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We consider electron-electron and electron-phonon interactions, in particular backward scattering

by phonons, in one-dimensional metals. Particular emphasis is laid on the effects of finite phonon

frequency. We calculate effective interaction constants and the effective mass enhancement due to
the electron-phonon coupling. We find a significant enhancement of charge-density-wave Auctuations

and of the electronic specific heat. A new theoretical approach allows us to discuss electron-electron
and electron-phonon interactions on an equal footing; it is based on the limits of weak electron-

phonon coupling, high phonon frequency, and strong coupling, low frequency, and gives good agree-
rnent in intermediate cases.

I. INTRODUCTION

This paper presents a new theoretical approach to the
description of electron-phon on interactions in one-
dimensional fermion systems. The motivation for this
study stems largely from many interesting results and un-
solved questions in the field of organic conductors and su-
perconductors. ' Typical materials we have in mind are,
e.g. , tetrathiafulvalene-tetracyanogunodimethene (TTF-
TCNQ) or the Bechgaard salts (TMTSF) zX, where
TMTSF denotes tetramethyl tetraselenafulvalene. They
may or may not be commensurate, but for the sake of
simplicity, we shall limit ourselves in the present paper to
incommensurate systems. This restriction will be released
in a subsequent publication. Many of the results obtained
here are also relevant to conducting polymers such as
doped polyacetylene, but caution should be taken in ap-
plying them literally because of the commensurability of
these materials.

Experimentally, there are strong indications for the im-
portance of both electron-electron and electron-phonon in-
teractions in real quasi-one-dimensional (1D) solids. Con-
cerning the low-temperature instabilities of 1D fermion
systems, the simplest theories based solely on Coulomb
interactions predict only a spin-density-wave (SDW) insta-
bility at low temperature provided the interaction de-
creases monotonically with distance. For example, in the
familiar model introduced in Ref. 3, we would have

g2~g& &0 and the dominant divergence would therefore
be in the SDW correlation function. In real materials,
SDW instabilities are however a small minority. In par-
ticular, before the synthesis of the (TMTSF) zX com-
pounds, most of the low-temperature phases were of the
charge-density-wave (CDW) type. " ' It became rapidly
evident, however, that at least in some materials, the sim-
ple Peierls model, predicting a modulation of the charge
density with wave vector 2kF, was not adequate for the
description of the CDW state. In TTF-TCNQ, a 4kF-
modulated CDW was observed in addition to the 2kF
one. In N-methylphenazinium TCNQ, both CDW's are

also found in coexistence. The theoretical explanation of
the 4kF CDW suggested the presence of fairly strong
repulsive interactions. '

Turning to superconducting instabilities, BCS theory is
based on the attractive electron-phonon interaction. Nu-
clear magnetic resonance experiments on (TMTSF)qC104,
however, clearly show strong antiferromagnetic Auctua-
tions immediately before the transition into the supercon-
ducting state, suggesting again the importance of repul-
sive interactions. (Let us mention only in passing that
this observation has led to several proposals for non-
phonon-based mechanisms for organic superconductivi-

10)

Thermodynamic and transport properties, too, give in-
dications of the importance of both electron-electron and
electron-phonon interactions. In many compounds, e.g. ,
the Pauli susceptibility is enhanced over its free-electron
value by a factor of 2 to 5, which can only be understood
by assuming relatively strong electronic correlations. "

On the other hand, optical measurements' demonstrate
that in addition to the usual acoustic and optical phonons,
there is a broad spectrum of intramolecular vibration
modes, ranging from about 50 to 3000 crn ', i.e., up to
values comparable to typical bandwidths ( —1 eV). More-
over, it was shown' that high-frequency intramolecular
vibrations couple quite well to the electrons. Another
theory' demonstrates that in a system of electrons cou-
pling to several phonon modes of different frequencies, the
stability of the CDW state is mainly determined by the
high-frequency intramolecular modes which are relatively
strongly coupled to the electrons, whereas the low-
frequency intermolecular phonons make up the major
contribution to the CDW's effective mass.

The theoretical effort to date has focused mainly on in-
corporating the effects of the attractive interaction mediat-
ed by the phonons into the current models. However,
most of the work has been limited either to the region of
very high phonon frequencies (of the order of the Fermi
energy or so) or to very low frequencies, treating the pho-
nons in the mean-field approximation. As an example for
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the first category, one can mention attempts to justify the
possibility of negative coupling constants, e.g. , in the pic-
ture of Ref. 3 or in the Hubbard model invoking the at-
tractive nature of the phonon-mediated effective electron-
electron interaction. ' Although this is probably a good
starting point for very-high-frequency phonons (u 5 EF ) it
surely fails for intermediate- or low-frequency modes.

The classical mean-field theory of Peierls was extended
to the simultaneous presence of electron-electron and
electron-phonon interaction by Baeriswyl and Forney'
and Horowitz et al. ,

' yielding however incompatible
low-temperature phase diagrams. More recently, Horo-
vitz and Solyom' have produced a refined treatment of
the electron-electron coupling using renormalization-
group methods, but the phonons are again treated in the
mean-field approximation. Mean-field theory neglects any
fluctuations of the phonon degrees of freedom and should
therefore be reliable only for extremely low frequencies
(cu~O). Although there is actually a quite good under-
standing of the very high and very low phonon frequency
range, the physically relevant case of intermediate fre-
quencies has only rarely been investigated.

