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We calculate both the finite- and zero-frequency values of 7' ' for the zinc-blende materials
GaP, GaAs, GaSb, InAs, and InSb, by employing an empirical tight-binding band-structure tech-
nique, used previously to obtain the dispersion in the linear-optical properties. The momentum
matrix elements are calculated by three methods: by using k p perturbation theory together with
the experimental effective masses, by direct calculation using wave functions from a more funda-
mental theory, and by fitting E'&(0) to experiment. The calculated conduction-band —conduction-
band (c-c) momentum matrix elements were found to be approximately an order of magnitude
smaller than the experimental matrix elements, while the valence-band —conduction-band (v-c) ma-
trix elements agreed much better. When the experimental c-c matrix elements are used, good
agreement is found between theory and experiment for P ' for all materials except InAs and InSb
in the low-frequency region. For these latter materials, the discrepancy is accounted for by inade-
quacies in the empirical tight-binding band structure. It is proposed that Fong and Shen's [Phys.
Rev. B 12, 2325 (1975)] anomalously low results for X"'(0) could be due to calculated values for
the c-c (or U-c) momentum matrix elements which are too small.

I. INTRODUCTION

Calculation of the dispersion in the nonlinear-optical
properties of solids requires detailed information about
the band structure and wave functions throughout the
Brillouin zone (BZ). The first attempt to calculate the
dispersion in X ( I for second-harmonic generation (SHG)
in zinc-blende crystals was by Bell' in 1972. He avoided
the use of a full band-structure calculation by phenome-
nologically modeling the bands only around a few princi-
pal critical points, the points responsible for the main
features in the linear-optical absorption spectrum. Since
then, Fong and Shen (FS) have employed a pseudopo-
tential band-structure calculation of 7' ' in three zinc-
blende materials —GaAs, InAs, and InSb —and com-
pared their results with Bell' s. They found that, in gen-
eral, the agreement with experiment was improved over
Bell's results, and the main experimental features in the
spectrum of 7' ' were present in the theoretical curves.
However, significant differences still existed between
theory and experiment. In particular, for all three com-
pounds their results for the zero-frequency values of 7 ' '

were over an order of magnitude smaller than the corre-
sponding experimental values. In addition, there were
differences in the relative size of several peaks in 7' ',

and slight discrepancies in the position of the peaks. FS
attributed their underestimate of the zero-frequency lim-
it of 7 ' ' to their neglect of local field effects, dismissing
the possibility that the calculated momentum matrix ele-
ments were too small.

In this paper we employ an empirical tight-binding
(ETB) band-structure calculation of X ' '(co) for the
zinc-blende materials GaP, GaAs, GaSb, InAs, and
InSb, focusing in particular on the compounds GaAs,

InAs, and InSb, for which dispersion measurements have
been made. Although for semiconductors plane-wave
based band structure methods [such as the empirical
pseudopotential method (EPM)], in general yield more
accurate results than that for ETB techniques, the ETB
approach has the advantage of being substantially
simpler, and applicable to a wide variety of materials, in-
cluding even amorphous semiconductors. Previously
we used an ETB band-structure method to calculate the
dispersion in the linear-optical absorption spectrum for a
variety of semiconductors, with good results for most
materials, and it is of interest to determine how well
ETB techniques can be used to calculate the nonlinear-
optical properties of solids.

This paper has two other main objectives. First, an
alternative to the method of FS's for calculating g' ' is
adopted. Theoretical expressions for the real and imagi-
nary parts of 7' ' are presented which do not display
singular behavior in the limit of co~0. The imaginary
part of 7' ' is evaluated first, using an extension of the
linear analytic tetrahedra method (LATM) for zone in-
tegration, to nonlinear response functions. The real
part of X ' ' is obtained by using the Kramers-Kronig re-
lations on the imaginary part, as in evaluating the linear
response function. Beginning with an evaluation of the
imaginary part of 7 ' ' has two main advantages. It
simplifies the calculation in the same manner as when
evaluating the linear dielectric function, and it exhibits
P' ' in a form which can be related simply to the linear
imaginary dielectric constant [e2(co)] at co and 2co, thus
permitting easier correlations between critical points in
the band structure and structures in X' '(co). Finally, at-
tention is focused on the zero-frequency limit of 7' ' in
an effort to understand why FS's results consistently un-
derestimated X( ' (co~0) while all other theories, ''
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albeit not full band-structure techniques, do not. This
point is important, since nonlinear local-field effects in
solids are not understood, and FS claim that local-field
effects are important for nonlinear response functions in
solids, whereas they are known' to have a relatively
minor effect on the linear-optical spectrum of covalent
solids. Since the magnitude of 7' ' depends on momen-
tum matrix elements to the third power, it is clear that if
one wishes to establish if local-field effects are indeed im-
portant, one must first be confident that the magnitude
of the matrix elements is correct. To this end we calcu-
late the momentum matrix elements using three different
approaches. We obtain the experimental momentum
matrix elements from the observed effective masses at
the Brillouin zone center, as other authors have
done. "' The second method is to calculate the matrix
elements using tight-binding wave functions from a more
fundamental theory. ' Finally, the valence-
band —conduction-band (U-c) matrix elements are deter-
mined by fitting the calculated value of the dielectric
constant at zero frequency [ei(0)] to experiment. In the
case of conduction-band —conduction-band (c-c) matrix
elements, an independent means of determining them,
such as fitting ei(0), is not available. Only the experi-
mental values and the values calculated from the wave
functions are available.

Our results show that the values for the (v-c) matrix
elements obtained by fitting e&(0) to experiment are con-
sistently -20—30 Jo smaller than the experimental ma-
trix elements, but agree reasonably well with the values
calculated from the wave functions. The values for the
c-c matrix elements calculated from the wave functions,
on the other hand, were smaller than the experimentally
determined values by, in some cases, over an order of
magnitude. Clearly then, the approach of using the cal-
culated matrix elements and the approach of using the
experimental matrix elements would in our case yield re-
sults for X ~ '(0) which differ by over an order of magni-
tude. We feel that this, rather than the neglect of local-
field corrections, could be the reason for FS's anoma-
lously low calculated values for X' '(0). In our calcula-
tion for X ' ', we used the values for the (U-c) matrix ele-
ments determined from the last method (which agreed
fairly well with the second method for most compounds),
and values for the c-c matrix elements determined from

the first method (since the second method yielded poor
results, and the last method was inapplicable). Our re-
sults show that for compounds where the linear-optical
properties are well predicted, the values for X ~ '(0) agree
well with experiment.

