA requires extensive computations. However, this for-
malism readily admits computationally simpler variational
procedures, and we use the procedure introduced by Rose
and Shore' which permits a quantum-mechanical calcula-
tion of the kinetic energy of the electrons. Their pro-
cedure employs a model potential and for metal spheres
has been found to give results' in very good agreement
with those obtained using the self-consistent procedures. '

We employ single-step model (SSM), double-step model
(DSM) and rigid-sphere model (RSM) potentials in order
to model the exclusion of the conduction electrons of the
metal from the region of the void. The infinite-barrier po-

which are independent of the void radius. These modes
are obtained by solving Laplace's equation for a spherical
void in a metal with a frequency-dependent dielectric con-
stant

e(co) = l —(co~/co)' . (2)

Here the bulk plasma frequency is to~ =4wnoe /m (we use
atomic units where e=A'=I =1; the length unit is the
Bohr radius and the energy unit is 27.2 eV). The intro-
duction of spatial dispersion into the electromagnetic
response' ' or a surface electronic profile into the local
dielectric constant' results in a radial dependence for the
computed frequencies. A spatially dependent local dielec-
tric constant is obtained by replacing no in co~ in Eq. (2)
by an inhomogeneous electron density n (r):

e(co, r) = l —(co~/co) [n (r)/no] .

Computations using this local approximation predict an
increase in plasma frequencies for decreasing void
radius' ' ' —"blue shift, " col &cuL.

Aers et al. ' have reported calculations for voids using
model surface density profiles. Their hydrodynamic cal-
culations include spatial dispersion, and investigate the
effects of surface inhomogeneity by using a stepped elec-
tron density profile with an intermediate density step

tential has been widely used as a model for a metal sur-
face, and we have included the corresponding RSM in our
considerations for comparison purposes. In addition, one
might argue that it should be a good model for the
helium-filled void where the helium atoms prevent the
metallic electrons from diffusing into the void. The LDA
calculations of the electron density profiles at the surface
of voids in jellium are reported in Sec. II.

The frequencies of the plasma excitations at a void sur-
face depend on the size of the void. The classical model
for a void in a metal where the positive and negative
charge densities coincide results in multipolar plasma ex-
citations at frequencies '
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(height and width are varied) to model the electronic
profile at the void surface. The random-phase approxima-
tion provides a quantum-mechanical computation of the
linear response of an electronic system, and Lushnikov
et al. have employed a truncated version of this approx-
imation (TRPA) in the computation of the response of
small metal spheres. The TRPA gives the same formal
results for the plasma frequencies' and shares the compu-
tational advantage enjoyed by the hydrodynamic ap-
proach, since it requires only the ground-state electronic
density and not the quantum-mechanical response of the
electrons. In Sec. III, we report a TRPA calculation of
the plasma frequencies for voids using the electronic den-
sity profiles reported in Sec. II. The computed frequen-
cies for I. =1 are compared to the experimental results in
the concluding section of this paper, Sec. IV.

II. ELECTRON DENSITY PROFILE
AT A VOID SURFACE

Our computation of the electron density profile at the
surface of a spherical void in a metal is performed using
the LDA. "' In this formalism the ground-state energy
of a system of electrons in the presence of an external po-
tential v (r) is a functional of the electron density:

t

E[n]= fdr v (r)n (r)+ —,
' fdr fdr' "

/r —r'/

density-dependent potential. The electron density is given
in terms of the particle wave functions,

n(r)= g ~ g, (r)
~

occup&ed

and the kinetic energy is computed using

T, [n]= — g (P, g, )
.

occupied

(7)

Obtaining the self-consistent density requires extensive
numerical computations, and the energy functional readi-
ly admits computationally simpler variational calcula-
tions. Rose and Shore' introduced a variational density
by employing a model potential, V(r, a). Solution of
Schrodinger's equation for noninteracting particles in this
variational potential then permits the retention of the
quantum-mechanical expression, (7), for the kinetic ener-
gy. The energy functional is minimized by varying the
potential parameters here denoted by o, . A number of the
details associated with the numerical evaluation of the en-
ergy functional for large r and angular momentum have
been collected in Appendix A.