An extension over mean-field results in the low-
frequency region has been given by Fukuyama' who
pointed out the importance of phase fluctuations in CDW
systems. In fact, in an incommensurate CDW, the order
parameter is complex. Whereas there is a finite restoring
force against fluctuations of its amplitude, long-
wavelength phase excitations exist at arbitrarily small en-
ergy (co+ —vr

~ q ~
) and destroy long-range order even at

zero temperature. This approach has been limited to sys-
tems without electronic correlations. This very same limi-
tation also applies to a more recent work treating a much
wider range of phonon frequencies through the use of
Grassmann variables. Electron-electron interactions have
been included in an approach based on two-cutoff renor-
malization. ' In this method, one makes the hypothesis
that electronic fluctuations with energies higher than the
Debye frequency are unaffected by the phonons, whereas
below this scale, the phonons are treated as effectively
nonretarded and included in effective coupling constants.
Although not explicitly stated, this method is also limited
to relatively high phonon frequencies.

Finally, numerical (Monte Carlo) simulations on finite
systems have provided considerable insight into systems
with both electron-electron and electron-phonon interac-
tion. Being nonperturbative, one can avoid many prob-
lems related to the necessity of having small parameters
for perturbation expansions in analytic work. However,
these simulations are limited to systems of finite tempera-
ture; ground-state properties have to be obtained by extra-
polation. Moreover, it seems dificult to obtain reliable in-
formation on weakly coupled systems from such simula-
tions.

More generally, the crossover between retarded and
unretarded behavior of the phonon system as well as the
interplay between the repulsive Coulomb correlations and
the attractive electron-phonon interaction have not been
studied in a systematic and unified manner to date. In
particular, it is unclear which parameters eventually con-
trol this interplay.

For these reasons, it is highly desirable to have a for-
malism treating Coulomb and electron-phonon interaction
with phonons of arbitrary frequency on an equal footing.
It is the purpose of this paper to present a new approach
for the theoretical description of 1D metals with retarded
and nonretarded interactions. Its focus is on the physical-
ly relevant case of large-momentum-transfer (q —2kF )

scattering of electrons by phonons and on the effects of
the quantum dynamics of the phonon system. Small-
momentum-transfer (q -0) scattering by phonons has
previously been treated exactly by direct diagonalization
of the Hamiltonian ' and will be ignored in the present
paper. The calculation of correlation functions provides
the basis for a unified description of both the low-
temperature instabilities and of the thermodynamic and
transport properties of the 1D electron-phonon system.

The solution procedure for the problem of backscatter-
ing of spin- —, electrons by phonons is quite involved due
to a coupling of charge- and spin-density degrees of free-
dom in the interaction Hamiltonian on the one hand and
finite retardation on the other. Limitation to spinless fer-
mions allows considerable simplification and is therefore
better suited to discuss the effects introduced by the finite
retardation of the phonons. Note, however, that this
seemingly pathological model is not without physical
relevance. Via a Jordan-Wigner transformation, spin-
Peierls systems are related to spinless fermions coupled
to phonons. The magnetic field in the spin-Peierls prob-
lem is related to the chemical potential of the spinless-
fermion model. The zero-magnetic-field situation corre-
sponds to a half-filled band in the fermion model; on ap-
plying a finite magnetic field the equivalent fermion sys-
tem becomes incommensurate, and the present theory can
give important information on the behavior of the spin-
Peierls system.

This is the first in a series of papers presenting the re-
sults of a comprehensive study of one-dimensional
electron-phonon systems. The focus of the study is on the
combined effects of electron-electron and electron-phonon
interaction in one-dimensional systems, and on the effects
of the finite retardation of the phonons, both on the low-
temperature instabilities and on the thermodynamic and
transport properties of one-dimensional materials.

This paper is organized as follows: Sec. II presents the
model Hamiltonian. Fundamental technical aspects, re-
lated to the bosonization method used in the major part of
this paper, are also discussed. In order to obtain a
description for arbitrary electron-phonon coupling and,
more importantly, arbitrary phonon frequency, two com-
plementary approaches have to be used. Section III
presents the weak-coupling —weak-retardation case,
whereas Sec. IV contains the strong-coupling —strong-
retardation results. The influence of the coupling of the
electrons to the phonons on low-temperature instabilities
and thermodynamic properties is determined in Sec. V. A
more general discussion is given in Sec. VI, while some
technical details are relegated to the Appendix.

II. THE MODEL

In this paper we discuss a Tomonaga-Luttinger model
(TLM) extended to include electron backscattering
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through emission or absorption of a phonon with wave
vector

~ q ~

—2kF. Its Hamiltonian is given by
+kF —

F

H:Hel +He] el +Hpg +He] p

The free-electron part is

H, , '=g uF(rk —kF)a„ka„k
k, r

(2.1)

(2.2a)
92

GATV F g [p„(p)p+( —p)+p ( —p)p (p)],
p (~0)

(2.2b)

and the electron-electron interaction is 2k

Hel-el—

g2+ y:a +,k, a —,k a —,k —pa q, k, +p
ki, k2, p

(2.3a)

a —,k a +,k a+, k +2k +pa —,k —2k —p
ki, k~,p FIG. 1. Schematic representation of the interaction processes

g &, g2, and y l. Solid (broken) lines denote electrons with
momentum close to kF ( —kF ).

gZ —gl g p+(p)p ( —p) .

The free-phonon and electron-phonon parts are

1 K
11~k (x)+—

~p~k (x)F a F

(2 3b) given by

4ig„
y)=, sin(kpa )

( )1/2

for acoustic phonons, and by
(2.4a)

g mal

( )1/2

(2.4b)

(2.6a)

(2.6b)

for intramolecular vibrations. Here, g„(g,~) is the first
derivative of the electronic transfer integral (the molecular
energy level) with respect to the intermolecular distance u

(an intramolecular coordinate). In the following we al-

ways suppose optical phonons; the coupling constant for
acoustic phonons being purely imaginary, the results in
this case can be obtained by replacing yt~

~ y& ~

every-
where. As we consider an incommensurate system,
electron-electron and electron-phonon umklapp scattering
are irrelevant.