Agreement between theory and experiment for the
dispersion in g ' ' is good for GaAs, and fair for InAs
and InSb. The ETB band-structure calculations had the
most difficulty in reproducing pseudopotential bands for
InAs and InSb, and consequently our results for X ~ '(co)
are not surprising. There exist differences between
theory and experiment even for pseudopotential calcula-
tions and for our calculations (for all compounds); how-
ever, in view of the degree to which the experimental
data in the literature varies, a conclusive evaluation of
the theory is difficult.

Therefore, we see that for cases where the linear-
optical properties are well reproduced, empirical tight-
binding methods can indeed be used to calculate the
dispersion of nonlinear parameters. In cases where the
calculated linear properties are not as good, the
discrepancies in the dispersion of the nonlinear-optical
properties are naturally larger. This demonstrates that
the dispersion in nonlinear parameters can be used as
more sensitive tests of band-structure theories, notwith-
standing the difficulty in making measurements of non-
linear properties.

The rest of the paper is organized as follows. In Sec.
II the theoretical expressions for the real and imaginary
parts of g ' ' are presented in a form which is nondiver-
gent in the zero-frequency limit. In Sec. III the method
of calculation of X ' is discussed (without reference to
the momentum matrix elements), and in Sec. IV the
three methods for determining the momentum matrix
elements are presented. In Sec. V the results for the ma-
trix elements X ' '(0) and dispersion in X ~ ' are presented
and discussed. Finally, in Sec. VI a brief summary is
given.

II. THEORY

The theoretical expression for 7' ' is obtained from
standard perturbation theory' and, for second-harmonic
generation, the expression reduces in the case of cubic
symmetry to

e, dk 1 1 1X (co)=—
2 m co, . i Hz 4~3 'J i ' (E, —2E)(Ei, E) (Ei; +2E)(E,; +E—) (E,; +E)(Ei; E)—, [ppipi l + +

[where E, =E E, , etc., E =fico+—i' (re~0), and the g,'J~ means that i must label an occupied valence-band state
and j&l are conduction band indices. This contribution, therefore, is a three-band term. There is a one-band contri-
bution (i =j =1 and all three refer to a valence band) which vanishes identically, and a two-band contribution
(i =j&l;i =l&j where, e.g. , if i =j, then i refers to a valence-band state and i refers to a conduction-band state)
which vanishes when inversion symmetry of the Brillouin zone (time-reversal symmetry) is used. All of these contri-
butions have been discussed in detail by Aspnes. ' In addition, there is the contribution of the virtual hole process to
consider. For the virtual electron process the three-band expression requires that i =valence band, j, l =conduction-
band states, so we have a valence-band —conduction-band —conduction-band (or U-c-c') transition. For the virtual hole
process, we have a v-v'-c transition. Aspnes' considered this term and demonstrated that, for the materials dealt with
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in this paper, it will be negative and more than an order of magnitude smaller than that of the virtual electron pro-
cess. We therefore ignore the virtual hole contribution in this paper.

When inversion symmetry is explicitly included for the three-band term, one has' '
p; (k ) = —p,*"( —k )

= —p, ( —k) so that putting k~ —k is equivalent to interchanging j and l and multiplying by —1. The expression
for g ' becomes

3
i eh, dk I (E,, +2Ei )

(E; Ei; )—

(Ei, E—)(EI, E)—

(2E,; +Ei; )

(Ei, —4E )(E, E—)

(2)

If this expression is separated into partial fractions, the terms 1/E and —1/E vanish identically (without employing
sum rules) and so the remaining expression is explicitly nondivergent as E~0. To obtain the real and imaginary
parts of Eq. (2), one puts E =fin+i rt and takes the limit as g~O, in the same manner as for the linear response func-
tion. From time-reversal symmetry we have

[p,,p, ,p„)„+ = . — . —I
—k k k k

so that only the imaginary part of the matrix element product survives. Therefore, 7 ' ' can be written as

7"'(~)=V "(~)+iV"' (~), (4)

where P' ' and 7' ' are both real, and given by

3
i lie, dk 16 (2Eii E,; )—(~)= + 3 pij'piipii 2 2 + 2

—(j~l)

(Sa)

166(Ei, —2E) (2Ei, Ei, )6(Ei, —E)—
(5b)

in agreement with earlier results. ' It is straightforward
to verify that X '(co) and 7 (co) satisfy the Kramers-
Kronig relations, as required by causality, ' ' viz.

will also show "double resonance" structure when

E, -2E&, for the 2' term, or when E&, —2E, for the co

term. Consider first the 2' term. If E, has a critical
point at 2', but Ei, does not (at the same point in the
BZ), then if the double resonance condition is satisfied
only rapid oscillations of 7' ' will result. This is ob-
served in practice for almost all materials; however, this
does not result in a large peak. If, on the other hand,
Ei, also has a critical point (at the same point in the BZ),
and the double resonance condition is satisfied, then the
response can be greatly enhanced, being either positive
or negative depending on whether 2E&; is less than or
greater than E, at the critical point. This last condition
is much more unlikely, and we presume that this is the
condition implied by FS in their discussion of InSb. We
reserve the term double resonance to apply to this last
case. The same argument holds true for the co term,
with E-, resonant at Ace and with E&, -2E, . Hence, con-
trary to what one may expect, the double resonance
structure occurs where both ez(2') and ez(co) have struc-
ture, not where neither of them have structure.

Another quantity of interest, both experimentally and
theoretically, is X' '(0). Letting co~0 in Eq. (5a) and
rearranging this expression we obtain

and the corresponding inverse relation, where P refers
to the principal part of the integral. Thus one need only
evaluate 7 from a band-structure calculation. As in(2 j"

the case of the linear susceptibility, the imaginary part
of 7' is substantially simpler to evaluate than the real
part, owing to the presence of the Dirac 6 functions.

