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Relative numbers or statistics of bonds in III-V quaternary alloy semiconductors of
B C ] y Dy type are uniquely determined through a thermodynamical approach in which

the cohesive and the strain energies of bonds are taken as the enthalpy in the analysis. The
valence-force-field model is used for calculating the strain energy, and the effect of local environ-
ment on the bond strain is considered. The analysis is applied to nine different quaternary alloy
semiconductors composed of two elements of Al, Csa, or In as the group-III elements and two ele-
ments of P, As, or Sb as the group-V elements. The strain energy is a predominant factor in

In, Ga C, ~D (C,D =P,As, Sb), the cohesive energy is a predominant factor in

G'ai Al C
& y Dy and both factors compensate each other almost completely in

In
&

Al C ] y Dy The results are interpreted on the basis of the bond-length dependence of each
energy.

I. INTRODUCTION

The lattice constant and band gap of a III-V quater-
nary alloy semiconductor can be changed independently,
and thus layers with different compositions can be grown
on a certain substrate with lattice matching. This makes
quaternary alloys indispensable for many electrical and
optical devices. However, fundamental properties of
quaternary alloys such as the composition dependence of
the energy gap have not been fully understood: They
were experimentally determined or often estimated by
interpolation from relevant binary compounds and ter-
nary alloys. However, for quaternary alloys of8"C& D type, the approach based on interpo-
lation cannot avoid some ambiguity. ' For example, one
can regard the Ino ~Gao 5Aso 5PO ~ alloy as a 1:1 mixture
of either InP and GaAs or InAs and GaP. It arises from
the ambiguity in the statistics of bonds that the relative
numbers of each bond cannot be uniquely determined
from a global atomic composition. ' It will be easy to
see that various ratios of bonds yield the same atomic
composition. For III-V ternary alloys, there is no such
ambiguity', for example, the relative number of In—As
bonds in In, Ga As is always 1 —x. This holds for
quaternary alloys of A &" B '"C'"D and
D '"A

&
8 C type, too. In quaternary alloys of

A I" 8„"C, D type, two species of atoms are distri-
buted on each of group-III and group-V sublattices.
Thus the statistics of bonds, formed between group-III
and group-V atoms, depend on the distribution of atoms
in the sublattices. The ambiguity in the statistics of
bonds would cause difficulties in predicting various ma-
terial parameters, since properties of III-V semiconduc-
tors are mainly determined by characters of bonds. "
Thus it is a fundamental and important task to investi-
gate the statistics of bonds in quaternary alloy semicon-
ductors of 3', ' B' C~ D type.

The relative number of bonds at the thermal equilibri-
um state can be derived through thermodynamical con-
sideration. However, most of thermodynamical analyses
on quaternary alloy systems are based on the regular
solution approximation, i.e. , taking an atom as a basic
figure. Thus it gives no information on the statistics of
bonds. A few theories which take a bond as a basic
figure have been proposed. ' Our approach also takes a
bond as a basic figure but is different from them in the
estimation of the enthalpy; we consider the strain energy
as the major portion of the mixing enthalpy and take
into account the effect of the local environment on the
strain of each bond.

For both ternary and quaternary alloys, ' the cal-
culated strain energy was found to be comparable to the
experimentally determined mixing enthalpy. This indi-
cates that the strain energy is the main energetical in-
teraction among constituent compounds in III-V alloys.
In previous papers we showed that the strain energy can
inhuence the atom arrangement in III-V ternary al-
loys. " Since the strain energy of quaternary alloys is
no less than those of the relevant ternary alloys, ' it
would inhuence the atom arrangement of

'1'-'. B.'"C
1 —yDy' quaternary alloys, too.

In order to calculate the strain energy, the atomic
scale structure is necessary to be considered. Recently,
the results of fluorescence-detected extended x-ray-
absorption fine-structure (EXAFS) measurement on
In& Ga, As& y Py were reported. ' It shows that, as in

ternary alloys, ' each bond length in In, Ga As, y Py
tends to preserve that in the constituent binary com-
pound. Thus the virtual-crystal approximation (VCA),
which assumes an undistorted zinc-blende structure, is
not a good approximation for bond lengths in III-V
quaternary alloys: The lattice tends to relax for the
reduction in the strain energy of bonds. We found' that
the bond lengths in In, Ga As, yPy can be correctly
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estimated by using the valence-force-field (VFF) model.
In this work, too, we use the VFF model to calculate the
strain energy taking into account the deviation of atoms
from the VCA atom sites. In addition, we take into ac-
count effects of local environment on the strain of bonds:
The strain of a bond is expected to depend on what
bonds are its neighbors, and various local arrangements
are possible around a single kind of bond because of the
randomness in the atom arrangement.