Let us now discuss some of the approximations in-
volved to this point: we have used a continuum model
with a linear dispersion relation (without bandwidth
cutolf) for the electrons. This should be a good approxi-
mation to the low-energy properties of the model in the
asymptotic regime

~

x ~, ~

t
~

~ oo, where only states very
near the Fermi surface are relevant. We are therefore re-
stricted to low temperatures (T «EF) and to weak cou-
pling strength (g;/2vruF « 1); while the condition T «EF
is easily fulfi1led in all physically relevant situations, the
limitation to weak electron-electron coupling is more seri-
ous. This restriction can or cannot apply to real materi-
als. The restriction to backward scattering by disper-
sionless phonons is a good approximation for acoustic
phonons which usually have very little dispersion at
q -2kF. This is the only relevant term for interaction of
electrons with acoustic phonons since an exact solution of
the forward-scattering part has shown that its contribu-
tion is reduced by a factor (C, /vF) where C, is the speed
of sound, which is of the order 10 —10 in real materi-
als and can safely be neglected. For optical phonons and
intramolecular vibrations (which will not be distinguished

(2.Sa)H, l ~h
——yl dx + x x a@2k x e +H. c.

dx e ' '
'cppk x +H. c.

2wn
(2.Sb)

a„k creates an electron with momentum k on the branch
r = +, — of the linear dispersion relation
E(k) =uF(rk —kF), and 'P„(x) is the corresponding opera-
tor in real space. ::denotes normal ordering of the Fer-
mi operators with respect to the ground state of (2.2). vF

is the Fermi velocity, and gl and gq are the coupling con-
stants for electron-electron backward and forward scatter-
ing, respectively, (Fig. 1). We take these couplings in-

dependent of p; in order to obtain well-defined results, we
introduce a momentum transfer cutoff into the TLM; the
bandwidth of the model is not cut off.

The complex phonon field qqk (x) is the slowly varying

part of the 2kF component of the displacement field

u~k (x)=Re[e qpk (x)]

describing phonons with frequency cozk ——K/(apI ), where

K is the spring constant, a the spacing of the lattice, and

pl the ionic mass density. H2k is the canonically conju-F
gate momentum to rppk, and g, k (pf )

'——
112k ——II2k /(pI )

' have been introduced for practical

purposes. y l is the electron-phonon coupling constant. If
we think about a tight-binding model for the electrons,
characterized by a transfer integral t and a highest occu-
pied molecular energy level E, the coupling constant is
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[p, (p),p„, ( —p')]= —6„„5 rpL" ~'~ 2~

and the boson phase field

&P(x)
i~ y e

—a ~P ~
/2 —

iPX[p (p)+p (p)]
p(&0) p

(2.8)

+(N++X )
L,

(2.9)

The Tomonaga-Luttinger model with electron-electron in-
teraction only can be diagonalized exactly ' by a Bogo-
liubov transformation. Its essential effect is to introduce a
renormalized coupling constant

2~UF —g2+g1
exp(4$) =

2&UF +g2 —g1
(2. 10)

which is relevant for the transformation of the N field
[N(x)~4(x)=e~+(x)], and a renormalized velocity of
the collective excitations

in what follows) one should take account of the forward-
scattering part; previously, it has been shown, how this
interaction can be incorporated into the correlation func-
tion exponents exp(2$) arising from the diagonalization of
the Tomonaga-Luttinger model [cf. Eq. (2.10)].

The fermion representation of the Hamiltonian has
been given in Eqs. (2.2a), (2.3a), and (2.5a); in Eqs. (2.2b),
(2.3b), and (2.5b) we have represented the same Hamil-
tonian in terms of density operators

p, V»=g ~,', k+, ~„k, (2.7)
k

which obey Bose commutation relations

I

x
I
~op is given by

~sc —
I

t
I

+~sc —2+~sc

where
acDw=2 —2 exp(2$),

(2.15)

(2.16)

(2.17)

asc=2 —2 exp( —2g)
measure the deviations of the correlations function ex-
ponents from their noninteracting value (a; =0).

Note that, the exponent exp(2$) governing the decay of
the correlation functions is universal only to first order in
the coupling constants g; (compare, e.g. , Ref. 3). Howev-
er, the low-energy properties of any interacting one-
dimensional spinless fermion system are correctly de-
scribed by (2.17) and (2.18) if the system is incommensu-
rate. In particular, relations between the exponents are
believed to be universal. Furthermore, exp(2$) and the
renormalized velocity of the collective excitations v are
sufhcient for a complete description of the physics of the
model.

In the following two sections we shall discuss the mod-
el described above with two different methods for the case
of high phonon frequencies and/or weak electron-phonon
coupling and for low phonon frequencies and/or strong
electron-phonon coupling. AH physically relevant param-
eters can be computed in both approaches, and therefore
it is possible to describe the whole range of frequencies
and coupling constants if the results obtained with the
two approaches match. This will be shown explicitly to
be the case.