We next consider the structure in 7 ' ' to be expected
from a given band structure. One can see from Eq. (Sb)
that g' ' contains two pieces, one which is similar in
nature to ez(2') and one which is similar to ez(co). We
call the first term, which is —6(E, —2E), the 2' term
and the second term, which is —6(E, E), the co term. —
If the coefficients in front of the 6 functions were con-
stant, then (ignoring any k dependence of the momen-
tum matrix elements) X ~ ' would simply be the sum of
terms proportional to ez(co) and e~(2'), and in fact this
was the basis for simplified models ' used to determine
the spectrum of X' '(co). It is evident from Eq. (Sb) that
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EI; (2EI; +E; ) E—,, (2E; +E(; )

+ 2 g 3 I pijpjlpli ] 4 44 ji li

which agrees with Aspnes' ' result (note that Aspnes' ' '

uses e =+
~

e
~

whereas other authors'' have used
e = — e,

~

). This expression is simpler to evaluate than
X (hI) primarily because it involves no resonance
denominators, and hence can be used as a check for the
results of Xi '(hI) and 7 (co). From Sec. IV it will be
seen that at the I point (k =0), ( p,"p I pl, ]

i A—(A'/a„) where 2 is a positive real (dimensionless)
constant, i refers to the top three (degenerate) valence
bands, j refers to the bottom (s-like) conduction band,
and 1 refers to the top three (degenerate) conduction
bands which are p like. Therefore, as Aspnes' pointed
out, if EI, ~ E,-, as it is in all of the materials we studied,
one will obtain X ' '(0) & 0, as observed.

III. METHOD OF CALCULATION

We evaluate 7 ' ' employing ETB bands used previous-
ly to calculate the dispersion in the linear-optical prop-
erties with good success. We refer the reader to that pa-
per for the formalism of the model and the results of the
calculation. The ETB method does not provide detailed
information about wave functions, and we defer the dis-
cussion of the determination of the momentum matrix

y
Irreducible zone

(8)

where C, &
——0 unless i&j&k and unity otherwise, and

gz(hI) is the contribution of one tetrahedron in the irre-
ducible zone to X' '(co), taking into account the 48-fold
symmetry of the zone. We explicitly write the result for
g&(n) in esu units which, using the results from the last
section, is

elements until the next section.
In order to integrate Eq. (5b) over the irreducible BZ

segment, we employ an extension of the linearized ana-
lytic tetrahedral method (LATM) (Ref. 9) to the non-
linear response function. The details of the application
of this method are presented elsewhere, and only a brief
summary and the results of the method will be presented
here. The bands are linearized over tetrahedral cells
with the energy derivatives determined by the band ener-
gies at the tetrahedra vertices. The integration of Eq.
(Sb) over a tetrahedral cell can then be carried out
analytically, and it is found that the result (as in the
linear case) is independent of the geometry of the cell.
The result is

g~(hI) =—
3

g F, (lk)[g (Ik)6("E, —2fihI)+g2(k)6(E, fihI)], —
f1ccP a

(9)

g Pg ( I PI) P/IPIi ] )—:CFIII(k)I
R ab

where 2 Ry=27. 212 eV, all energies on the right are in eV, ao ——ao/ab with ao being the lattice constant, ab is the
Bohr radius, and U' is the dimensionless volume (ao= 1 ) of the tetrahedron. [The factor of 4. 32X10 arises because

' has dimensions of (e /E ) where E is energy, and (e'/E )„„=4.32)&10 '/(E), v.] Here F,,;(k) is defined by
3

(10)

where QIIPII indicates a sum over the 48 transformation operators of the cubic group. Note that the inversion opera-
tor is included since the Brillouin zone has inversion symmetry, even though the direct lattice does not. With this
definition FII(k) is real and dimensionless.

The 48-fold symmetry of the BZ is taken into account by the following. The set of cubic transformation operators
(gII PII ) operating on the matrix element product appearing in Eq. (5) give

g FR [ Pry pjl ph ] 8C [P&&PIIPh +PiIPIIPli +Pij PIIPh +PijPIIPh +PrIPIIPli +PIIPIIPh ]
R

where C is the tensor appearing in Eq. (8), and only the imaginary part of the product is evaluated. Therefore, there
is only one independent element for 7 ' ' in cubic materials, namely I', p3 ~

In Eq. (9), g, (k) and gz(k) are determined by which region of the tetrahedron E, falls in. The regions are defined
by

Eo '&E' '&cI ' (region I),
c', ' & e™& eiz ' (region II),

+™( +3 (region III )

where e' '=E; and cio ', eI ', e2 i, and E3
' are the energies (E, ) at the vertices of the tetrahedron in ascending or-
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der. We will simply list the result if E; is in region I, and refer the reader elsewhere for the results from the other
regions. For region I, we have

g, (k)=
(m) p (n)

s
(m)

Eso
(n) (m)

(n) (m)
s

&(m) 2 (n)
u

(m)
&QO

(n) (m)

ln
(n) (m) (12a)

and

g2(k)=
(m)

~SO

{m)

+

(n)+ (m)

(&(n)+ &(m) ) ln + (2&(m) e(n)
) ln(n), (m)

s

{n)+ (m)

(E(")+c( )) ln
(n) ~ (m)
u

(m) (n)
s

2~(m) ~(n)
t

(m) (n)

ln
2~(m) ~(n)

(12b)

where c'"'=EI, , and c,", c',"', and c.'„"' are the energies in
ascending order at the corners of the triangle consisting
of the plane E,- =c.' '=const inside the tetrahedra. The
remaining quantities in Eq. (12) are defined as

and

(m) (n) (m) (n)
us uo ~so Eso Euo

(m) (n) (m) (n)
~ur ~QO ~tO EtO ~uo

(m) (n) (m) (n)
st ~SO ~to ~to ~so

(13)

( )= ( ) —( )

QO u 0

where c™is the energy E, evaluated at point u, defined
as the k vector of the tetrahedron vertex on the line
k„—ko, and similarly for c.,'