We have carried through the variational calculation for
two spherically symmetric model potentials for which
Schrodinger's equation can be solved analytically:

(i) A single-step model (SSM),

+ dry. „, rn r+T, n (4) V](r,a) = VpB(rp —r),

which is a minimum for the exact electron density. The
local-density expressions '

c, [n]= —3/4(3n /vr)'

where the parameters are the step height Vo and the loca-
tion of the step edge ro.

(ii) A double-step model (DSM),

V2(r, a ) = VpB( rp —r) + V [6(r ]
—r) —6( r[] —r) ]

E, [n] = —0.44/[(3/4wn )
' +7.8]

are used for the exchange-correlation energy e, (r) which
permits us to compare our profiles to those obtained for a
Hat metal surface by Lang and Kohn. '

The jellium model of the conduction electrons in a met-
al is used, hence the external potential is provided by a
uniform positive charge density which replaces the ion
cores of the metal atoms. For a spherical void of radius
R, this charge density if given by n+(r)=npB(r —R)
where 6(r) is the unit step function, np=3/4vrr, , and r,
characterizes the bulk conduction electron density. Intro-
ducing the electrostatic energy of this positive charge den-
sity interacting with itself, we can rewrite the electrostatic
contributions to the ground-state energy in a compact and
finite expression:

with the additional parameters V, and r].
The total charge of the system must be zero so there is

a constraint on the allowed variational densities, and this
constraint is used to fix the position of the model poten-
tial, ro, with respect to the positive background. For the
SSM the single free variational parameter is the step
height Vo. For the DSM we have three free variational
parameters, Vo, V„and the width, m=r] —ro, of the in-
termediate step. Fortunately, the energy is not strongly
dependent on this width so that it is possible to minimize
the functional without recourse to an elaborate search
scheme. We have also computed the electron density for
the rigid-sphere model which corresponds to the much-
used "infinite-barrier" model for a metal surface.

(iii) Rigid-sphere model (RSM),

[n] fdrfdr r —r' (5)
for r &ro,

V(r) = .
0 for r ~ro,

where

An (r)=n (r) —n +(r) .

The final term in the energy functional, T, [n], accounts
for the kinetic energy of the electrons. The Kohn-Sham
self-consistent procedure employs a Schrodinger equation
for the noninteracting particles subject to an effective

where ro is fixed by the constraint of charge neutrality.
The model potential parameters obtained for voids of

radii R =4, 7, 14, and 20 a.u. and positive background
densities corresponding to r, =2, 4, and 6 a.u. are present-
ed in Table I for the SSM and RSM and in Table II for
the DSM. The three free variational parameters for the
DSM potential complicate the search for the energy
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TABLE I. Model potential parameters for the SSM and RSM potentials for voids in jellium. All

quantities are in atomic units.

R=4 R=7 R =14 R =20

rs 2

r, =4

r, =6

SSM

RSM
SSM

RSM
SSM

RSM

Vp

ro

Vp

ro

Vp

rp

0.285
4.370
2.876
0.086
4. 168
1.956
0.039
4.106
2. 168

0.383
7.166
5.834
0.112
6.962
4.782
0.061
6.621
3.859

0.427
14.0736
12.804
0.132

13.76
11.664
0.077

13.23
10.584

0.441
20.045
18.792
0.130

19.778
17.663
0.090

18.943
16.502

minimum. However, the total energy is not very sensitive
to the height of the internal step, Vo, or the width ~ of
the intermediate step, so that one can employ a coarse
mesh for these two variational parameters. The total en-

ergy for the metallic densities with r, =4 and 6 are only
slightly lowered by the increased variational freedom in-
troduced in going from the SSM to the DSM. For the
higher-density system with r, =2, the electrostatic contri-
bution to the total energy is more nearly equal in magni-
tude to the kinetic and exchange-correlation contributions,
and the energy is more sensitive to the model potential.

