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Optical transmission spectrum of incommensurate crystals: Application to Rb~znBr4
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We have analyzed the optical transmission spectrum of an incommensurate crystal using a
three-dimensional tight-binding model with modulation along one direction. When the theory is

applied to BrzZnBr4, the calculation reproduces the main features of observed change of spectrum
across the normal-to-incommensurate transition at 355 K.

I. INTRODUCTION

Among the materials which exhibit incommensurate
periodic properties, Rb2ZnBr4 has remarkable
temperature-dependent structure phase transitions. ' At
a high temperature T & 355 K, Rb2ZnBr4 has well-
defined translational symmetry and is in the so-called
normal phase.

When the temperature is lowered towards 355 K, a
phonon mode with wave vector q gets soft. At
T = TI =355 K a structure phase transition occurs,
driven by the q soft-phonon mode. Since q is incom-
mensurate to the parallel reciprocal-lattice vector c*, the
new phase is called the incommensurate phase. If T is
not much lower than Tl, the incommensurate phase is
characterized by a cosine modulation of the atomic posi-
tions with temperature-dependent amplitude. However,
deep in the incommensurate phase (T much less than
Tt ) the modulation of the atomic position becomes very
complicated and solitons appear. '

With further decrease of temperature, the density of
solitons drops and a second structure phase transition
occurs at T = T, ~ Below T, the material regains its
translational symmetry in the form of a superstructure
with one of the periodicities enlarged by a factor of 3.

Although the crystal structure of the incommensurate
phase has been investigated earlier by several low-energy
scattering experiments, ' ' the light scattering experi-
ment with high-energy photons was performed much
later in 1984. The latter explores the interband optical
absorption and therefore gives valuable information con-
cerning the electronic properties of the incommensurate
phase. On the other hand, there exists a large number of
theoretical studies on the electronic and transport prop-
erties of the incommensurate phase, mainly in terms of
the simple one-dimensional Aubry model. ' ' Because
of the lack of experimental data, almost all theoretical
predictions cannot be checked with experiments.
Perhaps the only exception is the theoretical analysis of
Rasing, who has used a one-dimensional incommensu-
rate model Hamiltonian to interpretate qualitatively the
measured temperature dependence of optical absorption
in Rb2ZnBr4.

In this paper we will perform a quantitative study to
show that a one-dimensional incommensurate model is
inadequate to explain the experimental data. Instead, a
three-dimensional model with a uniaxial incommensu-

rate modulation yields the correct optical transmission
spectra when comparing with experiments.

II. THE MODEL

When the temperature is lowered toward TI, the soft-
phonon mode with wave vector q drives the normal-to-
incommensurate transition, where q is incommensurate
to the parallel reciprocal lattice vector c*. In other
words, q/c* must be an irrational number which cannot
be measured experimentally. Actually, within the exper-
imental accuracy the measured q/c* is a rational num-
ber v/X. For example, in the temperature range
210 ~ T & 355 K the incommensurate phase of RbzZnBr4
has the measured value q=0. 292c*=(—,', )c*.' ' That is,
the crystal structure of this incommensurate phase can
be well approximated by a superlattice with one of its
periodicities enlarged by N times. This approximation is
called the rational approximation, and will be adopted in
the present paper.

Let a, b, and c be the primitive vectors of the normal
phase. In the normal phase the single-particle Hamil-
tonian

H =p /2m + V(r)

has the translational symmetry V(r+a) = V(r+b)
= V(r+c) = V(r). Therefore, the Bloch states %„k(r) of
the pth energy band can be constructed from a set of
Wannier functions t4„(r—R);R=la+mb+ncI as

W„„(r)= g e'"' '+ +"'IC&(r—/a —mb —nc) . (2)
I, m, n

In the temperature region where the incommensurate
phase can be treated with the rational approximation the
position of the nth atom along the c axis is modulated
by a cosine function A cos(gn +iti), where Q =2'(vlN)
and P is a constant phase factor. In this case the single-
particle potential V( r ) has different per iodicities
V(r+a) = V(r+b) = V(r+Nc) = V(r). Equation (2) is
then modified as

qi (r ) g eik ncF (n ) g eik (la+ mb)

I, m

X @„(r—la —mb —g„c),
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where

g„=n + A cos(gn +P), (4)

and the coefficient F„i,(n) has the same translational
symmetry F„z(n +N) =F„i,(n).