The integration is carried out by dividing the irreduc-
ible BZ segment into parallelepipeds and further divid-
ing these into six constituent tetrahedra. The matrix ele-
ments are assumed constant over all tetrahedra within
the same parallelepiped. This scheme has the obvious
advantage that a factor of 6 is gained in resolution
without having to diagonalize the Hamiltonian at any
points other than the parallelepiped vertices. The disad-
vantage to this scheme is that the irreducible BZ is not
evenly divisible into parallelepipeds. The BZ boundary
is accounted for by including the tetrahedron contribu-
tion if at least two of its vertices are inside the BZ and
excluding it otherwise. Using this scheme, when the
band energies are obtained at 88 points in the irreducible
BZ, the volume obtained is correct to better than 1%.
In addition, the calculations are performed with an ener-

gy resolution of 0.05 eV, and so any structure in
on this scale is likely due to numerical artifacts.

matrix elements at the Brillouin zone center [this can be
applied to both the (v-c) and (c-c) momentum matrix
elementsj; (2) we calculate the matrix elements using
wave-function orbitals obtained from a more elaborate
band-structure calculation (3) we calculate the (v-c)
type matrix elements only to a particular nearest neigh-
bor and then adjust the matrix element, using only one
scaling factor, at the Brillouin zone center to yield the
experimental value for [e)(0)]. Clearly this last ap-
proach can only be applied to the U-c type matrix ele-
ments, since the c-c matrix elements do not appear in the
expressions for e)(cu). Below, we briefly outline in detail
each of these three approaches.

The approach taken to experimentally determine the
matrix elements was first introduced by Cardona. '

First, an expression is obtained from k.p perturbation
theory for the efFective mass at the I point of the
lowest conduction band, which is nondegenerate (s like)
in all the materials studied. Figure 1 shows the band
structure obtained for GaAs along with our notation.
For nonpolar materials, the matrix element between the

IV. MOMENTUM MATRIX ELEMENTS

Since the magnitude of X' ' depends directly on the
values chosen for the momentum matrix elements, we
devote considerable attention to the determination of
these matrix elements. Three approaches are considered
to determine the matrix elements: (1) we use a semi-
empirical model introduced by Cardona' and used by
Bell' and Aspnes, ' together with experimental data of
the conduction-band efFective masses, to determine the

x

FICz. 1. Band structure for GaAs from Ref. 7. The notation
used for the band energies at I" is as follows. Points 1, 2, and 3
are denoted as I »(I 25 ), I;(I z ), and I »(I"» ) for polar (non-
polar) solids. In addition, the lowest valence-band point (not
shown) is denoted by j."&(I

&
).
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1+——I(1', IpII'&I
mij

2 1
X +

Eo Eo+~o
(14)

where cubic symmetry has been assumed, Eo is the
direct energy gap [=E(I 2 ) E(I—z~ )] and Ao ( &0) is
the energy of the split-off valence band at I . This allows
one to determine

I
( I 25 I p I

1 2 &
I

for the nonpolar ma-
terials, given the experimental effective masses. For po-
lar materials, Cardona introduced an empirical model
wherein the I », I z~ bands in a fictitious nonpolar solid
interact via an antisymmetric perturbing potential, V.
Only the results from that model, and Aspnes' adapta-
tion of it, will be presented here. We have

(I', IpI 1', & „„=+APP, '

p I

I l &...,= —'ap,

&I-;IpII-;, &,...,=+ PP,
C

(15a)

(15b)

(15c)

where

2 —1/2

1+ 8' (15d)

[E + (E2 +4I/2)1/2]

t [(Ep )2 E2]1/2

I » and I 2 bands is zero at the zone center, so the
effective mass for the lowest (nondegenerate) conduction
band can be written

E, is the energy of the I ». point in the fictitious nonpo-
lar solid, Epi is the energy of the I » point (relative to
the valence-band maximum) in the polar material, and
Eq. (15) serves as the definition for P and Q. In Eq. (15),
p is a unit vector in the appropriate direction, different
for each matrix element. For notational convenience, we
refer to the matrix elements in Eqs. (15) as U-c, U-c', and
c-c', respectively. Note that since ( I 1 p I

I 1& =0 even
for polar materials, the three matrix elements appearing
in Eq. (15) are sufficient to determine X' ' if the matrix
elements are assumed to be constant. The result is that
at the I point (p/p~ipi, ] = —1'A [xyz](filab) where A

is a positive real dimensionless constant, and [xyz ]
means some permutation of xyz, depending on which of
the degenerate I », I » bands are present. The matrix
elements and band-gap energies (E, ) for the fictitious
homopolar solids can be obtained by using the results
from Si, Ge etc. , and an interpolation scheme which as-
sumes that the matrix elements and band-gap energy E,
depend only on the lattice constant. Aspnes in fact did
this, and we adopt the same interpolation scheme as his.
The matrix element ( I 1& I p I

I 1& & must be obtained
from the experimental determination of the valence
bands at I, which are significantly more complicated
than the I; conduction band. ' In addition, the values
for this matrix element vary by less than 10% from ele-
ment to element" and in fact Cardona assumed the
same value of this matrix element for all materials.
Therefore, we do not present the details of the deter-
mination of this matrix element. Once the matrix ele-
ments for nonpolar materials are determined, the matrix
elements for the polar materials can be obtained, and the
effective mass at the I

1 point calculated and compared
with experiment ~ The equation for the effective mass at
I ', for polar materials is'

m, 1 I ~25'
I p I

~2'
I nonpolar 1I; =1+—

EP 3

2 1

EP, EP+aP,
+

(EP1 —Eo )

AEP

where

EPO E(1;) E(I 1——&) (polar), —

PEP =E (I ») —E (I;) (polar),

and bpa ( & 0) is the energy of the splitoff valence band at I in the polar solid.
We now turn our attention to the second method of calculating the momentum matrix elements. Here, we use the

empirical tight-binding form of the wave functions, 7 and then use the orbital wave functions of Huang and Ching16 to
calculate the matrix elements. The momentum matrix elements take the form

p/(k)=N g II" O'„U;* W',„g (b (0)
I p I

a "(bR) &e'"'~R, (17)
m, n b,R

where b (0) & is a bond orbital located at the origin
pointing in one of the four bonding directions,