Note that for r, =6, we obtain a negative value for the
height of the intermediate step, V, . For this density there
are prominent Friedel oscillations at the void surface
which result in a valley in the efT'ective potential. ' These
larger oscillations re Hect the larger electronic charge
buildup at the surface which is needed in order to screen
the void with a sparser bulk density.

In Fig. 1 the computed electron densities at the surface
of a void of radius R =20 a.u. are presented for metals
with conduction electron densities corresponding to r, =2,
4, and 6 a.u. The densities for the DSM and RSM calcu-
lations are present along with the self-consistent Lang-
Kohn densities'" for a Aat metal surface —the SSM densi-
ties are not presented, since they are almost identica1 to
the DSM densities. These figures show that there is good

agreement between the self-consistent Lang-Kohn profiles
and those obtained using the DSM. The Friedel oscilla-
tions fall off more rapidly with increasing r for the void
profiles than they do for the Bat surface profiles. Howev-
er, this should be attributed to the difference in geometry
and not to the diA'erence in calculational procedures. The
density profiles for the RSM computation show the effect
of the infinite barrier in that the density drops rapidly
within the void.

The variation in density profile due to void size can be
seen in the electronic profiles shown in Fig. 2. Each
figure contains the computed profile for spheres of radii 4,
7, and 14 a.u. For the smallest voids the electron density
is large within the void and there is a corresponding de-
crease in the amplitude of the Friedel oscillations in the
model. These profiles were computed using the DSM po-
tential, and the almost identical profiles were obtained in
the SSM calculations —the lower step height in the SSM
results in a slightly larger electron density in the void.

III. PLASMA EXCITATIONS AT THE VOID SURFACE

Ehrenreich and Cohen's development of the random-
phase approximation as a self-consistent field has facili-
tated the application of this approximation for the linear
response of a system to inhomogeneous systems. ' The

TABLE II. Model potential parameters for the DSM potential for voids in jelliurn. All quantities are
in atomic units.

R=7 R =14 R =20

r, =4

r, =6

Vo

ro
V,

Vo

rp

V,

Vp

ro
V,

0.40
3.085
0.167
1.6
0.15
1.895
0.066
2.5
0.029
4.883

—0.00076
5.0

0.52
5.998
0.139
1.9
0.16
4.881
0.071
2.5
0.061
6.884

—0.001
5.0

0.52
12.496
0.231
2. 1

0.17
11.690
0.085
2.5
0.063

14.091
—0.0026

5.0

0.52
18.468
0.241
2. 1

0.18
17.598
0.091
2.5
0.070

19.800
—0.0021

7.0
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ith the excitation of thedensity disturbance associated with
electronic system is given by

5n(r, ~)= J dr'X(r, r';co)5U (r', a)

where the generalized susceptibility is

fk fk (,) i ( )4(r)ek (r) + (t'k' r k
k, k'

p ( )
'

th wave function for an e ectron wtth an
u g the Fermi distribution function.ener yckan kis e

1 d d by the density perturbationelectrostatic potentia in uce
is obtained from Poisson's equation,

5n (r')

Takin the electron wave function to ee real and rearrang-
ing the expression for X(r,r, co ) one e y

a ing ee
easil obtains

0.3 x lO ~—

(a)
n(r)

0.4 x IO
(b)

0.3 xlQ

0.2 x IO

0.2 x 10

O. I x 10 rs=2—
R =20

DSM
—.—.—RSM
—————LK

0, I x lo

r =4
R =20

OSM
LK
RSM

0
l5 20

r (a.0. )

25 l5 20
r ( a. u. )

25 30

(c)

O. l x IP-2-

0.5x IO 3-

r=t
R= 20

DSM

RSM

LK

l5
0

20 2'5 30
r (a. u.)