In Sec. II we qualitatively discuss the factors which
determine the statistics of bonds, and then the calcula-
tion procedure of the free energy including the mixing
entropy and enthalpy is described in Sec. III in detail.
Calculation results are given in Sec. IV for nine quater-
nary alloy systems, and then we interpret the results in
Sec. V.

II. ENERGKTICAL INTERACTION
IN QUATERNARY ALLOYS

Statistics of bonds must be consistent with the atomic
composition. For example, the sum of the relative num-
bers of A —C and A —D bonds should not contradict
the composition ratio of the A atom in the
A I &8& C

& &D& alloy. Because of these constraints,
the statistics of bonds are expressed by a single variable
g which is defined in Sec. III. Here, we shall note that
A —C and 8—D bonds simultaneously increase or de-
crease by the same amount, and so do A —D and 8—C
bonds. '

To determine the relative numbers of bonds, we take
into account the following two factors: (i) cohesive ener-
gy and (ii) strain energy of each bond. The strain energy
here corresponds to a change in the cohesive energy of a
bond. Thus, in fact, we consider only one kind of in-
teraction, i.e., cohesive energy of bonds. This can be
justified by the fact that the cohesion of the III-V crystal
is mainly due to the formation of bonds. In factor (i)
we consider cohesive energy in unstrained bonds, and
then the strain energy is included in factor (ii). Since the
strain energy was found to be comparable to the mixing
enthalpy for quaternary alloys, ' the strain energy would
be dominant as compared with other interactions, e.g. ,
chemical interaction between the second nearest-
neighbor pair. We will discuss it in Sec. V.

The effect of factor (i) on the statistics of bonds is easi-
ly understood: The number of bonds with large cohesive
energy tends to increase at the thermal equilibrium.
Since the numbers of two kinds of bonds increase or de-
crease simultaneously, the sum of cohesive energy of
these two bonds determines whether they will increase
or decrease. For example, A —C bonds and thus 8—D
bonds increase if the sum of cohesive energy of them is
larger than that of A —D and 8—C bonds.

Next, we turn to factor (ii), i.e. , the strain energy. In
the following consideration and analysis, we assume that
the lattice coherency is retained throughout a whole
crystal. This assumption is crucial for the discussion
about the effect of the strain energy on the atom ar-
rangement. If the lattice coherency is broken, for exam-
ple, with the generation of many dislocations, the strain

is relaxed, and then the amount of the strain energy is
significantly reduced. However, this is not the case with
high-quality materials used for device applications. In
addition, a quaternary alloy is usually grown epitaxially
onto a lattice-matched substrate, and the lattice coheren-
cy would be retained quite well. Thus it is necessary to
consider the strain energy.

Before discussing the effect of strain energy for quater-
nary alloys, we briefly describe it for ternary alloys. '

When an alloy A Q 58 Q 5C is decomposed into two
separate alloy crystals, e.g. , A Q 78 Q 3C and A Q 38 Q 7C

III III V III III V

then the strain energy in each alloy decreases because
the strain energy of ternary alloys is maximum at the
composition x =0.5. ' However, if the lattice coheren-
cy is retained between these two crystals, they strain
each other because of their different lattice constants.
The amount of this strain would depend on the shape
and size of each decomposed region or on whether they
are on a substrate. In all cases, the coexistence of two or
more different composition regions or the composition
fluctuations in lattice-coherent semiconductors causes
some excess strain energy. This would imply that the
strain energy does not simply cause the creation of the
composition fluctuation.

Such a mechanism cannot be applied to quaternary al-
loys, because the different composition regions can have
an equal lattice constant. For example, if
InQ 6GaQ 4AsQ 9PQ i is decomposed into In() 74GaQ 26

ASQ 58PQ 42 and InQ 53GaQ 47As, a11 of which are lattice-
matched to InP, no excess strain is caused between these
two regions.