I

r2 (b,R) & is an antibonding orbital located at an fcc
lattice site (AR) pointing in one of the four bonding
directions, U,-, 8'„are the eigenvectors which diago-
nalize the 4X4 valence or conduction-band Hamiltoni-

ans, respectively, 0,", Q' are normalization constants
for the bonding and antibonding basis states, and N is
the atomic density. There is a corresponding equation
for the c-c' matrix elements. The bonding and antibond-
ing orbitals can be written in terms of the sp hybrids in
the usual way and the hybrids, in turn, are linear com-
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binations of the s and p orbitals on a particular atomic
site. For the sp orbitals, we use the results obtained by
Huang and Ching' with their semi-ab-initio tight-bind-
ing calculation. We use only the valence 5 and p orbit-
als, consistent with the minimal sp basis set approach
used by the empirical tight-binding method. We feel
justified in neglecting the d (or core-state) orbitals in the
determination of the momentum matrix elements for two
reasons. First, the inclusion of d-type orbitals is not
consistent with the dependence of the matrix elements
on lattice constant, which is seen in the next section to
predict the experimental effective masses fairly well.
Second, the d-type orbitals are much more localized than
the s or p orbitals, ' and hence the contribution of the
d-type orbitals is expected to be small.

The s,p orbitals are of the form'

so the eigenvectors in Eq. (17) in general are dependent
on that model. However, at the Brillouin zone center
the eigenvectors are determined by symmetry and are
therefore model independent.

The last method for determining the u-c type matrix
elements is to evaluate the sum in Eq. (17) only to a par-
ticular nearest neighbor, and then adjust the matrix ele-
ments at the BZ center so that the calculated value of
E&(0) agrees with experiment. The matrix elements are
evaluated to the D nearest-neighbor bonds as defined in
Ref. 7. This is necessary to yield reasonable values for
the ratio of the u-c and u-c' matrix elements, since only
one adjustment constant was used for all v-c type matrix
elements. We now present the results of the calcula-
tions.

V. RESULTS

2—a, rc, „
(18)

where I,II refers to the location (i.e., on an anion or cat-
ion) of the orbital, the a; are a set of Gaussian exponents
ranging from a& ——0. 15 to a&4

——250000, r is in units of
Bohr radii, and there are corresponding equations for
P~(r) and P'(r). The use of Gaussian orbitals makes the
calculation of the various momentum matrix elements
between the localized orbitals analytic. In order to
evaluate the matrix element in Eq. (17), two additional
parameters are required, the polarity a and hybrid
overlap parameter, S. The overlap parameter is calculat-
ed directly from the given orbitals, and the polarity
values are taken from our ETB results. The values of
various parameters for all materials are shown in Table
I. The polarities arrived at in that paper agreed fairly
well with values from other sources' ' and, in any case,
the u-c matrix elements did not vary significantly when
the polarity was changed by as much as 30%. The c-c'
matrix elements showed a stronger dependence on polar-
ity as expected (since they vanish in the limit of zero po-
larity); however, as will be seen in the next section, the
dependence on polarity is much weaker than what would
be required to account for the difference between the cal-
culated and experimental values of the c-c' matrix ele-
ments. The sum in Eq. (17) is carried out to conver-
gence, which included up to the seventh nearest-
neighbor contributions for all materials. The bands are
calculated using the empirical tight-binding method, and

We briefly review the results for the ETB calculation
of the linear-optical properties, before presenting the re-
sults of this paper. The overall agreement in Ref. 7 be-
tween theory and experiment for the dispersion in cp(co)
was found to be fairly good for GaP, GaAs, and GaSb;
however, the results for InAs and InSb were not as good.
A common discrepancy in the conduction bands was the
position of the maximum in the lowest conduction band
in the (100) direction. This maximum typically occurred
too close to the zone boundary and had the combined
effect of decreasing the E2 peak in ez(co) and increasing
the effective mass (and hence the density of states) at the
I 2 point. This last effect produced a rise in e2(co) at the
band edge which was sharper than the observed increase,
and was most prominently seen in InAs. We defer fur-
ther discussion of the bands until the presentation of the
results for the dispersion in I'' '. We now turn our at-
tention to the values obtained for the momentum matrix
elements, and the zero-frequency values for 7 ' '.

A. Momentum matrix elements and X ' '(0)

Table II shows the results for the matrix elements ob-
tained by the three methods outlined in Sec. IV, and
Table III shows the experimental and calculated
conduction-band effective masses. From Table III, it is
clear that the empirical method of determining the ma-
trix elements (method 1) succeeds fairly well in predict-
ing the experimental effective masses in the polar materi-
als. Generally, the effective masses are overestimated,
indicating that perhaps either the u-c matrix elements

TABLE I. Various parameters for the materials studied. The bond polarity (a~) is taken from

Ref. 7.

Element
e&(0) (expt. )

Hybrid overlap
Bond polarity (a~)
Lattice constants (A)

CzaP
9.1

0.70
0.52
5.451

Material parameters

GaAs
10.9
0.65
0.50
5.658

GaSb
14.4
0.64
0.44
6.095

InAs
12.3
0.62
0.53
6.050

InSb
15.7
0.60
0.41
6.470
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TABLE II ~ Momentum matrix elements determined by the three methods outlined in the text.