i s R =20 a.u. The profiles were obtained in t ein the DSM and RSM cal-files at the surface of voids of radius R = a.u.FIG 1. Electron density profiles a
-Kohn rofiles, Ref. 14, for flat jellium surfaces.culations, an ey ad th are compared with the Lang-Kohn profiles, e . , o
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X(r, r', co) =2 g f„g„(r)gz (r)
2 2 gq (r')Pf (r') .

k, k'

mate of the validity of this expansion is given by consider-
ing

qkF 2m — —I TF&3r,F —e3
R

Setting ek ——k /2m and k' =k+ q, we have ek —ek
=q.k//'m. For a fiat surface one can take q to be a vector
along the surface and associate it with the wave vector for
the surface plasma excitation —for this problem one finds
(after a great deal of manipulation) that the susceptibility
can be expanded in powers of q —long-wave1ength ap-
proximation.

Lushinikov et al. in their treatment of the metal-
sphere problem argue that, since

~

k
~

& kF (kF is the Fer-
mi wave number), and the wavelength for a distrubance
on the sphere surface should be of order R, the suscepti-
bility can be expanded in powers of q /co . Their esti-

where the Thomas-Fermi screening length is given by
rTF ——~/4me kF and A, has been set equal to 2~R. For
r, =2 and R =4 this ratio has a value of 0.4. They
proceed by requiring that (

~
ek —Ek

~

/co) &1 and retain-
ing only the leading term in a power-series expansion of
Eq. (10) in this ratio. The great advantage of this TRPA
is that the linear-response relation between the induced
density and potential, Eq. (8), can be reduced to

5n(r, co)= —(e /mes )V [n(r)V5 U(r, co)],

which depends only on the ground-state electron density.

n(r)

Q. lx lp '-
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FIG 2. Comparison of the electron density profiles for voids of radii 4, 7, and 14 a.u. in jelliurn. The profiles were calculated using
the DSM.
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Expanding the induced potential and density in partial
waves,

5u(r, ~)= y Y,'(r)v, (r,~),

where YL (r) is a spherical harmonic, and substituting Eq.
(9) into Eq. (11) one obtains the integral equation

~ vI (r, co)=g(r)ut (r, co) f r' —drKL (r, r')vt (r', co), (12)

for a spherically symmetric density n (r). Here we have
set g(r)=4me n (r)lm, and

1 a r~ a
2L+1 ar' +' a 'K rr' = n(r') .

If we consider a step electron density profile, n (r)
=noB(r —R), then an lar=no5(r —R), and we can easi-
ly integrate Eq. (12) to obtain

'2
L+1
2L +1

'L
7

uL (R, co) for r &R,
UL, ( I', co ) = 2 —1 L+1

R
2L+1 r vL, (R,co) for r ~R,

which supports the classic surface plasma modes coL, in
Eq. (1). Also note that the induced density, nL (r, co)
~ 5(r —R +), is completely localized at the void surface

The insight derived from the simple solution above aid-
ed us in establishing a stable iteration scheme for the self-
consistent solution of the integral equation for vL (r, cu)

The radial dependence is divided into two regions with a
matching point r determined by the condition

q(r ) =co

for the frequency being considered. For r &r the jth
iteration for vt (r, co) is substituted into the right-hand side
of Eq. (12) in order to obtain the (j+1)th iteration. For
r ~ r we rearrange Eq. (12) and use

vIJ+ "(r,co)rI(r) =co v~~'(r, co)+ f r' dr'KL(r, r')uz'~'(r', co) .

These expressions are iterated to self-consistency for a
particular co, ho~ever, only for a plasma mode frequency
(eigenfrequency) is the resulting induced potential con-
tinuous at the matching point. Additional constraints on
the solutions to the integral equation, which may be used
to obtain the eigenfrequencies, are that at r=r the in-
tegral term in Eq. (12) must be zero and that

a
uL(r, ~) =0,

Br r

which is easily shown from Eq. (11) and Poisson's equa-
tion.