2
V = UF-P

g2 —g1
2 ]/2

(2.11)
III. SOLUTION FOR HIGH PHONON

FREQUENCIES AND/OR WEAK COUPLING

The following calculations will mostly use correlation
functions

R; (xt,x't')= i ( TO; (xt)—O; (x't') ) (2.12)

for the fiuctuations of charge-density-wave (i =CDW) or
superconducting (i =SC) type; T denotes the time-
ordering operator. The respective operators are given by

OcDw(xt) =4 (xt)%'+(xt)
2i kFx

e 2i N(x7)e 7
27TCX

Osc(xt) =4 (xt)%+(xt)

(2 )
—i 2iB(xt)

(2.13a)

(2.13b)

(2.14a)

(2.14b)

where the phase field e(x) is related to the momentum
II(x) conjugate to @(x) by Ve(x)=@II(x). The asymp-
totic behavior of the correlation functions for

I
t

I
~ao,

In this limit, our strategy will be to eliminate the pho-
non degrees of freedom from the problem, and to discuss
the effective, phonon-mediated electron-electron interac-
tion. Starting from the boson representation of the Ham-
iltonian [Eqs. (2.2b), (2.3b), and (2.5b)], we first diagonal-
ize the purely electronic part of the Hamiltonian. We are
now left with a "free" Hamiltonian (H,i), describing in-
dependent bosons, and a Hamiltonian (H, i~h) for the in-
teraction of these bosons with the phonons, both contain-
ing renormalized parameters, which can be obtained tech-
nically by the replacements N(x)~(exp/)@(x) in (2.5b)
and (2.11) in (2.2b), respectively.

We now go to the Matsubara formalism of imaginary
times ~=it. Writing y =UF~ allows one to map our sys-
tem onto a 2D one with position vector r = (x,y). The
free Hamiltonian now describes Gaussian fluctuations of
the (classical) field @(r) in two dimensions.

Specifically, we consider the partition function Z at
temperature T =P

Z =Trq exp — dr H (r)p

=Tr@,~ exp — H, ] 4 r — Hph' y r — H, 1 Ph + r, y r
0 UF 0 UF 0 UF

(3.1)
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Z=Trq, exp — H, 1 4 r
VF

X T,expI —U[@(r)]] (3.2)

where the symbol Trq, ~ denote the trace with respect to
the phase and phonon fields. In what follows we are
mostly interested in the limit T~O; then we shall drop
the integration limits. The Hamiltonian being bilinear in
the phonon field y(r), Tr& can be performed exactly; we
obtain a functional U[4&(r)] for eff'ective phonon-induced
electron-electron interaction

Here,

Do(r) =(2~2k, ) '&(x)exp( —
l y l /mph)

mph
=VF /M 2kF

(3.4)

(3.5)

is the bare propagator for dispersionless phonons. Note
that the integral in (3.3) is convergent for any nonzero
phonon frequency; its consequences will be discussed
below.

It is dificult to discuss in more detail the physical be-
havior of the system with the functional (3.3). We there-
fore perform a perturbation expansion of exp( —U) in the
partition function (3.2)

U[@(r)]=—
2

f d r f d r'Do(r —r')
2&(xUF

Xcos[2e~[@(r)—@(r')]I . (3.3)

Z =ZoAZ, (3.6)

where Zo includes the diagonalized parts of the Hamil-
tonian and

P1
277(XUF

5Z= T,exp — de, 1 ph T

2n
1 )n 2n 2n —1

T,
,

d rk cos 2e~ 4 rt —+ rI+1 Do rI —r~+1
n=0 n! k=1 1 odd

(3.7)

and the average is defined as

( )—:Zo 'Tr~exp —f dr H, ~(r) (3.8)

Evaluating ( ), we obtain

oo
( 1)nbZ= g

n=1 n!

2
y1 2n 2n —1

f d rk Q [exp[ —2e ~V(rl —r&+, )]Dz(rl —rI+&)I
k =1 t' odd

(3.9)

where the "potential"

V(r)= —,'in[(r +a )/a ] (3.10)

satisfies the two-dimensional Poisson equation

V' V(r)=2~5(r) . (3.1 1)

In the absence of the phonon propagator, AZ can be in-

terpreted as the grand-canonical partition function of a
2D classical globally neutral plasma of oppositely charged
particles ("Coulomb gas"). The mapping is achieved
through the relations

Pcoq =2 exp(2$), (3.12)

Yh ——2
P 2

217 UF~2kF
(3.13)

13co, q, and Yph are the inverse temperature,
charge, and fugacity of the Coulomb gas, respectively.
(The index on Yph has been introduced to point out the
analogy to a similar construction that will appear in the
problem including spin. ) Note that the relation between
Yph and the frequently used effective electron-phonon
couPling constant A [Refs. 1(b) and 4] is Yph=A, /4. The
equivalence of a similar 1D fermion system to a classical

2D Coulomb gas has been pointed out long ago by Chui
and Lee.

Kosterlitz and Thouless ' have shown that there is a
continuous phase transition in the 2D Coulomb gas from
a low-temperature phase in which opposite charges form
bound dipoles to a high-temperature phase where the
charges are free. Again in the absence of the phonon
propagator in (3.9), the low-temperature Coulomb gas
phase would correspond to the metallic phase of the 1D
fermion system, whereas the high-temperature Coulomb-
gas phase would correspond to the Peierls phase of the
1D system with a gap in the charge-density-wave excita-
tion spectrum.

