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Superlattices alternating ultrathin (two, four, and six atoms) Si and Ge layers form artificial
compound semiconductors. Trends and accurate transition energies for these materials are calcu-
lated based on the local-density-functional and quasiparticle self-energy approaches. The lowest
transition for the Si substrate material is found to be indirect, but direct transitions to a zone-
folded final state occur at slightly higher energy. The strain can be transferred to the Si layers
with opposite sign by growing the superlattice on a Ge substrate. This reverses the order of the
indirect and direct zone-folded transitions, which is predicted to yield an approximately direct-gap
material. However, the allowed dipole matrix elements are small for these new transitions. The
description of the near-band-edge states in these materials in terms of quantum wells in an
effective-mass approach is found to be reasonable. In particular, both strain and confinement in
the ultrathin quantum wells forming the superlattice are important. The quasiparticle energies for
the particular case of the 4 <4 structure have been calculated using the self-energy approach. This
allows a direct comparison of the calculated transitions to recent experimental spectra for this ma-
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terial. In particular, the detailed features in those spectra are explained.

I. INTRODUCTION

The technique of molecular-beam epitaxy has opened
many new possibilities for novel materials based on Si
and Ge.! In particular, it has recently become possible
to grow ultrathin layers of Ge on a Si substrate.? The
Ge is perfectly bonded to the substrate resulting in a
large (about 4%) built-in strain in the Ge. Alternating
layers of Ge and Si with thickness of only two, four, and
six atoms have been demonstrated in a superlattice ex-
tending for approximately 50 A.*> This structure is then
capped or buffered with more Si. The superlattice re-
gion forms a quantum well in the surrounding Si. This
structure may then be repeated to form multiple super-
lattice regions. These superlattices present a novel sys-
tem with unusually thin quantum wells which may
influence the optical properties. In particular, a low-
energy direct optical edge might result due to the folding
back of the bands of Si and Ge. This could be techno-
logically significant because the superlattice is grown on
the Si substrate and could be a contiguous part of a
larger integrated device.

From a fundamental point of view, the quantum wells
forming the superlattice are sufficiently narrow that
band-structure techniques can be applied directly to
determine the gaps and optical properties. The degree
of confinement in such narrow quantum wells can be
determined as well as the role of the built-in strain in the
Ge layers. Some of these types of samples have been in-
vestigated using electroreflectance techniques.® They
have revealed interesting low-energy transitions in the
region of 1 eV in addition to higher-energy features. It
is desirable to explain the features appearing in the spec-
trum. In particular, the role of zone-folded states in the
low-energy transitions is of interest.

In the present study, the band structure of several
Si/Ge(001) strained-layer superlattices has been investi-
gated. For these purposes, the superlattice is periodical-
ly continued in the growth direction. Effects due to the
finite number of periods can be estimated using
effective-mass techniques.* The ab initio pseudopotential
technique’® together with the local-density-functional ap-
proach® (LDA) has been used to determine the systemat-
ic trends and band topology of the superlattices. As is
well known, the minimum gap is underestimated using
the LDA potential.7 Nonetheless, the character of the
gap (indirect versus direct), the dipole matrix elements
for direct transitions, and trends as a function of
geometry may be extracted. These calculations have
been done for the 22 and 4 X4 atomic layer superlat-
tices lattice matched to a Si substrate. The same calcu-
lations have been performed for the case of a Ge sub-
strated. In this case, the Ge is cubic while there is a
built in strain in the Si layers (but of opposite sign).

In order to give quantitative account of the transitions
in the superlattice, a full many-body calculation of the
quasiparticle energies using the self-energy approach®
has been done for the prototype case of the 4 X4 super-
lattice. This allows direct comparison of the present cal-
culations to recent spectroscopic experiments for this
material.

The minimum gap in the Si substrate materials is in-
direct.® The conduction-band edge is made up of elec-
trons in the transverse valleys along the A direction in
the Brillouin zone. The longitudinal valleys are approxi-
mately folded back to the center of the superlattice Bril-
louin zone. These states are higher in energy due to
confinement and strain effects: the compressive lateral
strain places the transverse valleys below the longitudi-
nal ones in the Ge. By growing the superlattice on a Ge
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substrate, the Si layers are laterally expanded reversing
the sign of the strain splitting. In this case, the
minimum gap is predicted to be approximately direct to
the zone-folded longitudinal valleys. In either case, the
dipole matrix element for the direct transition to a
zone-folded state at most is about 10% of that for an al-
lowed direct transition in bulk Si or Ge. This reflects
the weakness of the superlattice potential in mixing the
zone-folded states with true zone-center states. In all
four superlattices, the zone-folded longitudinal A
conduction-band states are strongly confined on the Si
atoms. The I' hole states at the valence-band edge are
moderately confined on the Ge atoms. This is consistent
with the type-II alignment of the bands at the Si/Ge in-
terface. One interesting result of the present work is
that an effective-mass (envelope-function) theory for the
energy levels near the gap region provides reasonable
quantitative results in comparison to the full band struc-
ture for the 4 X4 structure.

The self-energy calculations reported here allow quan-
titative evaluation of the optical transitions in the super-
lattice. Using these results, the spectra for 4Xx4 struc-
ture have been interpreted.!® The lowest band edge is
found to be indirect, in agreement with photocurrent
measurements. All the novel features in the electro-
reflectance spectrum have been identified. No special
self-energy effects are directly related to the confinement
of some of the states in the ultrathin quantum wells
forming this material.