Consider an alloy system A &" 8„' 'C, D in which
the lattice constant of binary compound AD is equal to
that of BC but there is a large difference in lattice con-
stant between AC and BD. Although such an alloy sys-
tem is hypothetical, it is very similar to
In, „Ga„Sb

&
As: The lattice mismatch between

InAs and GaSb is 0.76 jo, while that between GaAs and
InSb is 14%. If the atom arrangement is random, an al-
loy A Q'58Q 5CQ 5DQ 5 is composed of four kinds of bonds.
Then, large strain energy is stored in this alloy because
of the difference in length among three of four bonds.
Assume that it is decomposed into two regions AD and
BC. Then, the crystal is composed of A —D and 8—C
bonds only. Since their lengths are the same, they do
not strain each other. Thus the strain energy is de-
creased down to zero by such decomposition, even if the
lattice coherency is retained between two regions.

Noting that bonds increase or decrease in pairs, we
could generalize the above effect as follows: The strain
energy would decrease with increasing the pair of small-
er length difference, such as A —D and 8—C bond pairs
in the above case. If, on the contrary, the pair of larger
length difference increases, the strain energy would in-
crease because these two bonds largely strained each
other. This tendency is confirmed by the calculation de-
scribed in later sections.

Therefore, we should consider the following two fac-
tors to determine the statistics of bonds: (i) cohesive en-
ergy of bonds and (ii) strain energy. In a general case,
A —C bonds and thus 8—D bonds may increase when
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(i) the sum of cohesive energy of A —C and B D—bonds
is larger than that of 3 D—and B C—bonds, and/or (ii)
the length difference between A —C and B—D bonds is
smaller than that between A —D and B—C bonds. The
effects of these two factors are investigated more quanta-
tively in the next two sections.

III. FREE ENERGY OF QUATERNARY ALLOY

The free energy is expressed by

F =Hb +Hs TS

where Hb is the enthalpy due to the cohesive energy of
bond, i.e., factor (i) in the last section, H, the strain en-

ergy, i.e. , factor (ii), and TS the product of the entropy S
and the temperature T. The statistics of bonds at the
equilibrium state are obtained by minimizing F with
respect to relative numbers of bonds.

A. Relative numbers of bonds and the entropy

Not all of the relative numbers of bonds are indepen-
dent variables for a given atomic composition. They are
conveniently expressed by using a single variable g as fol-
lows:

Hb ——Ho + /cub,

Ho ——4N+x x h

coI, 4N——[(h„~+h~D ) —(h~D+hBC )1 .

If the quaternary alloy system A
&

B C
& y Dy is an

ideal solution, there is no strain energy in the alloy and
the atom arrangement is completely random. Then the
total enthalpy becomes Ho. Since Ho is uniquely deter-
mined by the composition, only jcub is necessary to con-
sider for the determination of statistics of bonds.

Since h is defined as the enthalpy for the unstrained

p —q bond, we can derive it from the thermodynamical
properties of the binary compound pq, which consists of
unstrained bonds. The entropy of mixing is zero for a
binary compound, and the cohesion of crystal is con-
sidered to be solely due to bonds in our model. Thus
4Nh =p corresponds to the free energy or chemical
potential of the binary compound pq. cob can be calcu-
lated by

~b (P AC +PBD ) (P AD +PBC )

The values of the equivalent of cob have already been ob-
tained for nine III-V quaternary alloy systems in Ref.
15.

xAc xAxc+k xBc x8xc

x AD xAxD 0& xBD xBxD +4
(2)

S=Nk~ —4+x lnx +3+x lnx
w

(3)

where N is the number of group-III (V) atoms and k~
the Boltzmann constant.

where x is the relative number of the p —q bond, and
x is the composition of atom p and satisfies the relation
x~+x~= 1 or xz+xD ——l. It is easy to see that the
statistics of bonds given by Eq. (2) is always consistent
with the atomic composition. The g becomes zero if the
atom arrangement is completely random.