What is the effect of the electron-phonon interaction
and of the finite phonon frequency on the electronic prop-
erties? From Eqs. (3.4) and (3.9) it is clear that the pho-
non propagator introduces a linear ("confinement" ) poten-
tial ( ~ ly l /mph) between two Coulomb-gas charges in

addition to the logarithmic potential (3.10). This linear
potential prevents the Kosterlitz- Thouless dipole-
unbinding transition, and therefore a Peierls transition in

our 1D electron-phonon system for any co2k & 0

(mph& oo). On a sufficiently large length scale ( and we
are only interested in asymptotic properties in this paper)
the system will see the charges always bound to dipoles.
This statement is equivalent to the one made above,



97336

namely that the inte
W o h

n anguage
uency; translat

h h
a integrals i

onon quantum 0uctuations.

or finite co2~

s in our problem ar
(s~~h) due to the r

g
th o o f

q

avior with

1 d
cal detail
equati

i s are rele e
g

ions read
e ppendix. Th e scaling

d exp(2$) = —exp(4() Y aph (ao/Pph )exp( —a / ph

/ ~r —r tntegral in 3.3
h

an wit
Tun m aga-Luttinger H

ment
e interactions onl

'
res on y, with the re 1rep ace-

(3.16)exp(2() ~z exp(2$),

2
2 g2 —g&

27TU F
I (3—2e~~, 1),

GATV FC02
2

F

where all parameters have

(3.17)

e s ave to be taken from

unction.

on o
is the incom

Obviously th

mplete

y t e success of
11 o th

pp hdp d

of (—
p t bto

f
eff'ective elect - o ionec ron- ho

ameier n
re neces-

p non interact h

ent description fs ent d o our s stem

Fig. 2, initial e e

em, we

nitia values above the
lidi of' h

m

ph 1 ) and theref
e perturbation

by the
f, bef e consistently

ho i F' 2
h h d hdas - otted line in F'in ig. 2 shifts

(3.14a)

d Yph = Yzh [—', —exp( 2g') ],
dUF

d&
——UFexp(2()Y (a /ph ao mph)exp( —a/g )ph

(3.14b)

(3.14c)

where 8= ln(a/ao, a bein
qu tions (3 14a) andand (3.14b) describe h

on-electron
'

n o the electr
i e t e mutual renor-

e

an electron-

common 2D C

on-phonon
~ . i not present i

g

in the
ecause the ho

ry anisotropic b'

eac renorma
'

c 0 Ject in

ic contr b
'

to
ization step d op, we add

y isotropic partition or

his can
es more an

e velocit of
e orby aren

and more an-

ic plays the role of t veocity in a
physical sign fini cance will be

Figure 2 shows t

n be dis-

ic parameters will
. 4c) scaling of th

F

h h
g ' g....„....„h h h h

nic

F

1 c}d
e aves as

t e cosine in En q. (3.3) for small
can expand th e argu-

ma arguments

Ypb

Yp(

ELECTRON-PHHONON INTERACCTION AND PHONO

E .

C ONON DYNAMICS. . .

cos I 2e ~[+(r)—Nr — (r')]]

=2e ~exp[ —2e ~V(r —'
ie (r —r')][(r —r'). V4 (3.15)

N ote the ex oponential term in t
oitd ot b Ko

~an two in the ex ar armer t~ e ex a
1 1

n irrelevan an a t

). We can now perform the

ypical scalin tr
'

y asterisk). Initial v

=»(~2& f+p
values above the dash-d

lidit of th

solution u
t}1d h

h h d
1 d MTM

parameter

ll h X
p

ninteracting system.
e axis indicated locus of



974 J. VOIT AND H. J. SCHULZ 36

downward with decreasing phonon frequency: the
Coulomb gas approach is typically a high frequency
and/or weak coupling approach and not suited for the
description of the low phonon frequency region. A com-
plementary approach will be described in the next section.

IV. SOLUTION FOR
LOW PHONON FREQUENCIES
AND/OR STRONG COUPLING

y2k„(r) =const =q&0 . (4.1)

A priori we cannot make this restriction for the spatial
variations. We take it as a hypothesis, and it will show
up to be consistent at the end. Then our Hamiltonian
[(2.1)—(2.5)] can be written as

In the weak coupling approach of the preceding section
we integrated over the phonon degrees of freedom to dis-
cuss an effective electronic problem. For very low phonon
frequencies or strong electron-phonon coupling we shall
follow the inverse strategy: we shall first eliminate the
electronic degrees of freedom and solve an effective pho-
non Hamiltonian. The results of this solution can then be
used to obtain information on the properties of the elec-
tron system which we are mostly interested in.

The important observation is that the phonon field

qr2k (x) entering the electron-phonon Hamiltonian (2.5), is

a very slowly varying function of time at low phonon fre-
quencies. As a first approximation, we can neglect com-
pletely the fluctuations of the phonon field

Hph +~MTM(0) (4.2)

where HMTM is the Hamiltonian of the massive Thirring
model (MTM). Its electron-electron interaction term is
usually written (in fermion language) as

Hg =2g f dx%+(x)% (x)% (x)'P+(x),
and its mass term

(4.3a)

H =mo f dx[%+(x)% (x)+4 (x)%+(x)] . (4.3b)

is related to the electron-phonon interaction of our prob-
lem by

0 = /1+0/VF (4.4)

2—arccot ~ +~cDw/2,
7T 2

(4.5)

giving in lowest order g =(gz —g&)/2uF, in agreement
with what has been said in Sec. II about universality.
This identification can be obtained, e.g. , from parameters
which can be computed in both models such as the depen-
dence of the gap in the electronic spectrum on the bare
mass.

The massive Thirring model has been solved exactly by
Bethe ansatz. Its ground-state energy is given by

@~pro plays the role of an order parameter (or, more pre-
cisely, its amplitude). Due to the different cutoff pro-
cedures of the TLM and MTM, the relation between the
electronic coupling constants is

uF acDw cot(vracDw/4)
Es.[q ol = —I

4+&cDw 2o.