The balance of this paper is organized as follows. The
technical details of the present approach are summarized
in Sec. II. The systematic trends in the bands of the su-
perlattice materials are described in Sec. III. Section
IIT A describes the LDA bands. The systematic effects
of confinement are described in Sec. III B along with the
applicability of the effective-mass picture. The results of
the self-energy calculation on the 4 X4 case are described
in Sec. III C. Section IV is a brief conclusion.

II. SUMMARY OF PRESENT APPROACH

The preliminary step for evaluating the band structure
of the superlattices is determination of the geometry.
We have followed the approach of Van de Walle and
Martin.!' The transverse lattice constant a is fixed by
the substrate, e.g., Si. Then the Si regions of the super-
lattice are assumed to be cubic with longitudinal lattice
constant a, equal to that of the substrate a;. The Ge re-
gions are given a longitudinal lattice constant deter-
mined by the macroscopic Poisson ratio. This leaves the
interface spacing undetermined. It is fixed by taking the
Si—Ge bond length to be the average of the cubic
Si—Si bond length and the strained Ge—Ge bond
length. The appropriate data are summarized in Table I
for both the Si and Ge substrate cases. The positions of
all the atoms in the (001) superlattice are now complete-
ly determined. The results of Van de Walle and Martin
indicate that this is quite close to the minimum-energy
geometry.!! The (001) superlattices are periodically ex-
tended in the growth direction. The resulting material is
treated in a tetragonal unit cell with four (2X2
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TABLE I. Summary of lattice constants in a.u. used to form
the superlattices.

Substrate a asi a,Ge
Si 10.260 10.260 10.996
Ge 10.680 9.944 10.680

geometry) or eight (4X4 geometry) atoms per unit cell.
The symmetry group is D,,. The atomic arrangement is
illustrated in Fig. 1(a) for the 4X4 geometry. One
should note the presence of an inversion center for these
superlattices.

The band calculations are done using the ab initio
pseudopotential®  local-density-functional —approach.®
The pseudopotentials are taken from Bachelet, Hamann,
and Schluter.!? These include scalar-relativistic effects.
The Kohn-Sham equations are solved using a plane-wave
basis.!* Plane waves up to a kinetic energy of 12 Ry are
included for the systematic comparisons made in the
next section. Most band energies are converged to
within about 0.1 eV with respect to the size of the basis
set. The only exception is the conduction-band state
corresponding to the bulk ', state which requires more
plane waves. For the final quasiparticle calculation re-
ported in Sec. IIIC, a cutoff of 14 Ry was employed to
give a better estimate of the E transitions.

The LDA band energies suffer from the well-known
“band-gap” problem.’ Nonetheless, they may be used to
evaluate systematic trends in the band energies as a
function of the superlattice period and lattice constants.
There are several reasons for this. First, the errors in
the LDA band energies are well characterized for bulk
Si and Ge. Full quasiparticle calculations have been
done for these materials.! In general, the qualitative
features of the LDA bands are correct. The relative en-
ergies within the valence bands and conduction bands
separately are within a few tenths of an eV of the full
quasiparticle energies. Also, deviations for the gap ener-
gy are about the same for Si and Ge. Second, the trends
of interest are largely determined by the one-electron
terms in the Hamiltonian, e.g., the degree of confinement
in one region of the superlattice and the role of strain.
Third, the valence-band alignment for these materials
calculated within the LDA is close (within 10-15 %) to
that found in a full quasiparticle calculation. '*

In order to make a quantitative comparison to experi-
mental spectra, however, we require the quasiparticle en-
ergies. These are determined from the electron self-
energy operator, 1> =:

(T 4+ Ve + Vi Wi+ [ dr'S(e,r; EQE (')
=ESXv,(r). (1)

The one-electron terms correspond to the kinetic energy,
electron-ion interaction, and average electrostatic in-
teraction, respectively. All the effects of exchange and
correlation are contained in the electron self-energy
operator 2. We evaluate X following the theory applied
to bulk semiconductors and insulators previously.®?
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Briefly, the GW approximation'’ is used for =. This re-
quires the full crystalline Green’s function G, which is
evaluated using the LDA wave functions but with a
self-consistent quasiparticle spectrum. The other input
required is the dynamically screened Coulomb interac-
tion W. This is evaluated in two stages. First the full

(a) ®:Ge
O :Si

SUBSTRATE : (001) Si
c/a =21

o

€=11.24 A

(b) z

FIG. 1. The positions of the atoms in the 44 superlattice
are shown in (a). Note that the structure is inversion sym-
metric about the origin indicated. One unit cell (indicated by
¢) contains eight layers of atoms. The corresponding Brillouin
zone for the tetragonal unit cell is sketched in (b) with approxi-
mately the same orientation. Symmetry lines are indicated
with notation generally taken from the underlying cubic sym-
metry.
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static dielectric matrices egd.(q;w=0) are calculated us-
ing the density-functional approach (LDA) including lo-
cal fields (microscopic variations in screening). The ab
initio static dielectric matrices are then extended to finite
frequency using the generalized plasmon pole model.
There are no adjustable parameters. Equation (1) is then
solved in first-order perturbation theory in =—V,,
where V.. is the usual exchange-correlation potential
evaluated in the LDA. This procedure has proved very
accurate for bulk semiconductors and insulators. ®