The approximate entropy of mixing S was derived as
f011ows:

C. Strain energy

The strain of each bond is affected by what kinds of
bonds surround it; for example, the bond tends to be
greatly compressed when surrounded by bonds longer
than the average bond length. In our model the strain
energy of a bond is calculated in each tetrahedron cell.
We have assumed for ternary alloy that the strain of a
bond is determined in various types of tetrahedra where
a central site is occupied by a common element and sur-
rounding sites by mixed elements. '" For quaternary al-
loys, we need to consider both the group-III and the
group-V tetrahedra; for example, the B—C bond
represented by the double line in Fig. 1 is simultaneously
contained in an 3 (3)B(1) (group III) tetrahedron and a
C(2)D(2) (group V) tetrahedron. In general, a B—C
bond can be contained in 3 (4—i )B(i ) for i =1—4 and

8. Cohesive energy

The enthalpy due to the cohesion of bonds, Hb, is
written as

Hq 4N gx h—— (4)

where h is the enthalpy due to the cohesion of an un-
strained p —q bond. As noted earlier, the strain energy
is taken separately into account by the term H, . 4N is
the total number of bonds. It should be noted that the
bond is less stable with the smaller value of

~

h
~

since
h is the enthalpy. h is a negative value, and its abso-
lute value corresponds to the amount of cohesive energy.

With the use of Eq. (2), H& can be rewritten as fol-
lows:

QA QB QOC QD

FICr. 1. Tetrahedra in the quaternary alloy 2 ] B Cl &D&.
The B—C bond represented by a double line is included in

A(3)B(1) (group III) and C(2)D(2) {group V) tetrahedra.
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C(4—k )D(k ) for k =0—3 tetrahedra. Note that
tetrahedra without either B or C atoms cannot contain
the B—C bond. Thus there are 16 kinds of local envi-
ronments for B—C bonds in an alloy, and the B—C
bond can have 16 different amounts of strain energy, one
for each local environment.

Another factor influencing the bond strain is the total
average bond length of the crystal within which the
tetrahedra are embedded; for example, a bond length in
a certain type of tetrahedron would decrease when the
averaged lattice constant of the crystal decreases.
Therefore, in our model, the strain energy of a bond is
determined from (a) the type of group-III tetrahedron,
(b) the type of group-V tetrahedron, and (c) the average
bond length.

In calculating the strain energy in quaternary alloys,
we consider the unit cell such as shown in Fig. 2. It
should be noted that the crystal represented by this unit
cell consists of only A(3)B(1) and C(2)D(2) tetrahedra.
Thus the 8 Cbon—d (double line) in Fig. 1 and that in
Fig. 2 are surrounded by the same tetrahedra. Although
some other A(3)B(1) and C(2)D(2) unit cells are possi-
ble, they are all obtained by symmetric operations from
the cell in Fig. 2, and thus all of them are equivalent.
Let the size of the unit cell be equal to the lattice con-
stant of the alloy in which the tetrahedra shown in Fig.
1 are embedded. Then, with respect to the above (a), (b),
and (c), the environment around the 8 Cbond i—n Fig.
1 is the same as that in Fig. 2, and thus the strain energy
is considered equal for both B—C bonds in our model.
The lattice constant of the alloy is calculated from the
atomic compositions by using the Vegard law.

The strain calculation in the unit cell was carried out
by the same procedure as in the previous work, ' i.e., the
VFF model by Martin' was used, and the deviation
from VCA structure was taken into account for both
sublattices. First, calculation was done for the case
where the size of the unit cell is equal to the average lat-
tice constant weighted by the composition of that cell.
The amounts of bond angle distortion and/or length de-
viation are quite different among unit cells. Then, we
calculated the strain for several unit cells varying the
size of the cell. The results show that the angles be-
tween bonds depend little on the size of the cell. This
indicates that the angle distortion energy depends weak-

ly on the size of the cell. Thus we can assume that the
change in the cell size does not much influence the angle
distortion energy. It does influence the length deviation
energy: If the size of the unit cell changes by Aa, each
bond within it changes by (V3/4)ha. The strain energy
of, for example, a B—C bond in the
A(4 —I )B(i )C(4 —k)D(k) unit cell is expressed as

where 3C is the combination number and zero when
m =0,4. For other bonds, i and 4 —i (k and 4 —k) can
be exchanged according to the exchange between A and
8 (C and D). P (i, k, g) satisfies

g P (i, k, g') =x
i, k

The total strain energy is expressed by

H, = QH~~=4N g gP (i, k, g)c (i, k) .
p, q i, kpq

(10)