Af &+0

UF

'2

sin(vracDw/2)

4/2+ aCDw
&P igp

uF cos( 7l'a CDw /4 )
(4.6)

Minimization of the total ground-state energy Es, [yo]+H~q'[po] with respect to yo allows one to determine the ampli-
tude of the order parameter

7 &+0=
UF

cos
7TCX CDW

4
&cDw

2

sin(macDw/2)1+
2nY h

—(2+ aCDW)/2aCDW

(4.7)

The somewhat complex structure of this equation is due
to the exact inclusion of the electronic correlations; in the
limit g~O (i.e., acDw~O), it reduces to the exponential
familiar from the classical Peierls theory.

system. This is due to the initial neglect of fluctuations in
the phonon field, as we shall show now. We decompose
the phonon field

y2k~(r ) =go[1+5y(r) ]exp[i+(r) ] (4.9)
VF

y ~go —— exp—
CX

1 1+-
4Yph 2

(acDw =O)

UF
exp—

CX

1

4Yph
(Y,h «1) .

Note that for

2m Yzh & —sin(vmcDw/2), (4.8)

into amplitude [5y(r)] and phase Iluctuations [X(r)].
There is a finite restoring force acting against amplitude
fluctuations, and at T =0 they are completely frozen out
(at least for what concerns the long-range properties of
our system). Phase Auctuations, however, do not have a
restoring force and will be important even at T =0. We
describe the phase fluctuations by a Hamiltonian similar
to that given previously by Fukuyama' '

we only obtain the solution y~(pp=0.
The nonvanishing order parameter amplitude (4.7) in a

wide parameter range suggests long-range order in our
H, = f dx +(B,X) +—(VX)' (4.10)
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where

p=(1+2muFpo)/4mvJ, uj =u~exp(2$),

c =v~/4vr, v~ ——u~exp( —2g),

(4. 1 1)

(4.12)

where exp(2$) and uz are given by Eqs. (2.10) and (2.11).
p is the effective mass density of the CDW condensate,
and c is its unrenormalized phase velocity; Uz and UJ are
the velocities for charge and current excitations in the
TLM introduced by Haldane. UJ is the relevant velocity
describing the 2kF excitation of particles in the TLM,
thereby giving a finite current; it is produced, for example,
by coupling to 2kF phonons. In the interacting TLM, it
is renormalized from vF by electron-electron interactions.
Uz sets the energy scale for adding charge to the TLM
without creating a current excitation. In our electron-
phonon system this is done by a local compression of the
CDW, described by the VL term in the Fukuyama Hamil-
tonian. Again, this velocity is renormalized by electron-
electron interaction. The renormalized velocity of the col-
lective excitations is then given by

ur ——uz(1+2muFyo) ' « v~ . (4.13)

The effective renormalized phonon propagator becomes

D(r —r') = ( T—,[uzi, (r)y2i, (r')] )

=yoexp[R&(r —r')]= —
~

r —r'
~

(4.14)

in terms of the phase Auctuation propagator

—Rq(r —r') = ( T,[X(r)—X(r')] ) .

Now, r=(x, vier) and the exponent rl is

g=2 exp(2$)(1+277uF&o) «1 .

(4.15)

(4.16)

Via Dyson's equation, it can be seen that this same ex-
ponent g also governs the decay of the CDW correlations

—2+acDw
RcDw I

r —r'
~

~zcDW 2 r) (4. 17)

Again, we obtain nonuniversal power laws for the correla-
tion functions and therefore conclude that the phase Auc-
tuations of the coupled electron-phonon system suppress
the long-range order suggested by the solution of the mas-
sive Thirring model. The fact that g«1 and Uz «UF
shows that these phase modes determine the long-distance
(time) behavior of the correlation functions.

It is not possible to compute directly the decay of the
superconducting correlation function Rsc(r), because the
MTM-Hamiltonian does not describe harmonic Auctua-
tions of the electronic degrees of freedom. As the loga-
rithmic behavior of the correlation functions is only deter-
mined by the first cumulant, it is justified to replace 4(r)
[cf. Eq. (2.13b)] by X(r); then one can conclude that Rsc
behaves as

strong coupling approach. We had already noted that for
2vrY~h & —sin(macDw/2), only the solution yiyo=O min-
imizes Es, [yo]+H~h'[yo]. This is the lower hatched area
in Fig. 2. Furthermore we have to require for a consistent
description of our system, that the zero-point amplitude
fiuctuations of the order parameter (neglected in the
present description) must be smaller than the order pa-
rameter amplitude itself

([&g(r)]'& «q'o . (4.19)

We can have a rough idea about the importance of ampli-
tude Auctuations by assuming that the coefficients of the
kinetic energy and of the gradient term in the amplitude
fluctuation Hamiltonian are the same as in the Fukuyama
phase Hamiltonian. The requirement (4.19) then prohibits
the application of the MTM approach also in the upper
hatched area in Fig. 2. This area shrinks with decreasing
phonon frequency.

V. INSTABILITIES AND THERMODYNAMIC
PROPERTIES

Yph

0.5

GDW r
/

We argued in Sec. II that two parameters only, the ex-
ponents cz; characterizing the decay of correlations, and
the renormalized velocity Uz of the collective excitations,
are sufficient to describe completely the physics of our
model. In this section we give some examples.

Although a strictly one-dimensional system cannot
have a phase transition at finite temperature to a long-
range ordered CDW or SC state, the importance of the
respective fluctuations, which may lead to a phase transi-
tion in the presence of a suitable three-dimensional cou-
pling mechanism, can be assessed through the exponents

The boundary between domains of diverging CDW
and SC correlations (a; =0) is given by g2 —g, =0 in the
absence of electron-phonon coupling. Inspection of Eqs.
(3.14a) and (4.17) shows that electron-phonon backscatter-
ing favors charge density waves over superconductivity
because d exp(2$)/dE &0 and g « 1. Figure 3 shows the
CDW versus SC boundary determined for different pho-
non frequencies from Eq. (3.14a). We have also indicated

0.2 0.4
+~scscR(r)-r, asc=2 —4/r) . (4.18)

Note that when long-range CDW order is stabilized
(g~O) 4/gaz oo which has to be interpreted as exponen-
tial decay of fluctuations.