We employ the electron density profiles obtained from
the DSM and RSM calculations described in Sec. II to
compute the plasma mode frequencies which are given in
Table III for L =1 and 2. These frequencies increase to-
ward the bulk plasma frequency as the void radius de-
creases. This "blue shift" is a result of the diffuse elec-
tronic density at the void surface and the buildup of the
electron density within the void for very small voids.
This same reasoning also accounts for the enhancement in
this blue shift in the lowest-density metallic system
(r, =6). The surface profiles are sharper for a RSM cal-
culation and result in a smaller shift with decreasing void
size.

In Fig. 3 we show the perturbed electron density associ-
ated with an L =1 plasma mode. This density distur-
bance is highly peaked at r and well localized at the sur-
face. %'e expect the localization at the surface to be pro-
nounced, however, the extreme sharpness of the response
seen here probably results from the use of TRPA.

IV. CDNCI. UDING REMARKS

Our density-functional calculation of the electron densi-
ty profiles at the surface of spherical voids in jellium
confirms the quantum-mechanical expectations for these
surface densities. The electrons diffuse into the void, and

TABLE III. Ratio of the square of the plasma frequency for an excitation at a void surface to the bulk plasma frequency,
(col /ct)p ), for voids in jellium. These were calculated using the TRPA and the electron density profiles from the RSM and DSM cal-
culations. All quantities are in atomic units.

R=4 R=7 R =14 R =20

rs 2

r, =4

r, =6

RSM
DSM
RSM
DSM
RSM
DSM

0.77
0.82
0.85
0.875
0.875
0.925

0.735
0.80
0.84
0.855
0.87
0.91

0.74
0.78
0.78
0.80
0.83
0.84

0.685
0.77
0.75
0.77
0.81
0.82

0.71
0.72
0.73
0.74
0.75
0.77

0.65
0.68
0.68
0.69
0.71
0.73

0.70
0.70
0.715
0.72
0.73
0.745

0.64
0.66
0.66
0.67
0.68
0.70
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P n(r)
l5—

13—

+ EXPER1MFNT
RSM

~ DSM

12—
CD

QJ

r =

R =14 IO— + +

8
l2 l4 l6 I8

IO 12 l4 i6 I8 20

r (a. u. )

FIG. 3. The induced electron density associated with the sur-
face plasma oscillation with L =1 at the surface of a void of ra-
dius 14 a.u. in jellium with r, =4 a.u.

the density within the void increases as the void radius
decreases. This microscopic model for the electronic den-
sity at the surface of a void in a metal also facilitates the
investigation of the electronic excitations at this surface.

The TRPA provides a computationally simple means of
treating the response of an inhomogeneous system of elec-
trons, however, the validity of the approximations needed
to derive it are perhaps suspect for finite structures such
as spheres and voids. The "blue shift" with decreasing
void radius found in the TRPA is slightly larger than that
found using the local dielectric constant approximation
with a fixed, diffuse electron density profile. ' ' ' This is
principally due to the buildup of electrons in the void as
the radius decreases. This effect is clearly illustrated by
considering a solution of the classical model for a metallic
sphere embedded in a metal with a higher conduction-
electron density. Using the frequency-dependent dielec-
tric constants for these metals, Eq. (2), one finds

(L +1) (~e)t= e(~s)tL,

FIG. 4. Calculated surface plasma energy vs void radius for
modes with L =1 in jellium with r, =2 a.u. Electron density
profiles from the RSM and DSM were used in the TRPA for
these calculations. Also shown is the experimental data for the
helium-filled voids in aluminum (r, =2.07 a.u. j from Ref. 3.
The mean void radius for the experimental data is obtained using
R~ =5.3+0.35CH, A.

bution of the voids depends on this concentration; for in-
stance, they quote R =10+5 A as the mean void radius
at a concentration of 13%%uo. We have fitted the interpola-
tion formula, R =5.3+0.35CH, A, to their data for mean
radius versus concentration in order to permit a compar-
ison of our calculations with their data.