We have done full quasiparticle calculations for the
44 superlattice matched to a Si substrate. As noted
above, this involves an eight-atom tetragonal unit cell.
In the calculation of the self-energy, there are several ad-
ditional numerical cutoffs. The size of the dielectric ma-
trices is determined by a momentum space cutoff:
|[q+G | <2.5 au. This results in matrices about
300 300 for each q. Approximately 400 empty states
are summed in the construction of the dielectric ma-
trices. In the calculation of the self-energy operator, ap-
proximately 200 empty states are included and the re-
quired Brillouin-zone summation is done with nine q
points in the irreducible wedge of the Brillouin zone in-
cluding q=0. Comparable cutoffs give results for bulk
Si which agree with fully converged quasiparticle ener-
gies within 0.1 eV.

In the final comparison between the present theory
and spectroscopic data, the spin-orbit interaction has
been included in first-order perturbation theory. This is
done by including the vector part of the ab initio pseudo-
potential!? as described previously for bulk materials. '®
In the present context, this gives excellent results for
tetragonally distorted Ge. The magnitude of the strain
splittings is larger than the spin-orbit splittings.

III. RESULTS

In this section, results for the superlattices are
presented. In Sec. III A, systematic trends are illustrat-
ed. Issues related to confinement in the ultrathin quan-
tum wells forming the superlattice are discussed in Sec.
III B, including the applicability of an effective-mass ap-
proach. The results for the quasiparticle energies in the
4X4 superlattice are presented in Sec. III C along with
available spectroscopic data.

A. Systematic trends

The Brillouin zone corresponds to the 44 superlat-
tice (an eight-atom tetragonal unit cell) is shown in Fig.
1(b). In the k, =0 plane, the X point in the bulk Bril-
louin zone maps to the corners. The L points map to
the centers of each side which also falls along = direc-
tions. There are two distinct = (or A) directions in the
Brillouin zone because the interface bonds lift the four-
fold symmetry about the growth axis. These are indicat-
ed. Along the growth direction, the X point is approxi-
mately mapped to the center of the superlattice Brillouin
zone. (It is not exactly mapped to I' because the Si and
Ge longitudinal lattice constants a, are not equal.) In
addition, points approximately half way to X map to the
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center of the zone. It is precisely this zone folding that
forms the basis for new direct transitions in these sys-
tems. For the 2 X2 structure, the Brillouin zone is twice
as large in the growth direction. Only the longitudinal
A points near X map to I'. The bulk L points fall in the
center of the sides of the upper and lower faces instead
of at k,=0.

In order to have a clear picture of the zone-folded
bands, the LDA bands for bulk Si and bulk Ge are
shown folded back twice along the longitudinal A direc-
tion in Fig. 2. The bands are off-set by the calculated
valence-band offset. The bands are labeled according to
the appropriate symmetry designation for the diamond
structure. The little group for the longitudinal A direc-
tion in the tetragonally distorted crystal is the same as
for the A directions in the undistorted crystal. In Si, the
A, conduction band starts from the state folded from X
to T' dispersing downwards initially. This reflects the
minimum away from the X point. It intersects the I’
point a second time at around 1 eV before joining up
with the I'|s. state near 2.5 eV. The A, band disperses
upwards from the state folded from X intersecting the I’
point again at about 3 eV before joining to the I', state.
The valence-band states are folded back in an obvious
way. Turning to the Ge bands, there are two interesting
points. First, the I';, conduction-band state is down
around 0.7 eV, resulting in a rather different structure

€A (ev)
X

FIG. 2. The LDA bands for cubic Si and tetragonally dis-
torted Ge are shown along the A direction folded back twice
according to a unit cell with eight atoms analogous to the 4x 4
superlattice. The bands are offset by the calculated valence-
band offset between Si and lattice-matched Ge.

MARK S. HYBERTSEN AND MICHAEL SCHLUTER 36

for the A, conduction band. Second, the valence-band-
edge states are split by the tetragonal distortion into
Dx»>P, states (As) and a p, state (A,).

The LDA band structure for the 4X4 structure is
shown in Fig. 3 for the case of a Si substrate. The bands
in Fig. 3 are shown along A directions: transverse to the
growth direction to the bulk X point and along the
growth direction up to the center of the face of the su-
perlattice Brillouin zone. Several features of the bands
are of interest. First, the usual p states forming the
valence-band edge are split by the large tetragonal dis-
tortion of the Ge regions of the superlattice. The p,,p,
states form the valence-band edge and the p, state splits
off. Second, the same distortion lifts the valley degen-
eracy in the A conduction bands. The four transverse
valleys drop in energy in comparison to the two longitu-
dinal valleys. This leads to an indirect band gap with
the minimum along the transverse A direction about
80% of the way to the zone corner. Third, the longitu-
dinal valleys are folded back to the region around TI.
With reference to Fig. 2, the zone-folded conduction-
band states may be seen to be quite similar in structure
to the Si A conduction bands with gaps opened at I" and
at Z. Also, in the reduced symmetry of the superlattice,
the A, and A, bands reduce to the same representation
so there are avoided crossings as well. The first pair of
states is slightly split (about 0.1 eV). Following the
dispersion of these states along the longitudinal A direc-
tion, they disperse downwards. This follows because the
band extremum along A in the bulk materials does not
fall at X. The dispersion is quite small because these
states are strongly confined in the Si layers as discussed

_VBE A

min -

Si4G94 (001)

eLDA (ev)
(@]
I 1 I

Z N T Ay X
K
FIG. 3. The LDA band energies for the 4 X 4 superlattice on

Si substrate plotted along the longitudinal (parallel to the
growth direction) and transverse A directions.