The Schrodinger equation

HiP i,(r) =E„(k)+„i,(r)

will be solved with the nearest-neighbor tight-binding
approximation. Since the atomic positions are modulat-
ed along the c axis, the potential V(r) is also modulated.
Therefore, the matrix elements

a„(n)=(4„(r ta—m—b —g„c)
~

H
~
@„(r—la m—b g—„c)) (6)

y„,(n + l, n)= (4„(r la—m—b g„—c)
~

H
~
@„(r—la —mb —g„+,c))

depend on the value of n explicitly. However, the eKect of modulation on the transverse hopping matrix elements

y„,= (4„(r—(1+1)a—mb —g„c)
~

H
~
4&„(r—la m—b g„—c) )

and

y„s——( 4z(r —la —(m + 1)b—g„c)
~

H
~
4„(r—la —m b —g„c))

are of the second order and will be ignored. In the temperature region where the modulation is given by pq. (4), the
value of 3 is much less than one. Hence, if we make a series expansion of the matrix elements with respect to 3 and
keep only the linear term, a„(n) and y„,(n + l, n) can be written in the general form

and

a (n)=a„0+a» cos(gn +P) (10)

y„,(n, n —l)=y„,o+y„„cos(gn+P) .

For the normal phase we have simply a„&——y„„=O.
In terms of these matrix elements, the Schrodinger equation (5) can be expressed as

[E„(k)—a„(n)—2y„, cos(k a) —2y„i, cos(k b) ]F„ i(n)=e '"'y„,(n, n —1)F„i,(n —1)+e'"'y„,(n + l, n)F„i,(n +1) .

(12)

For a pure one-dimensional system, we have y„,=O and y„&
——0. If the amplitude of the on site modulation a„& is set

equal to zero we will obtain the model used by Raising

[E„(k)—a„o]F„i,(n)=e '"'y„,(n, n —l)F„i,(n —1)+e'"'y„,(n + I,n)F„i,(n +1) .

If we further set y„„=0,Eq. (12) reduces to the Aubry model

[E„(k)—a„o—a„i cos(Qn +P)]F„ (in) =e '"'y„, F„O(n i—I )+e'"'y„,oF„i,(n +1) .

(13)

(14)

However, we will show in the later sections that these
one-dimensional models cannot explain satisfactorily the
optical transmission experiment.

and a valence band

E, (k)=2cos(k a)+2cos(k b)+2cos(k. c) (16)

III. THE ELECTRONIC STATES

The purpose of this paper is not to perform an energy
band calculation, but to demonstrate the characteristic
change of the transmission spectrum when RbzZnBr4 un-

dergoes a normal-to-incommensurate structure phase
transition. For this purpose, it is sufhcient to consider
for the normal phase a simple conduction band (p=c)
with y„=y,&

——y„o= —2 and n, o=60, and a simple
valence band (p, =U) with y„=y„&——y„o= 1 and a„o——0.
So the normal phase is described by a conduction band

E, (k)=60—4cos(k a) —4cos(k. b) —4cos(k c)

with a band gap 42 at k=O. To derive the energy bands
of the incommensurate phase which is specified by the
modulations, Eqs. (10) and (11), we must first fix the
values of a„i, y„,i, Q, and P, and then solve the
Schrodinger equation (12). Within the rational approxi-
mation g =2m.(vlN), each of the conduction bands and
the valence bands of the normal phase will split into N
subbands. For convenience we will use the reduced zone
scheme and label the subbands by (p, i)), where p=c or
v, and g=1,2, . . . , N. Consequently, the energy bands
are represented by E„„(k)and the Bloch states given by
Eq. (3) are expressed as 4„„i,(r) with the corresponding
coefficients F„„(n )i.
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Knowing the complete energy spectra we can calcu-
late the dielectric function to study the optical absorp-
tion. We will show in the next section that the imagi-
nary part of the dielectric function is proportional to the
following quantity:

1(co)=f dky yF,"„k(n)+,gk(n)
n

&& 5(E,„(k)—E,~(k) —irico), (17)

where the integration runs over the reduced Brillouin
zone. In this section we will investigate the effect of
band split on I (co) when the normal-to-incommensurate
phase transition occurs.