Eac(i, k ) = —,
' Eac(i, k )+ isaac t dac dac(i, k ) I

where e'ac(i, k) is the strain energy stored in the angles
between the B—C bond and its neighbors. The factor —,

'

appears because the strain energy of each angle will be
counted twice when the strain energy for all bonds is
summed up. The second term is the length deviation en-
ergy of the B—C bond. ' Here, dBc and aBc are the un-
strained bond length and the elastic constant of length
deviation of the 8—C bond, respectively, and dac(i, k )

is the length of the B—C bond in the
3 (4—i )B(i )C(4 —k )D(k ) unit cell. It was assumed
that the size of a unit cell does not influence eac(i, k)
but dac(i, k ), as discussed above.

The strain energy of all B—C bonds in an alloy is
given by

H, =4N g Pac(i, k, g)Eac(i, k ),
i, k

where Pac (i, k, g) is the relative number of 8 Cbond—s
contained in A ( 4 i )8—(i ) and C ( 4 —k )D ( k ) tetrahedra,
and given by

4 i i+4 —k k+ AC +BC +BD
Pac(& k k)=3«

XBXC

IV. CALCULATION RESULTS

In] ~ Ga» As) y Py

Q B OO(: 0o
FIG. 2. Zinc-blende-like unit cell which consists of

A (3)B(1)and C(2)D(2) tetrahedra.

First, we show the results of the In, Ga As, P
system and describe how each term influences the equi-
librium value of g. Figure 3 shows H„co g, band TS as
functions of g for the composition x =0.5 and y =0.5 at
the temperature T =1000 K. The mixing free energy F
is the sum of these three terms and differs from the total
free energy F by Ho, which is independent of g. g'o

represents the equilibrium value of g at which F is
minimum. As seen from Fig. 3, H, increases with g,
while cgbg decreases. Thus their effects compensate each
other to some extent, and go is close to zero because of
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GaP InP

0
E

tQ
CJ

0.0

c3
lz 0
Z,'

lU

-0.1

InP
GaAs

I» %i I b

0.1~ I nAs
GaP

GaAs lnAs

FIG. 3. Strain energy H, , cohesive energy term cobS, entro-

py term TS, and the mixing free energy F,„=H, +robs —TS as
functions of g for Ino 5Gao, Aso gPo 5 at T=1000 K. Positive
(negative) g indicates more In—As and Ga—P (Ga—As and
In—P) bonds. F is minimum at g= —0.018.

I
I I I I I I I I

-0. l
0

I I « I I I

500 &000
TEMPERATURE (K)

FICi. 4. Temperature dependence of the equilibrium value of
g' for Ino. sGao. sAso, Po, .

TS being maximum at (=0. However, because the slope
of H, near /=0 is somewhat larger than that of rub(, go
becomes negative ( —0.018). The dependence of H, on g
is in accordance with our prediction that H, will de-
crease if the pair of bonds with the smaller length
difference increases. In the In, „Ga As, P system,

p
—d~ A =0-093 A and d) ~ —dG p =0.263 A.

Figure 4 shows the temperature dependence of go for
x =0.5 and y =0.5. At low temperatures, TS is negligi-
ble, and thus H, +ru&g determines go. The result near
T=0 K indicates that H, + tub g is minimum at
g= —0.09. As T increases, the entropy term begins to
dominate, and go is close to zero at temperatures of usu-
al crystal growth.

The composition dependence of go at 1000 K is shown
in Fig. 5. coI, is independent of the composition as seen
in Eq. (5). The value of H, depends on the composition
rather strongly, but the slope of H, at /=0 depends.
weakly; the slope varies within + 15% from that at

FIG. 5. Composition dependence of the equilibrium value of
g for In, ,Ga„As, .P at T=1000 K.

x =0.5 and y =0.5. Thus the dependence in Fig. 5 is
mainly influenced by change in the entropy. A certain
amount of deviation of g' from zero causes a larger de-
crease in S, as x or y approaches zero or unity. In addi-
tion, the variable range of g' diminishes:

—minI (1 —x )(1—y ),xy I

&g& minI(1 —x)y, x(1 —y) I, (12)

since x &0. [Refer to Eq. (2).] For ternary alloys and
binary compounds, there is no freedom in the statistics
of bonds, i.e. , g is always zero.