36 THEORY OF OPTICAL TRANSITIONS IN Si/Ge(001) . . .

in the next section. Fourth, there are a second pair of
zone folded states at I at about 1.2 eV split by about 0.2
eV. Finally, the T',. state in the superlattice falls at
about 2 eV. This is approximately the average of the
bulk Si and bulk Ge values.

The A-derived states are summarized in Table II for
the Si substrate case. The strain splitting of the valence
bands (E, ,—E,) is consistent with the large tetragonal
distortion in the Ge layers and modest confinement of
the holes in the Ge regions. This is further developed in
the next section. The important data in Table II show
that the minimum gap in each case is indirect. The gap
to the zone-folded states is sufficiently larger to make
this conclusion unambiguous. For the zone-folded
states, we also list the calculated dipole matrix element
for X polarization of the light. The units are a.u. and a
“good” allowed transition would have a matrix element
of order 0.5 in these units. Clearly the direct transitions
derived from the zone-folded states should be relatively
weak edges in absorption. The matrix elements are
down by a factor of 5-20 from allowed bulk transitions.
For the 44 structure, the superlattice potential also
gives critical points at the zone face near Z. These tran-
sitions are also quite weak.

The small matrix elements are easy to understand in
general terms. The folding of the states back to the zone
center is not per se sufficient to produce a new absorp-
tion edge. In the absence of mixing with “true” I states
of the proper symmetry, there will be no dipole matrix
elements. The wave functions still change phase in a
way characteristic of zone-edge (for example) states.
The size of the matrix element is determined by the de-
gree of mixing which in turn depends on the strength of
the superlattice potential. We can estimate the relevant
potential component for the 4Xx4 structure from the
splitting of the second two zone-folded states. These
derive from the A, states about half way to the zone

TABLE II. The LDA band energies for the A states for the
two-monolayer and four-monolayer superlattices on a Si sub-
strate: transverse minimum (A]; ), longitudinal states folded
back to the zone center (ZF). Also shown is the strain splitting
of the valence-band-edge states (E, , —E,). Energies are in eV
relative to the valence-band edge. For the direct transitions,
the dipole matrix elements connecting to the valence-band-edge
states are given in a.u.
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edge in the bulk Si and Ge which are folded back to T.
The splitting is mostly the minigap opened by the super-
lattice potential. This gives a potential component of or-
der 0.1 eV. Since the relevant energy denominator is of
order 1-2 eV, we immediately see that the matrix ele-
ments should be reduced by a factor of 10-20 as found
above.

Table III summarizes the A-derived states for the Ge
substrate case. Here, the strain is confined to the Si lay-
ers and, furthermore, is tensile instead of compressive.
This change of sign in the strain reverses the order of
the strain split A valleys. As a consequence, the zone-
folded states are lower in energy than the transverse
minima. However, the minimum gap is still not quite
direct. This is due to the slight downwards dispersion of
the zone-folded states along the growth direction. For
the 4 X 4 structure, the dispersion is 0.12 eV, leading to a
minimum LDA gap of 0.11 eV for this case. In the 22
structure, the initial downwards dispersion is similar,
leading to a minimum about half way to the zone face
for this structure. For the Ge substrate case, the dipole
matrix elements shown are for z polarization of the light.
This choice is made because the reversal of the strain
has reversed the character of the valence-band-edge
states. The highest state is now of p, character. The
matrix elements follow the same pattern as for the Si
substrate case. In particular, the lowest zone-folded
state does not connect to the valence-band edge via an
allowed transition for the 4 X4 case. The direct absorp-
tion edge is to the second state. In the 22 structure,
the lowest zone-folded state is weakly allowed, but the
minimum gap is still indirect.

There is also interesting structure in the higher-energy
direct transitions. The transition energies at the I' point
and the mapped L point are indicated in Table IV. We
restrict ourselves to the lower-energy transitions (gen-
erally below the direct absorption edge in Si). The E,
transition is taken to be from the valence-band-edge
complex (including the strain split-off states) to the s
state corresponding to the I',. states in the bulk materi-
als. These light mass states generally fall at an average
energy between the Si and Ge cases, although some
confinement in the Ge region is discernible. The L-point

TABLE III. Same as Table II but for the Ge substrate case.