Let us finally give a limit of validity of the present

9i-92
2mVF

FICx. 3. Microscopic phase diagram including electron-
phonon backseat tering as obtained from TLM approach.
~2,k~/EF =0.5, dashed; 0.1, dash-dotted; and 0.01, solid lines.

Dotted lines indicates boundary as obtained from MTM for
~2.kF /EF =0. 1 (however see text).
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c„=(H/3)k~ TN(0), (5.1)

independent of the dimension of the system. In a quasi-
particle picture, N (0) is the density of states at the Fermi
level; in the present 1D system which has no quasiparticle
excitations, N(0)=1/2~u is the density of states of the
collective modes. The inverse of the curves in Fig. 4 then
gives the increase of the electronic specific heat, or what
would be in a quasiparticle picture the electronic effective
mass. Note that in the TLM region the increase is linear
in the effective electron-phonon coupling constant A. —Y„&,
whereas for stronger coupling or lower phonon frequency,
c,] increases more slowly.

The homogeneous electronic compressibility is defined

x,)
——lim lim X (q, cu)

q~O co~0
(5.2)

0.5

0.3 0.0
ph

FIG. 4. Renormalized velocity of collective charge density ex-
citations as obtained from TLM, dotted lines, and MTM, dashed
lines, approach for g2 —gl ——0. The same curves describe the re-
normalization of exp[2$(/'*)] and tl, and therefore of the corre-
lation function exponents o;cD~,sc.

the boundary for co&I, /EF ——0. 1 as obtained from the
F

MTM approach. Despite the reasonable agreement, the
latter should be taken with caution, for the following
reason. The boundary line between domains of diverging
CDW and SC fluctuations is determined by the cancella-
tion of the effects of electron-electron and electron-phonon
interaction. For what concerns the electron-electron in-
teraction, the MTM is a weak-coupling model. Bergknoff
and Thacker have pointed out that for o,cD~ & —

3

[(g~ —gq)/2~uF & 0.35], the simple cutoff structure of the
model (which has also been used in the present study) is
altered. As a consequence, for the determination of the
separation line between CDW and SC, we can use the
MTM only in the weak electron-phonon coupling regime;
there, however, its results are doubtful because of the
neglect of fluctuations of the amplitude of the CDW order
parameter which then are important.

Figure 4 shows the renormalization of the velocity of
the collective modes uz(/'*), ur as obtained from (3.14c)
and (4.13) as a function of Y~z for different phonon fre-
quencies. Comparing (3.14a), (3.14c), (4.13), and (4.16),
we see that similar curves also describe the renormaliza-
tion of exp[2$(E*)] and rl, and thereby of the exponents
acDw and as~ of the correlation functions. The decrease
as a function of Y~I, and co21, /EF in the curves in Fig. 4

F
is then a direct measure of the depression of the supercon-
ducting fluctuations.

The electronic specific heat is

in terms of the density-density correlation function, and
can be evaluated as

2
+el

7T Vp

(5.3)

x,~
is not renormalized by electron-phonon backscattering,

as can be seen easily by computing d x,~
/d 8 using (3.14)

in TLM or the fact that g/vz is independent of the pho-
nons in MTM. This perhaps somewhat unexpected result
is, however, compatible with the tendency towards a
Peierls instability induced by electron-phonon backscatter-
ing, as it only implies a softening of the lattice at q =2kF.

VI. DISCUSSION

In the preceding sections, we have discussed a one-
dimensional electron-phonon system in two limiting cases
of weak coupling and/or high phono n frequency and
strong coupling and/or low phonon frequency. We have
been able to extract the same physical quantities from
both descriptions, namely correlation functions for CDW
or SC fluctuations together with the exponents that
characterize their algebraic decay, and the renormalized
velocity of the collective excitations of the system. All
quantities have been obtained as a function of electron-
electron, electron-phonon coupling, and the phonon fre-

quency. We have argued that, despite their nonuniversali-

ty, both coefficients together are sufficient for a complete
description of the low-energy physics of our system.

We have been able to give limits of validity for the
different approaches from consistency requirements. They
show both approaches to be complementary: when we de-
crease the phonon frequency, the range of applicability of
TLM becomes more and more restricted (because the
scaling trajectories become longer) whereas the one of
MTM increases (because the fluctuations of the amplitude
of the order parameter are suppressed). Moreover, the ex-

plicit computation of a physical quantity (u ) showed that
results from both approaches match together very satisfac-
torily. Note in this context that deviations of the TLM
and MTM lines from the extrapolated line in Fig. 4 be-
come significant at about the same point where the con-
sistency criteria forbid the application of the respective ap-
proach.

Finally we can examine in which temperature range we
can expect the effects discussed above. In the TLM, it is
possible to calculate at finite temperature. The central
point of the present treatment, the equivalence of the 1D
electron-phonon system to a generalized 2D classical
Coulomb gas, can also be maintained. Due to the finite
temperature, the Coulomb gas is now on a cylinder with a
perimeter 13=1/T. The "potential" V(r —r') is no longer
a simple logarithm but, again, is the solution of the 2D
Poisson equation in the new geometry. Scaling stops
again at a —g, but now g '=$~q'+fr', where
gz. —uF/2mT. In lowest order, only the bigger of the
quantities co2q and 2~T is important. This is the phononF
frequency if 2~T &co2A, and then the effects discussed

F
above for T =0 should be observable.