B. Other quaternary alloy systems

Next we show the results for the other eight quater-
nary alloy systems at x =0.5, y =0.5, and T=1000 K.
When assigning the element to the symbol, 3, B, C, or
D, we put the heavier element to 3 (C ), as in
In& Ga As& P .

The results are shown in Fig. 6. On the basis of quali-
tative features of the results, we can classify the alloy
systems into the following three groups.

(1) In, „Ga C, , D [C, D =Sb, As, P; Figs. 3,
6(a) and 6(b)]: cub/ decreases and H, increases with j.
However, the slope of H, at /=0 is larger than

~

cub ~
.

Thus, go becomes negative. In the alloy of
Inp 5Gap 5Sbp, Asp 5, H, decreases down to a very small
value, 0.03 kcal/mol at the lower limit of g (g= —0.25)
because the length difference between InAs and GaSb is
very small, as mentioned in Sec. II.

(2) In& „AI„Ct D„[Figs. 6(c)—6(e)]: The value of
H, is not much different from that in the corresponding
In& Ga C[ &D systems, because the elastic proper-
ties of Ga—C and Al—C bonds are very similar.
However,

~
cu„~ is larger than that in

In& Ga C, D . Thus though H, dominates over
rub/ in In, „Ga„C, D, , the variations of H, . and cgbg

compensate each other almost completely in

In, Al„C, D, and thus go is very close to zero.
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FICs. 6. Figures similar to Fig. 3 for quaternary alloys other than Inl „Ga,As, yPy at x =0.5, y =0.5, and T= 1000 K.
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TABLE I. Equilibrium value of g, i e., jo for nine
3',"~B~"'C& ~D~ systems at x, y=0. 5, T=1000 K.

Material
3 -B-C-D

The values of go are listed in Table I. A more detailed
interpretation of these results is given in the next sec-
tion.

V. DISCUSSIQNS
In-Ga-C -D

In-Al-C -D

Ga-Al-C -D

In-Ga-As-P
In-Ga-Sb-As
In-Ga-Sb-P

In-Al-As-P
In-Al-Sb-As
In-Al-Sb-P

Ga-Al-As-P
Ga-Al-Sb-As
Ga-Al-Sb-P

—0.018
—0.050
—0.050

—0.009
—0.003
—0.012

0.012
0.051
0.046

The following features are commonly observed from
the results for all quaternary alloy systems: cob is nega-
tive and H, increases with g except for
Ga] Al C] yDy systems where H, weakly depends on

This is not accidental but can be interpreted as fol-
lows.

Consider the covalent radius r for each atom. The
p —-q bond length d is approximately given by r +r
(or the covalent radii are defined so that r~+r =d ).
We assume r~ & r~ and r~ & rD for the
A ]" B "C

] D system. Then,
(3) Gai Al„C i D [Figs. 6(f) —6(h)]: rub( de-

creases with g, while H, weakly depends on g and is
nearly symmetric with respect to the line of (=0. Thus,
go is positive owing to the variation of coi, g. The even-
function-like dependence of H, on g is due to the fact
that dG &v-d&]&v, for example, in Ga] Al As] yPy,
d~ p d~]p and dG, ~, —d~]A„and thus, as concerns the
elastic properties, the increase of Ga—P and Al—As
bonds is almost equivalent to the increase of Al—P and
Ga—As bonds. On the other hand, the chemical prop-
erties of Ga—C and Al—C bonds are quite different.
Thus cob can be a large negative value relative to the
variation of H, .

(rg +rc ) —(rii+rp ) &
I
(rg +rp ) —(rs+rc) I

(13)

According to the consideration in Sec. II, H, becomes
large with the increase of the numbers of A —C and
B—D bonds, because the pair of A —C and B—D strain
each other more largely than A —D and B—C pair.
Since the heavier atom usually has larger covalent radius
and is assigned to A (C ), the relations r „&ra, and
rc &rD are satisfied except Ga, Al C, yDy systems.
Thus, H, increases with more A —C and B—D bonds,
i.e., with positive g for all In&, Ga„C, D and
In ] A 1 C ] y Dy systems�. We have r ~] —rG, for

Al C] yDy, since dA]

I (rG. +r,v) —(rAl+rpv) I

—
I (rG. +rpv) —(rA1+r, v)

I
=(rG. +rcv —rA~ —rpv) —(r&~+rcv —ro. —tv)
=2(rz, —r~~ )

weaklyTherefore, H, depends on
Ga ] A 1 C ] y Dy systems.