Si substrate 2X2 4x4
E,,—E, 0.34 0.32
Alin 0.20 0.29
ZF 0.68 0.55
(v |psle)) (0.125) (0.0)
0.86 0.66

(0.0) (—0.025)
1.16

(—0.079)
1.36

(0.0

Ge substrate 2X?2 4% 4
E,—E., 0.15 0.21
Afin 0.49 0.55
ZF 0.43 0.23
(v |p, e (—0.044) (0.0)
0.61 0.33

(0.0) (—0.033)
0.76

(—0.054)
0.93
(0.0)
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TABLE IV. Direct transitions in the superlattices at the I' and mapped L points of the new Bril-

louin zone.
Si substrate Ge substrate
2x2 4x4 2X2 4x4
E, 2.16 2.01 1.89 1.78
(-1 2.50 2.33 2.04 1.99
E, 1.36 1.85, 1.89 1.54-1.60 1.92-2.01
(L—L) 1.98, 2.01 2.16 1.96 2.23
2.16 2.47-2.51 2.25-2.35 2.58, 2.60
2.50 2.87
2.96-3.05
(including some X bands in the 4X4 structure) transi- These results can be understood in terms of an
tions exhibit a much richer structure. This is attribut- effective-mass picture. The envelope approximation is

able to two factors. First, the strain splitting of the bulk made in each portion of the superlattice and the poten-
L, states is of order 0.5 eV in this instance. Second, as tial change across the interface is modeled as abrupt.*!’
noted above, the interface bond orientation distinguishes The result is a square-wave type of potential which is to

two distinct A directions which are otherwise equivalent

in the bulk materials. Si 0
; . Si o , i
B. Role of confinement and an effective-mass picture G S /“\ \/‘
. . . €. " -l“ '“ ' y
Despite the ultrathin quantum wells forming the su- 0\ ,I\\ ”/l"\‘“\\ &" °
perlattice, confinement of some states is quite striking. (O) Ge N ‘ ‘ “ "“}Q\““‘ //IN
For the 4 X4 superlattice on a Si substrate, this is illus- Si ”\\ “ ‘ //l ‘\‘ Si
. ) . 2 “ \\\‘ /II 5
trated in Fig. 4. Perspective plots of | ¢(r)|“ are shown . /“ WSS
for r in the (101) plane that approximately contains a Si \\“ '0‘ Si

, ‘\\\,
"'

chain of bonds running through the structure. (The M
0/1,\\::! SIS
\\

bond chain would be exactly in this plane if the Ge re-
gions were cubic.) The figures show a sequence of bonds
passing through four Si atoms, four Ge atoms, and final-
ly four more Si atoms. Figure 4(a) shows the valence-

Ge

//\‘

band-edge states. These are seen to be weakly confined " Si o Y ,"

in the Ge regions. The second zone-folded state at I' '/”'o‘o w M‘\

(with allowed dipole matrix elements) is plotted in Fig. (b) ””‘-““:“/" IN‘\\-‘/ "
4(b). This state is strongly confined to the Si regions of ““/II"“‘ ,/

the superlattice. The microscopic structure of the wave 7 /
function is characteristic of X, states in bulk Si. Final-
ly, the transverse X,. states are shown in Fig. 4(c).
These are clearly unconfined and are of X ;. character in
both the Si and Ge regions.

The integrated weight in the Si region of the superlat-
tices of several states are tabulated in Table V for the
cases considered here. In general, the spin-orbit splitting
together with the strain produces three distinct hole
bands near the valence-band edge. These are listed in
Table V with H, being the highest. Consider first the Si
substrate case. The H, is the most confined valence-
band-edge state, being about 60% in the Ge region for
the 4X4 geometry. The zone-folded state listed is the
first one with nonzero dipole matrix elements to the
valence-band edge. In the 4X4 structure, this is strong-
ly confined to the Si region, as illustrated in Fig. 4(b).
Finally, the transverse minima are unconfined. These
are systematic differences between the 4X 4 case and the FIG. 4. The |(r)|? is plotted in a plane with the bond
2x2 case. The states in the narrower wells generally ex- chain passing through both the Si and Ge regions of the 4x4
hibit considerably less confinement. The only truly superlattice for the following: (a) valence-band-edge states; (b)
confined states are the lowest pair of zone-folded states zone-folded conduction-band state; (c) transverse X,
at I in the 4 X 4 structure. conduction-band states.

000

'
AN ,'.‘,/“‘)
“\\"'0 % l'o
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TABLE V. The integrated weight of |(r)|? in the Si re-
gion of the superlattice.

Si substrate Ge substrate

we; 2%2 4x4 2%2 4x4
H, 0.56 0.54 0.48 0.51
H, 0.48 0.48 0.44 0.42
H, 0.44 0.41 0.61 0.56
ZF 0.57 0.78 0.55 0.80
A 0.60 0.54 0.66 0.55

be used in an effective-mass approach with boundary
conditions ensuring continuity of the envelope function
and the current. Using the LDA results for the
valence-band-edge alignment, band gaps, and spin-orbit
and strain splittings, the appropriate potentials can be
constructed. This is done for the valence-band-edge
complex and X,.-derived conduction-band states in Fig.
5. The valence-band-edge states are indexed by mj, the
magnetic quantum number for total angular momentum.
It is clear from the diagram [Fig. 5(b)] that the hole
states will be modestly confined in the Ge regions with
the highest state being most confined. The degree of

(a) X CBE
Si Ge
2
0.93 eV
0.34 eV
t
2,1 o
(b) ' VBE
Si Ge
o] 082 My =3/2
0.66
eV 1/2
0.09,
eV
3 172