We will start with the normal phase. Because the en-
ergy bands given by Eqs. (15) and (16) have the simple
symmetry relation E, ( k) —30= —[2E,(k) —30], I (co )

turns out to be symmetric with respect to Ace=60. In
Fig. 1, I"(co) for the normal phase is plotted as curve N.
Because of the symmetry, in Fig. 1, we only plot the left
half of the I (co) function.

For the incommensurate phase the shape of I (co)
varies with the modulation parameters a„„y'„„,Q, and

We found that the numerical result is very insensitive
to the value of P, and so we can use any arbitrary phase.
Let us first choose the values of a„] and y„,&

such that
the resultant band structure has the same normal phase
symmetry E, (k) —30= —[2E,(k) —30]. Under this
symmetry condition I (co) is again symmetric with

where

I „(co)=f dk g F,'„i,(n)F, „„(n)

&(5(E,„(k)—E,„(k) fico) . — (19)

Since the reciprocal lattice vector of the reduced zone
along the c' axis is only —,', of its original value, each
subband is very tlat along the c* axis and E„„(k) is
characteristic of a two-dimensional tight-binding band.
Consequently, all I „(co) have similar shape. As an ex-
ample, I &(co) is plotted in Fig. 1 as curve A l. The lower
edges of all the 17 I „(co) with i) = 1,2, . . . , 17 are
marked by arrowheads. I (co) is then the superposition
of all these 17 1 „(co), shown as curve A. If we improve
the rational approximation to have Q =2ir( —,", ), the com-
puted I (co) is given in Fig. 1 as curve B. Except for the
slight roundup of the stepped structure as a result of the
secondary band split, curves B and 3 have similar
characteristic features. We would like to point out that
the large shift of the lower edge of I (co) due to the pure
site-energy modulation has a strong effect on the thresh-
old of optical absorption.

The second case to be considered under the symmetry
condition E, (k) —30= —[2E,(k) —30] is the pure hop-
ping modulation with o.', ] ——o.',

&

——0, y „,= 1, and

respect to Ace=60. The first case to be considered is the
pure site-energy modulation with a, ] = —4 A

&
=2,

y„i——y„i——0, and Q =2ir(0. 292) =2ir( —,', ). With this
set of parameters, Eq. (12) is solved numerically for the
energy bands E„„(k)and the Bloch states ql„„k(r). We
order the subbands of the conduction band (p=c) as
E,z(k) &E,&(k) if iI &g, and the subbands of the valence
band (p=v) as E,„(k)&E„&(k) if il &g. Because of the
above-mentioned mirror-image-type symmetry, Eq. (17)
reduces to

I (co)=Q I „(co), (18)

0

p
a [

40 45

I

50

PHOTON ENERGY

55 60

FIG. 1. The I (co) function for the normal phase and the in-
commensurate phase with various types of modulations. The
curves X, C, B, and A are symmetric with respect to the pho-
ton energy equal to 60. The units of photon energy are deter-
mined by set ting Ace =42 equal to the band gap. For
RbzZnBr4, the band gap is 5 eV. The same energy units are
used in all figures.

l

7050

I I

40 60

PHOTON ENERGY

FIG. 2. The I (co) function for the normal phase and the in-
commensurate phase with various types of modulations. Only
the normal phase (curve N) is symmetric with respect to the
photon energy equal to 60.
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y„,= —0.5. The signs of y„, and y„, are so chosen
that the absolute value of each hopping matrix element
decreases with increasing interatomic distance. We
again solve Eq. (12) with Q =2~( —,', ) and compute 1 (cv)

from Eq. (17). The so obtained I (cv) is shown in Fig. 1

as curve C. Although each of the conduction and the
valence bands split also into 17 subbands, the shift of the
lower edge of I (co) due to the pure hopping modulation
is negligibly small. Therefore, such modulation has only
a rather weak effect on the threshold of optical absorp-
tion spectra.