The experimental data also shows the blue shift with
decreasing void size but the experimental values have sys-
ternatically lower energies. However, this comparison
should be regarded as very ambitious, since there are
many important differences between the experimental sys-
tem and the theoretical model. The void density in the
experimental samples is high enough that the van der
Waals interaction between voids is expected to modify
the surface plasma frequency. The helium in the voids
should also lower col since the classical result for a void
filled with a dielectric is given by

or

I (L + 1 )cgp +L ~ps ] /2 L + 1

cop(L +1)
L(eH, +1)+1

Letting the electronic density of the embedded sphere go
to zero, cop&~0, one obtains the classical surface plasma
frequency for a void, and as cL)pg~&p, the surface plasma
frequency approaches the bulk plasma frequency.

Recent experimental studies of helium and other rare-
gas bubbles in aluminum by electron-energy-loss spectros-
copy' have provided data concerning the excitation fre-
quency for surface plasma modes in these bubbles. In
Fig. 4 we have provided a comparison between our com-
puted frequencies (r, =2.0) and those reported by
Manzke et al. for helium-filled voids in aluminum
(r, =2.07). Their experimental parameter is the helium
concentration CH„and they indicate that the size distri-

Since the helium pressure in the voids decrease as their
radii increase, the dielectric constant decreases with radius
(Manzke et al. quote eH, ——2.05 for R = 10 A and

EH = 1.56 for R =25 A). This produces a shift in oppo-
sition to the blue shift and should tend to "flatten" the ex-
perirnental data.

APPENDIX

In this appendix we have collected a number of the de-
tails concerning the numerical computations for the densi-
ty functional calculation described in Sec. II.

The radial component of the Schrodinger equation for a
constant potential has the real solution
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y, (k, r) = Aj, (kr+f, ) . (A2)

The spherically symmetric electron density for a given
energy is

n (k, r) =(2s + 1) g (2l + 1)
~
Pt(k, r)

~

1=0

and the density is

kF

n(r)= g n(k, r) .
k=0

Hence, we can use the identity

g (21+1)
~
jt(z)

~

=1
1=0

to subtract n +(r) from n (r) and obtain

kF 1 max

b, n (r) = g (2s + 1) g (2l + 1)[
~
Pt(k, r)

~

pt{k,r)= At[( cos5tj)t(ter) (s—in6t)nt(ttr)],

where jt(ter) and nt(ter) are spherical Bessel functions of
the first and second kind, k =2mE and tc =2m (E —V).
For our model potentials, we have V=O for large r and
the asymptotic behavior of the wave function is given by

show that for I ))kr0,
e, (kr )

'+

[{2I—1)!!]
where

~

et
~

((21+1)lkro (the maximum value being the
rigid-sphere result). Hence, the phase shifts decrease rap-
idly as l increases so that pt(k, r) ~ Atjt(kr). Therefore,
we can find a l,„)kzr0=kFR such that the contribu-
tions to An (r) for I & l,„can be neglected.

For large r the net charge density has Friedel nscilla-
tions

b, n (r) = 3 cos(kFr+P)lr

and the radial integral one needs for the energy, Eq. (4),
converges very slowly. The contributions to these in-
tegrals for kr) kr, =z are evaluated by using a rational
approximation for f (z) and g (z) in the sine and cosine in-
tegrals

dt =f (z) cosz+g (z) sinz,sint
Z

and

dt =g (z) cosz f (z) sinz . —cost
z

k=0 1=0

—
~

&tjt(kr)
~

e(r —R)], (A3)
The integrals needed in the calculation can then be ob-
tained by iteration, since

where l „is finite.
For the single-step potential we have V= V0 for I" &r0

and Pt ~j t(ter ) so that for l &&ter,

(ter )'

(2l + 1)!!

and

C„(z)= I dt

S„(z)=I "dt

1 cosz
q ) n —1 Z

Z
0

1 ' slnz
, +C, t(z)

n —1 z" —'
Hence, for large enough l we can terminate the l summa-
tion for r ~r0=R. For r ) r0, we have both terms in Eq.
(Al), but the matching conditions at r =ro can be used to

The cutoA' radius used in our calculations was
r, =R+8.0 a.u.
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