My=3/2,1/2,1/2

FIG. 5. The appropriate barriers for Si substrate superlat-
tices alternating cubic Si and strained Ge for (a) conduction-
band-edge states and (b) valence-band-edge states in an
effective-mass picture.

confinement is small because the hole masses in the con-
stituent materials are quite light (of order 0.2 or less de-
pending on band). The barrier for the X, -derived con-
duction bands depends on orientation due to the strain
in the Ge regions [Fig. 5(a)]. The longitudinal valleys
see a large barrier. In addition, the longitudinal
conduction-band mass is large (of order 1) so
confinement is strong. However, the transverse valleys
see a considerably smaller barrier. Together with the
small transverse mass (of order 0.2), there is essentially
no confinement. The trends illustrated in Table V are in
qualitative agreement with this picture. The smaller de-
gree of confinement in the 2 X2 geometry is consistent
with the thinner wells.

Surprisingly, the effective-mass picture is already quite
reasonable quantitatively for the 4 X4 structure. This is
illustrated in Table VI. The effective-mass equations
have been solved using the barriers given in Fig. 5 and
band masses derived from the LDA band structure of
cubic Si and tetragonally distorted Ge (including the
spin-orbit interaction). The results are compared to the
full LDA calculation both for the transition energies and
the degree of confinement. The overall agreement is
quite good. The effective-mass results are within a few
hundredths of an eV for most cases. The only feature
not reproduced is the splitting of the zone-folded
conduction-band states. This, however, is attributable to
the microscopic structure of the superlattice; the Ge and
Si regions are not commensurate due to the strain, a
feature not taken into account in the effective-mass pic-
ture.

Turning now to the Ge substrate case, there are two
interesting differences. First, the character of the hole
states is quite different. The strain has been transferred
to the Si regions and has the opposite sign. Essentially,
the p, states are split up instead of down. This was
reflected in the matrix elements discussed in the preced-
ing section. Here, we also find that the valence-band
edge is essentially unconfined, with somewhat more
weight in the Si regions. In the 4 X 4 structure, the state
H, is the one which is more confined in the Ge regions
analogous to the valence-band edge in the Si substrate
case above. This can be understood with reference to
the quantum-well potentials shown in Fig. 6. The hole
states in the Si region are split by strain. (The spin-orbit
splitting is neglected.) In the Ge region they are spin-
orbit split. The highest hole state will be m; =1 which
is confined by a small barrier. The m;=3 state is
confined by the largest barrier and corresponds to the
H, state modestly confined in the Ge regions. Finally,
the H; state is essentially unconfined. The trend from
the 44 to 2 X2 structure is not entirely consistent with
less confinement in thinner quantum wells, suggesting
that the microscopic potential at the interface is more
important in that case. Also, for the my;=1 states,
neglect of interband coupling in an envelope approxima-
tion breaks down.

The other important change in the Ge substrate case
is the reversal of the order of the conduction-band val-
leys. Here, the longitudinal valley is lower. This is
shown in Fig. 6(a). The change in strain together with
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TABLE VI. The microscopic LDA band energies (transi-
tions) are compared to the results of the effective-mass ap-
proach. The integrated weight of |#(r)|? in the Si region of
the superlattice is also compared.

LDA EM

E (wg;) E (wsg;)
H; —0.42 0.54 —0.39 0.48
H, —0.10 0.48 —0.09 0.45
H, 0.00 0.41 0.00 0.43
ZF 0.49 0.84 0.61 0.73

0.60 0.78
E, 1.96 0.38 1.94 0.39
A 023 054 025 051

the confinement of the zone-folded states leads to a near-
ly direct gap. That the zone-folded states disperse down-
wards is a detail of the band structure which is outside
the scope of the effective-mass picture.

C. Quasiparticle energies in Si,Ge,(001)

The calculated quasiparticle energies for the superlat-
tice can be compared to the LDA eigenvalues discussed

(a) X CBE
Si Ge

0.85 eV
£
(b) I' VBE
Si Ge
My=3/72,1/2
0.32
eV 0.30 eV
e o o 1/2 1/2 o o o
0.48 eV
—

My=3/2,1/2

FIG. 6. The appropriate barriers for Ge substrate superlat-
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above. This gives us a way of assessing the reliability of
the trends identified using the LDA bands as well as
pointing out any novel self-energy effects in this superlat-
tice. The difference EF —¢lPA js plotted as a function
of E?¥ in Fig. 7 for the superlattice as well as bulk Si
and tetragonally distorted Ge. The three sets of data are
aligned at the valence-band edge. Generally, the self-
energy corrections so defined fall on smooth lines for the
conduction-band and valence-band states separately.
This is exactly what was found for bulk semiconduc-
tors.® Closer examination of the data does reveal some
systematic changes. These are attributable to correc-
tions to the valence-band alignment and the bulk defor-
mation potentials. The quasiparticle calculation yields
noticeably different values for these quantities as will be
discussed elsewhere.'*'®  Otherwise, the qualitative
features of the self-energy results for the superlattice are
the same as for bulk materials. In particular,
confinement of some states to either Si or Ge regions
does not play a quantitatively important role in the self-
energy operator in comparison to the LDA potential.
This is not too surprising since the corrections arising
from self-energy effects in bulk Si and bulk Ge are quite
similar.