Finally, we study the general case of having both the
site-energy modulation a, &

——a, &

——a& and the hopping
modulation y„,=1 and y„,= —0.5. With the rational
approximation Q =2'( —,', ), the calculated 1 (cv) is shown

in Fig. 2 for ai ——2, 2.5, and 3, together with the 1 (io) of
the normal phase. Because the mirror-image-type sym-
metry E, (k) —30= —[2E,(k) —30] is now destroyed,
Eq. (18) is no longer valid and there are many mixed-
subband transitions (/&re ) contributing to the 1 (io )

given by Eq. (17). Consequently, the shape of 1 (cv) in
Fig. 2 is quite different from the shape of I (co) in Fig. 1.

Although Figs. 1 and 2 are obtained with y„=y,b

p= —2 cx p=60 pva =pvb Fvcp= 1, and a,p=0,
we have repeated the calculations with other choices of
parameter values. We found that as long as the absolute
values of the six y parameters are of the same order of
magnitude, there is no qualitative change of the calculat-
ed 1 (cu) shown in Fig. 2. In other words, the curves in

Fig. 2 exhibit characteristic features of the three-
dimensional model.

IV. INTERBAND OPTICAL ABSORPTION

The theory of interband optical absorption is well es-
tablished and can be found in many books. Here we will
only outline the key points which are essential for our
calculation.

In the presence of an electromagnetic field, the single-
particle Hamiltonian Eq. (1) is modified as

H =( —,'m)[p —(e/c) A] + V(r), (20)

where A is the vector potential. The probability of
direct optical transitions from the (vg) subband to the
(cr)) subband has been derived with the time-dependent
perturbation theory and is known as the golden rule:

Before we close this section, we would like to com-
ment on the even simpler case which assumes Q =2'( —,

'
)

and the mirror-image-type symmetry of the band struc-
ture. If we inspect curve A in Fig. 1, we see that the 17
I „(iv) separate themselves into three groups: rl= 1 to
g=5 for the first group, g=6 to g=l2 for the second
group, and g = 13 to g = 17 for the third group. The
corresponding 17 subbands also group themselves into
three energy intervals separated by gaps of the size
b,E =6. If we use Q =2m( —,

'
) instead of Q =2m( —,', ), then

all the subbands in each energy interval collapse into one
single subband. In this case, the fine stepped structure
marked by arrowheads in Fig. 1 is washed out. Instead
of 17 smail steps, curve 3 in Fig. 1 will only have three
giant steps. We will return to this point later when we
discuss the optical absorption spectra.

W(cg)=( —,'~ A') f dk
~

(qr, „„(r)
~

(e/mc)A p ~

qr, &„(r))
~

5(E,„(k)—E„-(k)—A'co) . (21)

Since the electromagnetic field induces an ac current in the material, the absorbed photon energy per unit time
W(co)%co is equal to the rate of energy loss ( —,

' )o (co)ED due to Joule heating, where o (co) is the ac conductivity and Ev
is the amplitude of the electric field. One can find in textbook the relation o(cv)=(cv/4m)ez(cv) between the ac con-
ductivity and the imaginary part of the dielectric function (ecru). Therefore, if we solve Eq. (14) and then obtain the
Bloch state from Eq. (3), ez(iv) can be calculated from

e2(or)=(1/vr)(e/mAcv)
I
(@c(r)

I
e pI @ (r)).

I J dkP QF,*„k(n)F,.k(n) 5(E,„(k)—E„r(k)—A'co),
n, g n

(22)

where A=a. (b&&c) and e is the photon polarization vector. Substituting Eq. (17) into Eq. (22), we have

e,(co) =( I/vr)(e/m Iles)'
~

( C, (r)
~

e.p ~

'Ir, (r) )
~

'1 (~v) . (23)

We want to calculate the transmission coefficient T(co) of a slab sample of thickness d, with a normal incident elec-
tromagnetic wave of frequency co. Let

N(co) =v(co)+is(co). (24)

be the complex index of refraction of the slab sample. The fundamental theory of electromagnetic wave propagation
gives the transmission coefficient as

[1—R (io)] +4R (co)sin (0)
[1—R (co)S(d, iv)] +4R (cu)S(d, iv)sin (g+P)

(25)
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where

~
v(co) —1+iK(co)