GaP

Matrix
element

I
Up-C

V-C
I

V-C
IC-C

Matrix elements'
Experiment,

method 1

0.629
0.525
0.294

Theory,
method 2

0.184
0.299
0.374
0.011

Theory,
method 3

0.388
0.438
0.561

GaAs Up-C

U-C
I

U-C
I

C-C

0.616
0.520
0.242

0.249
0.367
0.369
0.020

0.321
0.422
0.435

GaSb Vp-C

U-C

U-C
IC-C

0.575
0.508
0.229

0.257
0.371
0.359
0.031

0.277
0.371
0.366

InAs Vp-C

U-C
I

U-C
IC-C

0.561
0.510
0.279

0.238
0.368
0.353
0.088

0.193
0.279
0.273

InSb I
Up-C

U-C
I

V-C
IC-C

0.533
0.500
0.239

0.259
0.388
0.339
0.050

0.190
0.275
0.243

'Shown here are the magnitude of the matrix elements in units of (fi/aI, ).
Matrix elements are defined as follows. vo-c'=

(
(I", ~ p ~

I;, ) ~; v-c —=
(
(I',

~ p ~

I", ) (;

are underestimated, or that the c-c' matrix elements are
slightly overestimated, as obtained by method 1. From
Table II, it is seen that the values of the v-c matrix ele-
ments calculated from the orbitals (method 2) in general
agree reasonably well with the values obtained by fitting
ei(0) (method 3), and these values are in turn consistent-

ly -20—30% lower than the experimental values. In
the case of InAs and InSb, the matrix elements obtained
by fitting ei(0) are reduced relative to the calculated ma-
trix elements. The dispersion in ez(co) for InAs and InSb
is not reproduced as well by the empirical band struc-
ture, and so for these elements, e, (0) is overestimated
and the matrix elements determined by fitting e, (0) are
consequently underestimated. Other calculations,
which give good agreement between theory and experi-
ment for ei(0), do not explicitly state the calculated

values for the momentum matrix elements. In our case,
if the calculated values of the matrix elements are used,
fairly good agreement between theory and experiment
would result for e, (0), except for InAs and InSb.

The values obtained for the c-c' matrix elements, on
the other hand, are consistently smaller than the experi-
mentally determined values by, in some cases, over an
order of magnitude. The exact reason for this discrepan-
cy is not clear, except that in general tight-binding
methods produce better results for valence bands than
for conduction bands.

We turn now to the zero-frequency limit of 7 ' '.
Table IV shows our results for the theoretical calcula-
tion, along with the results from other calculations and
the experimental values. Our values for 7' ' were ob-
tained by using the v-c matrix elements determined by

TABLE III. Effective masses at the I; point. The calculated values were obtained using Aspnes'

(Ref. 13) interpolation formulas for P, Q, and E(1 '» ) (for homopolar materials), together with band

energies from Ref. 24.

Effective masses at I
&

Compound
m */m (Expt. )'
m */m (Calc. )

GaP
013
0.12

GaAs
0.070
0.078

GaSb
0.047
0.070

InP
0.073
0.089

InAs
0.026
0.026

InSb
0.015
0.022

'From Ref. 15.
This is the calculated value from Ref. 15, there being no experimental data for this element.
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TABLE IV. Theoretical and experimental results for g' '(0).

Results for g (2)(0)a

Element
Our theory
Fong and Shen
Aspnes
Expt b

Expt. d

Expt. '

GaP
38

24
52
20
20

GaAs
96
4.0

38
90
43
34

GaSb
230

70
300

115

InAs
450

12.5
64

200

76

InSb
920

3.0
110
330'

230

'g ' '(0) is expressed in units of 1 & 10 esu.
From Ref. 26.

'From Ref. 3. Note that this value was measured at A. =1.06 pm.
From Ref. 27.

'Obtained by using Levine and Betheas' (Ref. 27) revised estimate of P&23(0) for GaP, together with
the relative measurements of Ref. 26. The data for InSb were obtained by using the revised value of
736'(0) for KDP from Ref. 27 together with the data from Ref. 3.

method 3 and the c-c matrix elements determined by
method l. The results of X (0) for GaP, GaAs, and
GaSb agree quite well with the data from Ref. 26, while
the value for InAs is overestimated by a factor of -2.
The value of X' '(0) for InSb is not known, since the ex-
perimental value was measured at X=1.06 pm. In this
range, the theory agrees in overall magnitude with
experiment; presumably, however, the overestimate of
X' '(0), as seen for InAs, occurs for InSb as well. This
overestimate of X '(0) for InAs and InSb arises from
the same features in the band structure which cause
E, (0) to be overestimated —namely that the contribution
of the Eo optical peaks is too large, owing to the con-
duction bands being too flat at the I point. Even
though this is partially compensated for in the v-c matrix
elements by fitting ei(0), X' is much more sensitive to
deficiencies in the band structure. From Table IV it is
evident that our values for X' (0) overestimate the ex-
perimental results of Ref. 27 for GaP and GaAs, which
are claimed to be more accurate than previous results.
In addition, if the revised absolute value of X' '(0) for
GaP is used to rescale the relative measurements of Ref.
26, the values of X '(0) for the other elements are de-
creased by roughly a factor of 2.5. If the lower values
for X ~ '(0) were correct, it would imply that either the
contribution from the Eo(I ) optical peak for GaP,
GaAs, and GaSb is overestimated (although not to the
extent that it is for InAs and InSb), or that the experi-
mental values of the c-c matrix elements are too large.
Probably both factors are responsible since, as we will
see in the next section, even for GaAs the contribution
of the Eo optical peak is somewhat larger in our theory
than in FS's; in addition, an overestimate of the experi-
mental c-c' matrix elements seems possible, since the ex-
perimental v-c matrix elements were also larger than the
matrix elements determined by fitting ei(0). The results
of Aspnes' were obtained by replacing the band energy
denominator in Eq. {7) with an average value equal to
the E& optical peak energy, and agree quite well with the
lower experimental values in Table IV. If these lower
values for P' '(0) were correct, it would imply that the
major contribution to g ' '(0) does indeed come from the

E& optical peak.
In any case, all of the calculated values for g ' '(0) are

comparable to, or larger than, all of the experimental
values. This is in contrast to the results of FS which, for
GaAs, InAs, and InSb, were all at least an order of mag-
nitude too small. They attributed this to the neglect of
local-field corrections; however, as seen from Table II, if
the calculated values for the c-c' matrix elements are
used, we would obtain values for g (0) which would be
comparable to FS's results. Since FS do not state their
values for the momentum matrix elements, we must con-
sider this a possible explanation for their discrepancy,
rather than the supposed local-field corrections. One
further point we wish to make is that local-field effect
calculations in silicon' show that the value of e', (0) is
actually decreased by 10—15 %%uo, not increased as the
simplistic use of local-field correction factors for insulat-
ing solids would predict.