The results of the present quasiparticle calculation
have been used to interpret the experimental spectra for
the 44 superlattice. Results of the present self-energy
approach give transition energies in excellent agreement
with experiment for both bulk Si and bulk Ge.® We can
therefore be confident in our assessments of the magni-
tudes of the transition energies involved.

The most basic feature of the 4 <4 superlattice is the
indirect gap. The calculation gives an indirect gap of
0.85 eV. A second indirect edge due to the light holes is
calculated to enter at 0.95 eV. This is in excellent agree-
ment with the absorption edge measured in photo-
current.'® The photoresponse as a function of photon
energy clearly does not fit the usual (E —E,)!/? behavior
for an allowed direct edge. It is fit quite well by two in-
direct edges at 0.78 and 0.90 eV, in excellent agreement
with the theory both in magnitude and in splitting. One
should note that a phonon-assisted process for the in-

1.0 T T T
o Si (CUBIC) ° °

- o Ge (TETR) O e’ ¥
3 05| * Sigbeq(001) © |
<
o
)
bt o
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-4 -2 (0] 2 4
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FIG. 7. The calculated difference EF—g'PA is plotted

against the quasiparticle energy E?F for the 44 superlattice
as well as cubic Si and tetragonally distorted Ge. All values
are taken with respect to that at the valence-band edge.

tices alternating strained Si and cubic Ge for (a) conduction-
band-edge states and (b) valence-band-edge states in an
effective-mass picture.
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direct absorption will be dominated by phonon emission
for the present case so that the actual electronic energy
gap may be smaller by the phonon energy (of order
0.03-0.05 eV). Other aspects of the sample structure
also affect the exact magnitude and interpretation of the
minimum absorption energy, as discussed in Sec. IV
below.

Extensive electroreflectance (ER) measurements have
been made on the 4X 4 superlattice grown as described
in the Introduction.®'® The measurements have been
done for two different samples grown independently.
The resulting spectra show a rich variety of features
below the energy of the bulk Si E, transition (3.4 eV).
The transitions responsible for this structure must be
characteristic of the superlattice region of the sample in
some way. The spectra for the two samples are in gen-
eral agreement. The line shape in the infrared region of
the spectrum differs. Also, a strong feature near 1.8 eV
appears for only one sample, although a shoulder in the
same spectral region can be discerned in the spectrum
for the other sample. Finally, the higher-energy struc-
ture appears shifted in energy by about 0.1 eV between
spectra for the two samples. In order to determine the
experimental critical-point energies as well as linewidths,
the spectra are fit to a generalized line-shape function.
With closely spaced features, precise extraction of the
critical-point energy remains somewhat uncertain. The
best-fit values for both samples are indicated in Table
VII. The data differ by about 0.1 eV, at most, giving a
rough measure of the error bars on the measured critical
points due to sample variation, differences in measure-
ment conditions, and fitting uncertainties. This uncer-
tainty is comparable to the precision expected for the
calculated quasiparticle energies (0.1 eV).

A reproducible feature is observed near 0.8 eV. Based
on the present calculation, we have to assign this feature
to the indirect absorption edge. The second feature in
the ER spectra at 1.1-1.25 eV is assigned to the first
transition to a zone-folded state. This is different from

TABLE VII. The transition energies calculated from the
quasiparticle (QP) band structure of the extended 44 super-
lattice are compared to the features observed in electro-
reflectance (ER) for two distinct samples (each value respec-
tively forming the range indicated) and photocurrent (PC) ex-
periments.

QP ER® j Jou
E, 0.85, 0.95 0.76-0.76 0.78, 0.90
ZF 1.24, 1.34 1.1-1.25
1.76, 1.86 1.8
E, 2.4, 2.5 2.2-23
E, 2.50, 2.55 2.45-2.58
2.88 2.65-2.81
3.18, 3.20 2.95-3.06
3.24, 3.28

*References 3 and 10.
bReference 10.
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the interpretation put forward by other groups.!* How-
ever, it is the only interpretation consistent both with
the accuracy of the quasiparticle calculation and the
photocurrent measurements. The intensity expected
from the matrix elements in Table II is in fact compara-
ble to that from an indirect edge, at least on the basis of
the matrix elements for the phonon-assisted process.?°
These features are quite comparable in the ER spectra.
A third feature has been observed on one sample around
1.8 eV.1% This is assigned to the second allowed transi-
tion to a zone-folded state. All of these features are pre-
dicted to occur as doublets, although this is not clearly
resolved in the spectra. Transitions from the split-off
hole band do not play an important role because the
light in the experiment is polarized in the x-y plane
(transverse to the growth direction). These results are
summarized in Table VII.

The other features of the ER spectrum can be inter-
preted in terms of standard transitions in Si and Ge
modified by the superlattice geometry. These are all
dipole-allowed transitions. The 2.2-2.3-eV feature cor-
responds to the E|, transition at the zone center. Only
transitions from the heavy- and light-hole bands contrib-
ute due to the polarization of the light. Transitions from
the split-off valence band are quite weak due to its
strong p, character. One should note that the experi-
ment is done at room temperature while the theory pre-
dicts T=0 gaps. The E, feature will move up about 0.1
eV as the temperature is lowered to zero. Another im-
portant point is that both the electrons and the holes are
confined in the superlattice region of the sample (about
50 A). This adds about 0.1 eV to the theoretical value
for the transition energy.