~

~

v(co}+1+iK(co)
~

S(d, co) =exp[ —2coK(co}d/c],

tan(8) = 2K(co)

v(co) +K(co) —1

and

(26)

(27)

(28}

P=(1/c)cov(co)d . (29)

[1—R (co)] [1+[K(co)/v(cu)] ]
1 —R (co) S(d, co)

(30)

The refractive index v(co) and the extinction
coefficient K(co) are related to the real part E,(co) and the
imaginary part e2(co) of the dielectric function as

E.
, (CO) =V(CO) —K(CO)

E2(CO) =2V(CO)K(CO)

(31)

(32)

Since I (cu) was already computed in the previous sec-
tion, e2(m) can be calculated from Eq. (23) with the con-
stant matrix element (4, (r)

~

e p ~
@,(r)) determined by

fitting the peak value of the calculated e2(cu) to the peak
value of the measured ez(co) in the normal phase.
Knowing the imaginary part ez(co), the real part e, (co) is
then derived from using the Kramers-Kronig relations.
Finally, the transmission coefficient T(co) is obtained
from Eq. (30) with the help of Eqs. (31) and (32).

Figure 3 shows the calculated transmission spectra for
the normal phase (curve N), the incommensurate phase
with pure site-energy modulation (curve A), and the in-
commensurate phase with pure hopping modulation

For a real slab sample the two surfaces are not perfectly
parallel to each other. Hence, the slight variation of the
sample thickness should be averaged over. ' If we
redefine d as the mean thickness of the sample, the
average-corrected transmission coefficient is then simply

(curve C). These curves are derived with the same
values of parameters as those used in calculating the cor-
responding curves in Fig. 1. The stepped structure of
the transmission spectra of the incommensurate phases
is caused by the similar stepped structure of the I"(co)
curves in Fig. I. As an explicit example, the corre-
sponding steps of the T(co) spectrum in Fig. 3 (curve A)
and of the I(cu) spectrum in Fig. 1 (curve A) are
marked by arrowheads.

When we include both the site-energy modulation and
the hopping modulation in the incommensurate phase,
the calculated transmission spectra are given in Fig. 4
(curves a, =3, 2.5, and 2) together with the transmission
spectrum of the normal phase (curve N). These four
curves and the four corresponding I (co) spectra in Fig. 2
are calculated with the same values of parameters. The
inset in Fig. 4 is the measured transmission spectra for
the normal phase (3 K above the transition temperature
TI =355 K), and for the incommensurate phase at three
di6'erent temperatures T =TI —3, TI —33, and T~ —56.
In our calculation the band gap of the normal phase is at
Ace=42, corresponding to the measured gap 5 eV. Since
the modulation strength gets stronger with increasing
TI —T (for the experiment) and with increasing values of
a, (for the theory), the calculated T(~) in Fig. 4 repro-
duces the main features of the experimental observation.

However, in Fig. 4 the experimental results are far
smoother than the theoretical ones. There are several
reasons for this discrepancy. We have used the rational
approximation Q =2m. ( —,', ). As we mentioned in Sec. III
in connection to the stepped structure of I (co) in Fig. 1,
the sharpness of these steps, the number of these steps,
and the size of these steps depend on the denominator of
the rational approximation. If we use the sequence of
rational approximation Q=2m( —,'), Q=2n( —,', ), and

Q =2m( —,", ), then the calculated transmission spectra be-
come smoother. Nevertheless, such improvement is not
significant. As long as we use the simple model of
tight-binding band, most likely, the appearance of the
stepped structure in T(co) cannot be avoided. On the

0.7

4.25 4.5 4 ' 75 5.0 (eV) 5.25
I 1

UJ

Li
U
UJ
CD

~0 ~ 5—
CO

I—

~0 ~
3—

CL
CD

0 ' 7

CD

0, 6
CD

~ 0, 5

I—
CL,~ 0.4

0, 1
35

I I

40 45 50
PHOTON ENERGY

FIG. 3. Optical transmission spectra for the phase of Fig. 1.

3634 40 42

PHOTON ENERGY 5~
FICx. 4. Optical transmission spectra for the phase of Fig. 2.

Inset is the experimental curves for various temperatures.
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