In the strong coupling limit, the thermal amplitude
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fluctuations of the order parameter must be sufficiently
small so that the phase fluctuations still determine the
asymptotic long-range behavior of our system. We there-
fore have to consider the condition (4.19) as a function of
temperature. Unfortunately, it is not possible to solve the
MTM at finite temperature directly, so that we limit our-
selves to the Peierls model without electron-electron in-
teractions. Due to the relatively weak dependence of the
solution of (4.19) on the electron-electron interaction, as
evidenced by the hatched area in Fig. 2, we argue that the
noninteracting limit gives a qualitatively good insight also
into the more general model.

To describe the Peierls model in the vicinity of the
mean-field critical temperature T„we use a Ginzburg-
Landau functional together with a Hartree-Fock approxi-
mation on the fourth-order term. ' Then, we find that
amplitude fluctuations can be considered frozen out below
a temperature T -0.6T, . [This is not inconsistent with
the result T -0.25T, of Lee, Rice, and Anderson who
reduced the treatment of the Ginzburg-Landau functional
to the (numerical) solution of the Schrodinger equation of
an anharmonic oscillator. ] In lowest order, we can com-
pare this temperature to the phonon frequencies obtained
from an evaluation of the condition (4.19) at T =0 as a
function of phonon frequency; we then obtain that for
T & T and 3~T &co2k, thermal and quantum amplitudeF
fluctuations of the order parameter are unimportant and
phase fluctuations dominate the physical behavior of our
system, in agreement with the conditions derived from the
TLM approach.

The results obtained in this paper have probably impor-
tant applications to the description of spin-Peierls sys-

tems, where the nonadiabaticity of the phonons is impor-
tant. The present discussion applies to the situation under
magnetic field, whereas in the zero-field limit, the spin-
Peierls systems are equivalent to a commensurate spinless
electron-phonon system. Then, umklapp processes are
relevant; therefore, we defer an extensive discussion of the
applications of the present theory to a forthcoming paper,
where the effect of umklapp scattering will be determined.

APPENDIX

In this appendix we want to give a derivation of the
scaling equations (3.14). Rather than using the partition
sum (3.2), it is more convenient to consider a (2D) corre-
lation function

—R~(r —r')= ( T,[4&(r) —N(r')] ) (A 1)

with

( ) =Z 'Trz, exp —f H, t[@(r)]—U[@(r)]
U~

(A2)

2ikF (x —x')
e—RcDw(r

2 cx
exp[ —R@(r—r')] . (A3)

We now expand exp( —U[N]), and keep only the first-
order term in U to obtain

and Z is defined in (3.2). U[4] is given in Eq. (3.3). The
CDW correlation function (2.21) is then given in terms of
R~ by

2

—Rq(r —r')= T,[4(r)—4(r')] 1+ f d r f d r'D(r —r')cosI2e~[N(r) —&P(r')]]
ZQ 27TCX UF 0

(A4)

Evaluating the average yields

—R@(r—r')= V(r —r') —e ~

2

f d r~ f d rqD(r —r')exp[ —2e V(ri —rq)][V(r —ri) —V(r' ri)—
27Tcx UF

—V(r —rq)+ V(r' —rq)l (A5)

V(q) =.—2n. /q

An anisotropic potential

(A6)

V(r) is defined in Eq. (3.10).
The standard real space method to obtain renormaliza-

tion group equations from (A5) is well documented in the
literature. Its disadvantages are (i) the difficulty to gen-
eralize it to more complicated problems involving more
than two r integrals, and (ii) its limitation to isotropic sys-
tems. From Eq. (3.4) it is clear that the phonon propaga-
tor D(r) is an extremely anisotropic object; its anisotropy
must be treated correctly if we want to describe the effects
of the phonon dynamics.

Both limitations can be bypassed by Fourier transfor-
mation. In the isotropic case, the Fourier transform of
(3.10) is

V(r)=( —,')In(x +y /A ) (A7)

is Fourier transformed to

V(q)= —2'(q„+ A q~)

and for
~

A —1
~

&(1

(Ag)

V(q) = 2vr—

where

2 1 —A cos(2e)—2(1+2 )q (I+A ) q

(A9)

2 2

cos(2e) = qx —9'y

9'x +9y
(A10)

Let us now Fourier-transform Eq. (A5) and expand for
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2 2

—R~(q)=V(q)+e f V (q)D(q, )
y] dq

2' UF (2n. )2

x (q~. V, )'f ( —q~),

with

Gf q] ()2I= D q& ~
—q(2') t)q ) r

(A14)

(Al 1)

where

f(q)= f d r exp( —iq r)exp[ —2e ~V(r)] . (A12)

—Rq, (q) = V(q) 1 2rre— I [1—cos(2e)]

(A13)

Taking account of the local nature of the phonon propa-
gator in x direction, we obtain

2

Note that in (Al 1)—(A14) we have always used the isotro-
pic form (A6) for V(q). Comparison of (A13) with (A9)
shows that, due to the anisotropy of the phonon propaga-
tor, we always obtain an anisotropic contribution to an in-

itially isotropic correlation function. (A13) can now be
Fourier-transformed back to r space, where one can apply
the familiar Kosterlitz-Thouless ideas. The scaling equa-
tions (3.14a) and (3.14b) for the coupling constants are ob-
tained immediately. In the same way, one can also treat
the integral involving the cos26 (i.e., anisotropy) term.
Remembering that y =UF r, one sees from (A7) that a
change in 2 can be translated into a renormalization of
the Fermi velocity, thereby leading to (3.14c).
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