Finally, we mention that X ' '(0) was calculated both
by using the LATM to evaluate +' ' and then using the
Kramers-Kronig relations to obtain P I '(co), and also by
evaluating X ' (0) directly from Eq. (7) (taking the
bands to be constant over a particular tetrahedron). For
all elements the second result was found to agree with
the first, to within 5%%uo for GaP, GaAs, GaSb, —15% for
InAs, and by -20%%uo for InSb. The increase of this
difference for InAs and InSb reflects the fact that the
bands vary more rapidly (the effective mass at I is
smaller) for these elements than the other elements. In
addition, P ' '(0) was calculated both by assuming that
the matrix elements were constant {taken to be their
values at the I point), and also by allowing the matrix
elements to vary over the Brillouin zone. For all ele-
ments, the diff'erence in X' (0) for these two methods
was on the order of 5%%uo.

B. Dispersion in g ' '(m)

We now turn our attention to the calculations of the
dispersion in I ' '. We discuss results for GaAs, GaSb,
InAs, and InSb and simply present results for GaP, for
which no dispersion measurements exist.
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Figure 2(a) shows the results for
~

X ' '(n~)
~

for GaAs,
as well as experimental data from various sources. In
general, the agreement between theory and experiment
for GaAs is quite good (in view of the variation of the
experimental data), particularly the prediction of the
large dip near 2.2 eV and even the shoulder at -2.5 eV.
[The scale for the theoretical curve in Fig. 2(a) has been
adjusted slightly to match the peaks of ~X' '(co) ~, but
still yields a value for P ' '(0) which is within the experi-
mental limits. ] One significant difference between FS's
results and ours is that in our case the first peak at
-0.75 eV, due to the 2' resonance with the direct band
gap at I (Eo peak in the linear-optical spectrum), is
much more pronounced. This is due to the fact that the

density of states at I
&

is higher than it should be. The
peak at —1.5 eV is also larger in our case, being compa-
rable to the two large peaks at -2.2 and -2.8 eV. To
understand this feature, we show the real and imaginary
parts of X( )(cu) in Fig. 2(b). Also, the contributions of
the 2' [ —o(E, —2firo)] and co [ —5(E, fico—)] terms to
X' ' for the band numbers i =3,4, j =5, I =6 (where i
refers to the valence bands and j, l refer to the conduc-
tion bands, and the bands are numbered in increasing or-
der of energy) are shown in Fig. 2(c), as well as the con-
tribution of the 2' term to 7' ' for i =3,4, j =6, and
1=5. We call these three terms, terms 1, 2, and 3, re-
spectively. The fact that the contribution from term 1 is
always positive, whereas term 2 has oscillations, can be

I aAs GaAs

(a)

3 2 3
j~

C3

Ener gy (eV)

GaAs

Ener gy (eV)

3
j~ 2

C3

—6 '

Ener gy (eV)

FIG. 2. Results of j' ~ ' calculations for GaAs. (a) Theoretical and experimental results for
~

X ' '(co)
~

. The experimental results
from 1.95—2.7 eV are from Ref. 6, the results from 1.1 —1.7 eV (dashed-dotted line) are from Ref. 4, the results from 1.2 —1.8 eV
(dashed line) are from Ref. 5, and the data points denoted by + are from Ref. 3. The data from Ref. 5 are in arbitrary units. The
bars near zero frequency indicate the two experimental results listed in Table IV. The relative data in Refs. 3, 4, and 6 were con-
verted to absolute units with the revised values of P"'(0) for potassium dihydrogen phosphate (KDP), ammonia dihydrogen phos-
phate (ADP), and quartz, from Ref. 27. For all figures, the element of p" (co) shown is 7'l23, the only independent element for cu-
bic materials. (b) Real (solid line) and imaginary (dashed line) parts of P' '(co). (c) Contributions from various terms to P"' . The
thick solid line is the 2' contribution for bands i =3,4, j =5, I =6, and the dashed line is the co contribution for the same bands.
The solid line is the 2' contribution for bands i =3,4, j =6, I =5.
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easily understood from Eq. (5b). The contribution from
the 2' term is positive because there are (by definition)
no bands between the lowest conduction band and the
upper valence band, and so the denominator is positive.
For the co term, on the other hand, the denominator will
change sign whenever the second conduction band
crosses the 2~ point, which most noticeably happens
along the (100) direction before the peak in the lowest
conduction band. This feature was discussed in Sec. II,
where it was pointed out that this is distinct from a dou-
ble resonance (as defined in that section).

For GaAs, from Fig. 2(c), we see that the peak at 1.5
eV in 7' ' is in fact predominantly due to the 2' reso-
nance with the E, optical peak (from the critical point
along the A direction) and not from the cu resonance
with the Eo optical peak (at the I point) in agreement
with FS's conclusion. The peak at 2 eV is shifted down
relative to FS's results, and in fact is in closer agreement
with experiment. FS attribute this peak to the 2' con-
tribution of the E2 optical peak, along (100) [or simply
b, ( I(4—5), where 4 and 5 are the band indices in order
of increasing energy]. Figure 2(c) shows that the contri-
bution of term 1 does show a peak at -2.3 eV, but in

our case this peak is actually responsible for the dip in
J' '

~, as it interferes destructively with the b. ' (4 5)—
contribution and the A' "'(4—6) contribution. The large
peak at —2.7 eV in Fig. 2(a) arises mainly from the
b, ( "'(4—6) contribution, and much less from the
A' '(4 —5) contribution, in partial agreement with FS's
results. Note that the contribution of b, ~ I(4 —6) (term
3) in Fig. 2(c) is predominantly negative because the ma-

trix element product is negative, since j =6, l = 5.
We now turn to the theoretical results for InAs and

InSb, shown in Fig. 3. The most striking feature in

~

X ' '(ru)
~

is the presence of the large peak around
-0.25 eV and -0.15 eV for InAs and InSb, respective-
ly. This peak is due to the contribution of the 2' and m

terms at I (Ez optical peak) from the lowest conduction
band. Its large magnitude is due to the lower effective

InA~, InSb
2. 4

1-2

Enny gy (aV)
FICs. 3. Theoretical results for

~

g' '(cu)
~

for IuAs (dashed
line) and InSb (solid line).