The sign of cob can also be understood by considering
covalent radii. The negative cob indicates that the sum
of the cohesive energy of A —C and B—D bonds is
larger than that of A —D and B—C bonds. The
cohesive energy of the covalent crystal is considered to
be approximately proportional to d, ' and under the
conditions of rz & r~ and rc & rD, the following relation
is satisfied:

for

(rg+rc) "+(rii+rp)
& (r& +rp ) "+(r~+r& ) (15)

This indicates that the sum of the cohesive energy of
A —C and B—D bonds is larger than that of A —D and
B—C bonds, i.e., cob &0, under the above conditions. As
mentioned earlier, these conditions are satisfied for all
quaternary alloy systems except for Ga, Al&C] yDy
For AlC compounds, the cohesive energy is larger than

that expected from the d dependence; for example,
although the bond lengths of A1As and GaAs are almost
the same, the melting point of AlAs is significantly
higher than that of GaAs, which implies that the
cohesive energy of Al-As is larger than that of Ga-As.
Thus we should regard d, ~ and thus r„] as smaller

than the crystallographic one when the d depen-
dence of cohesive energy is assumed. Such an effective
bond length was found to be useful to predict some elec-
tronic properties of A1C, although its physical basis is
not clear. ' Then, as concerns the cohesive energy, we
can expect that Eq. (15) is satisfied for all quaternary al-
loy systems discussed here. Thus cob is negative for all
quaternary alloy systems.

As described in the last section, the qualitative
features of the results depend on the group-III elements.
This is ascribed to the fact that the cohesive energy of
the Al—C bond is larger than that expected from its
crystallographic length: The effect of rui, g becomes rela-
tively large as compared with that of H, when the alloy
includes Al.
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For binary or ternary 3, B C alloys, the atom ar-
rangement is described in term of order (preference for
unlike neighbor pair) or cluster (preference for like
neighbor pair). However, it is difficult to relate the value
of g to order or cluster in quaternary alloys. For exam-
ple, if g becomes positive, i.e., the 3—C bond increases,
then the triplet A —C—A increases, but 3—D—A de-
creases because of the decrease of the 2—D bond.
Then, in general, one cannot conclude whether the like
pair A —A increases or not. Rather, g is the measure
for the uniformity in an alloy. If 3—C and 8—D
bonds increase, the region including both 3 and C atoms
more than the average composition increases, and the re-
gion with more B and D atoms also increases. Thus
there would be two types of regions with different com-
positions in the alloy, i.e., the alloy would become
nonuniform. The alloy is most uniform at /=0, and the
value of

~ go represents the degree of nonuniformity.
At x =0.5 and y =0.5, like pairs necessarily increase,

i.e. , clustering occurs with the increase of
~ g ~, because

(0.25+() +(0.25 —g) =0.25+2/, where the two
terms in LHS are the probabilities of appearance of two
different triplets including the same like pair, such as
3—C—3 and 3—D—A. The increase of H, at
nonzero g in Ga, A1, C, D is due to the cluster; the
strain energy tends to increase by the clustering as dis-
cussed in previous works.

The pairwise interaction model (PIM) has been used
for discussion about the atom arrangement of III-V
quaternary alloys as well as ternary alloys. ' In the ap-
proach, the second-nearest-neighbor interaction is as-
sumed to contribute to mixing enthalpy, and the strain
energy is neglected. For ternary alloys, the PIM pre-
dicts clustering, whereas our model, which accounts for
the strain energy, predicts ordering. It occurs also in
quaternary alloys. Both models give very different re-
sults; for example, according to the PIM, the enthalpy
due to the second-nearest interaction decreases with g
for In, Ga„As, P, and thus go is relatively a large
positive value. However, the assumption of PIM has not
been justified, yet. Moreover, the approach neglecting
the strain energy is inappropriate for III-V alloys, since
the strain of the bond is experimentally confirmed by
EXAFS (Ref. 12) and the calculated strain energy is no
less than the mixing enthalpy obtained from thermo-
dynamical experiments. ' The strain energy cannot be
neglected for the enthalpy in III-V alloy semiconductors.
Thus our approach can be understood to be more ap-
propriate than that based on the PIM. The second-
nearest interaction would be necessary in order to take
into account a more accurate discussion in addition to,
but not instead of, the strain energy.