The rest of the features are attributed to modified E,
transitions. In bulk Si and Ge, these arise from direct
transitions at the L point in the Brillouin zone or along
A. In general, the energy of the critical point is quite
close to the transition energy at the L point. Both the
strain and the spin-orbit interaction split the bulk
valence-band state at L into two components. This leads
to the standard E, and E | + A, features in the spectrum.
This persists also in the alloy spectrum. For the super-
lattice, there is an additional splitting due to the ine-
quivalent A (X) directions parallel and perpendicular to
the interface bonds. This leads to further distinct transi-
tion energies at the mapped L point of the superlattice
Brillouin zone as discussed in Sec. III A. The dipole-
allowed transitions are compared to the features in the
ER spectrum in Table VII. The correspondence is excel-
lent, supporting the assignment of these features as E -
derived transitions.

IV. CONCLUSIONS AND DISCUSSION

We have analyzed the band structure of extended su-
perlattices formed by alternating a few monolayers of Si
and Ge. The effects of strain and confinement play an
important role in determining the character of the ab-
sorption edge as well as higher-energy structure in opti-
cal spectra. In particular, for superlattices grown on a
Si substrate (cubic Si alternating with strained Ge), the
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minimum gap is indirect to states along the transverse A
directions near X. Zone-folded states coming from the
longitudinal A directions lie higher in energy and have
weak dipole matrix elements coupling to the valence-
band-edge states. Alternatively, growing the superlattice
on a Ge substrate (strained Si alternating with cubic Ge)
leads to an approximately direct-gap semiconductor.
This is due to the reversal of the sign of the strain split-
ting of the conduction-band minima along A. These su-
perlattices are in fact still indirect due to the slight
downwards dispersion of the zone-folded states away
from the zone center. This difference is not too much
larger than the phonon energies that would be involved
in phonon-assisted transitions. We also note that the
finite (small) number of superlattice periods in actual
samples will break down k conservation along the
growth direction, rendering this small degree of indirect-
ness irrelevant.

The quasiparticle energies for the 44 superlattice
have been calculated using the self-energy approach.
This has allowed quantitative interpretation of the pho-
tocurrent and electroreflectance data for this material.
The indirect character of the absorption edge is
identified. All the features in the spectra are identified.

Several open questions remain. The observation of an
indirect edge in electroreflectance, although not unique,
is unusual. The indirect and zone-folded features in the
spectra have an intensity comparable to each other and
also to the dipole-allowed transitions observed. Similar-
ly, the two indirect components observed in the photo-
current data have an intensity ratio that is not explain-
able strictly on the basis of the extended superlattice
states. One can estimate the expected ratio of absorp-
tion due to the light- and heavy-hole bands in the ex-
tended superlattice from the masses and the strain and
spin-orbit mixing of those p states. The result is that
these cross sections are at most comparable and the
heavy-hole absorption is probably larger. The photo-
current signals are the opposite with the light-hole com-
ponent larger by about a factor of 3.

The one aspect of these new materials as grown that
has not been taken explicitly into account is the finite
number of superlattice periods. Essentially, the superlat-
tice forms a quantum-well region in a Si matrix. Viewed
in this way, and with reference to Fig. S5, the holes are
confined in the superlattice region, but the electrons at
the conduction-band minima are not. In fact, the elec-
trons should be in the Si region with a barrier formed by
the superlattice region. These features have minimal im-
pact on the quantitative levels in the superlattice region.
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Shifts in energy due to confinement in the 50-A quantum
well are of order or smaller than the estimated uncer-
tainty in the quasiparticle transition energies (of order
0.1 eV). However, this aspect of the problem may well
have consequences for the intensity of the features ob-
served in the experimental spectra.

The role of confinement in the superlattice region was
mentioned in Sec. IIIC for the E, transitions where
both electrons and holes are confined. For the lowest
transition, several points can be made. First, the heavy
holes are in a quantum well about 0.5 eV deep. The cor-
responding confinement energy is about 0.05 eV. The
light holes are in a well about 0.4 eV deep and have a
similar confinement energy. This increases the calculat-
ed indirect gap. It also affects the external quantum
efficiency in the photocurrent measurements where the
signal is due to collection of the photoelectrons and pho-
toholes. The holes must escape from the superlattice re-
gion of the sample in the electric field applied for collect-
ing the photocurrent. Clearly the light holes, being in a
shallower well, escape more easily and hence contribute
more to the photocurrent signal. Second, the superlat-
tice conduction-band edge falls about 0.1 eV above the
bulk Si conduction-band edge. As a consequence, the
electrons are not confined to the superlattice region.
Further, one might speculate that the absorption creates
electrons in the bulk Si states which penetrate into the
superlattice region. This would reduce the calculated
minimum gap by about 0.1 eV. Also, since the k conser-
vation along the growth direction is thus broken, the la-
bel “indirect” may be somewhat of a misnomer in this
case.

Clearly, the net effect of the finite superlattice extent
on the calculated minimum gap energy is quite small.
However, the role which the sample geometry plays in
the actual absorption intensity and energy dependence
may be more important. One may also propose other
mechanisms for indirect absorption, including steps at
the growth interfaces or defects. Both could take up the
necessary momentum. This remains an outstanding
problem which requires further work.
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