I nAs

2

p

Engr gy (aV)

FIG. 4. Theoretical and experimental results of g' '(co)
for InAs. The experimental results from 1.1 —1.7 eV are from
Ref. 4, the results from 1.95—2.7 eV are from Ref. 6, and the
data denoted by + are from Ref. 3.

mass (and consequently, higher density of states) at the
I point than what is obtained from more accurate band
structures, combined with the 1/E dependence of the
response function. This is also responsible for X I '(0)
being significantly larger than the experimental result for
InAs (and presumably for InSb as well). Because the
band gap is smaller for InSb than InAs, the effect is even
larger for InSb and hence the value for X ' '(0) is further
enhanced. How large the peaks actually are, however, is
not known since the experimental data [Fig. 5(b)] do not
cover this range. At frequencies where the effect of this
large peak is absent, the theory in fact agrees quite well
with experiment, in terms of the overall magnitude of
X' '(0) (cf. Figs. 4 and 5). The theoretical curve for

~

X' '(ru) ~, along with the experimental data, is shown
in Fig. 4 for InAs. The shoulder near 1.2 eV arises from
the 2m contribution of the E& optical peak, as FS found.
The fact that our results do not show two peaks rejects
the fact that we have ignored spin orbit coupling in this
calculation. The peak at —2.0 eV arises from the ~
contribution of the E, optical peak, as well as the 2'
contribution from the E2 optical peak (along b, ). This
last contribution extends out to —2. 8 eV.

The theoretical and experimental results for InSb are
shown in Fig. 5. While our results seem to agree with
the peak near 1.5 eV as observed in Ref. 3, the data from
Ref. 4 disagree sharply with this. In any event, we
direct our attention to the band-structure origins of the
structure in X' (cu). The shoulder at —1.2 eV is due to
the 2' resonance with the E, optical peak, as FS found.
The large peak in Fig. 5(a) at —1.5 eV arises from two
sources, as seen from Fig. 5(c). There is a contribution
from the cu term at the E, optical peak (A) shifted down
from —1.9 eV where it appears in other band struc-
tures, and a contribution from the 2~ resonance with
the E2 optical peak which is shifted down from —2.2 eV
where it appears in FS's results. The contribution from
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the second piece is shifted because the second conduc-
tion band is lower than that of the pseudopotential
bands in the (100) direction. The large size of the peak
at 1.5 eV in Fig. 5(a) could be due to a double resonance
enhancement, as FS claim, except shifted down slightly
in our case. The broad peak at 2.0—2.7 eV is primarily
due to the 2' resonance with the E2 optical peak from
the second conduction band.

Figure 6 shows the results for GaSb, for which only
one set of experimental results exists. The data in that
paper are in arbitrary units, and so comparison of the
absolute magnitude of 7' ' is not possible. The experi-
mental data do not show the large peak at —1.5 eV as
seen in the theory; however, the actual second-harmonic
signal in Ref. 5 does show a substantial peak, which
presumably is canceled out by variations in the linear
dielectric properties. Any error in the values for the
linear dielectric properties would result in substantial
changes in the structure of X ' '(co), as pointed out by the
authors. For completeness, we also present the results
for

~

Y ' '(co) for Gap (Fig. 7) even though experimen-
tal data only exist, to our knowledge, near zero frequen-

We see therefore that for GaAs, where the linear-
optical properties were reproduced well by the band
structure, good agreement is also found between theory
and experiment for 7' '. For InAs and InSb, where the
linear-optical spectrum was not reproduced as well, the
discrepancies in the spectrum of 7 ' are further
enhanced. This demonstrates that the spectrum of
g ' '(co) is much more sensitive to fine details in the band
structure than are the linear-optical properties.

VI. CONCLUSIONS

We have used an empirical tight-binding band-
structure technique to calculate both the dispersion and
zero-frequency limit of X ' '(co) for zinc-blende crystals.
This was accomplished by first evaluating the imaginary
part of X' (co) using an extension of the linearized ana-
lytic tetrahedra method, and then using the Kramers-
Kronig relations to obtain the real part of X (co).

The results for X I '(co) show that when the U-c

momentum matrix elements obtained by fitting e, (0) to
experiment are used with the experimental c-c' momen-
tum matrix elements, good agreement is found with ex-
perirnent for most materials. Both InAs and InSb yield-
ed results for g ' '(0) which were larger than experiment,

and this was attributed to the inability of the tight-
binding model to adequately reproduce the correct band
structure. In all cases, values obtained for X' '(0) were
comparable to, or larger than, the experimental values,
contrary to FS's results. We feel that their results could
be due to calculated values for the momentum matrix
elements —in particular the c-c ' matrix elements—
which are too small. Indeed, FS point out that the cal-
culated linear reAectivity for InSb was -20% too low.
In any case, it is evident that local-field corrections, at
least in the form appropriate for insulators, do not play
a significant role in determining the magnitude of X (0)
for these materials.

In addition, it was found that the values for the
valence-band —conduction band momentum matrix ele-
ments obtained by fitting el(0) agreed fairly well with
the calculated matrix elements. Both of these values
were found to be consistently 20—30% lower than the
experimental values, obtained by using the experimental
effective masses in conjunction with k.p perturbation
theory and Cardona's empirical antisymmetric perturba-
tion model. This discrepancy is too large to be account-
ed for by inaccuracies in the band structure, since the
linear-optical absorption spectrum is reproduced fairly
well for most materials. At the present time, we cannot
suggest the reason for this difference.

Experimental data in the literature for the dispersion
in J ' l(co) vary substantially, and so comparison between
theory and experiment is somewhat difficult. Notwith-
standing this, our theoretical results agree reasonably
well with experiment over the ranges where experimental
data exist. This demonstrates that a simple tight-
binding band-structure approach towards covalent solids
can indeed be used to calculate dispersion in nonlinear-
optical properties and conversely, that with the improve-
ment of experimental data, the nonlinear-optical spec-
trum can be used as a more sensitive test of band-
structure theories than e2(co).
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