The statistics of bonds could be experimentally deter-
mined from the lattice vibration spectra. For some al-
loys, there appears several phonon modes corresponding
to bonds, for example, In—As, Ga—As, In—P, and
Ga—P like phonon modes appear within a certain com-
position range for In& „Ga As, P, and the intensity
of the signal of each mode is considered to represent the
number of the oscillator, i.e., the corresponding bond. It
was reported that results of infrared reflectivity measure-

ments on In, Ga„As, P can be explained well by as-
suming xzq

——xzx&, i.e., (0——0. This would be con-
sistent with our results that $0 is close to zero for
In

&
Ga As

& y Py However, the accuracy of such ex-
perimental approach would not be good enough to esti-
mate a small deviation from (=0. It seems that the ex-
perimental technique for determining the statistics of
bonds is yet to be developed.

In the model proposed here, we choose a bond as a
basic figure of the thermodynamical analysis, and thus
the correlation among atoms is considered only to the
lowest order: the single variable g is not enough to de-
scribe the atom arrangement of quaternary alloys. For
example, the probability of the appearance of a tetrahed-
ron in fact cannot be uniquely determined from the rela-
tive numbers of bonds but should be treated as another
independent variable; in deriving Eq. (9), we assume that
there is no excess correlation among bonds. Equation (9)
is reduced to a simple binodal distribution for tetrahedra
in ternary alloys. This does not mean that the arrange-
ment of bonds is completely random: the unphysical sit-
uations, such as an 2—D bond sharing an atom with a
B—C bond, are excluded in deriving the entropy. For
a more accurate analysis, we need to choose a tetrahed-
ron as a basic figure, as we did for ternary alloys, since
the short-range order on a sublattice influences the
strain energy. However, this effect is rather small; for
example, the decrease of the strain energy due to the
short-range order is about 10% for In, „Ga,As at
T = 1000 K. Thus we believe that the qualitative
features of the results given here are not affected by
neglect of the short-range order.

So far, we pay attention only to the value of g. How-
ever, the value of the free energy at (=go is also impor-
tant; one can discuss the phase equilibrium and the mis-
cibility of the alloy system. It can be seen from Figs. 3
and 6 that the alloy system with a large immiscibility re-
gion, such as In& ~Ga„Sb& yPy tends to have large free
energy. For a further study on the quaternary alloy sys-
tems, these problems will be discussed by extending the
model proposed here.

VI. CONCLUSION

The relative numbers of bqnds in the III-V quaternary
alloys have been derived by a thermodynamical analysis.
The strain energy of bonds is taken into account as the
enthalpy, in addition to the cohesive energy. Consider-
ing that the bonds increase or decrease in pairs, we dis-
cussed how these two factors influence the statistics of
bonds, and it has been shown that the strain energy de-
creases when the pair of bonds with the small difference
in length increases. The calculation results show that, in
In] z Gaz As

& y Py Ga—As and In—P bonds slightly in-
crease from the value of complete random atom arrange-
ment owing to the effect of the strain energy, although
the sum of cohesive energy of Ga—P and In—As is
larger than that of Ga—As and In—P. The same ten-
dency is commonly observed for other
In, Ga„C, D systems. For Ga, Al C, D, the
effect of the cohesive energy is predominant, and the
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effects of both energies compensate each other almost
completely for In

~ & Al& C
& y Dy systems. The

difference among nine alloy systems can be explained by
considering the covalent radius of each atom.

Since the properties of a covalent crystal are predom-
inantly determined by the properties of the bond, the
statistics of the bonds would greatly inhuence various
material parameters of quaternary alloy semiconductors.
Thus the effects of the statistics of bonds on electrical
and optical properties are suggested to be investigated.
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