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We present a series of semiempirical calculations on threefold-coordinated silicon at the (111)
Si/Si0, interface. These were performed on finite clusters of atoms with use of hydrogen termina-
tors in an unrestricted Hartree-Fock formalism wherein we include lattice relaxations. We have

calculated defect electrical levels as well as ESR hyperfine parameters.

The agreement with

Brower’s principal hyperfine data is excellent. On the strength of this agreement, we assign the
superhyperfine shoulders to spin density on three second-nearest-neighbor silicon atoms in the
crystalline silicon. Our agreement with electrical data is good; we obtain a positive U of between
0.3 and 0.6 eV, depending upon the method of calculation. Finally, we predict the existence of a
spin-dependent deep-level transient-spectroscopy signal at high pressure.

I. INTRODUCTION

Since the advent of metal-oxide-semiconductor (MOS)
technology, it has been clear that most of the important
phenomena in field-effect transistors occur at the inter-
face between the semiconducting silicon and the insulat-
ing silicon dioxide. Specifically, the presence of electron-
ic states localized at this interface and within the silicon
band gap, called interface states, can alter a transistor’s
switching characteristics (both the position and abrupt-
ness of the threshold for current). Interface states have
been studied intensely over the past twenty years. From
this work a very rich picture of at least one class of in-
terface states has emerged. The threefold-coordinated
silicon at the (111) Si/SiO, interface, termed the P,
center, ! is sufficiently well characterized experimentally,
so that careful theoretical study is warranted.

In this paper we describe a molecular-orbital study of
the P, center.? Using semiempirical methods, we have
performed total-energy calculations that include lattice
relaxations for three charge states of this defect: + le,
0, and —le. We performed these calculations on finite
clusters of atoms, and we studied the effects of cluster
size. Our results are entirely in agreement with Brower’s
spin-resonance experiments3 and, in fact, illuminate
some of the details of his hyperfine data. We have also
made estimates of the positions of the ( + /0) and (0/—)
gap levels and have obtained good semiquantitative
agreement with the deep-level transient spectroscopy
(DLTS) results of Johnson et al.*

The balance of this paper is organized as follows: In
Sec. II, we give an outline of the experimental work on
interface states in general, and on the P, center in par-
ticular. In Sec. III, we discuss previous calculations.
We also discuss our theoretical techniques, though
briefly, as these have been discussed at length else-
where.’~7 We present our calculations in Sec. IV, and
we conclude in Sec. V.

II. EXPERIMENTAL BACKGROUND
A. Electrical measurements

Interface states were first observed, albeit indirectly, in
nonideal electrical characteristics in MOS capacitors. A
compilation of some early results appears in Fig. 1(a)
(Ref. 8). These data are derived from conductance-
voltage® and capacitance-voltage'® measurements. While
data for both (100) and (111) interfaces are presented,
in this paper we will only discuss the (111) interface,
leaving the (100) for future publications. At first
glance, the various sets of data appear to agree, and to
follow the form suggested by the solid curve. However,
Gray and Brown!! (open circles) obtained peaks close to
the band edges, while Kuhn'? (X’s) observed richer
structure than the U-shaped function assumed by White
and Cricchi.® While some of these differences may be
artifacts of special techniques (Gray and Brown, for in-
stance, used a temperature-capacitance technique), re-
cent experiments show that the total number of interface
states, as well as the details of the spectroscopic depen-
dence of the interface state density, depends strongly on
sample preparation. Through careful processing, involv-
ing a high-temperature (1000°C) post-oxidation anneal,
as well as a low-temperature (450°C) post-metallization
anneal (or a 450°C anneal in H, if there is no metal
gate), the total density of interface states can be reduced
to ~10' cm~2 In this case, the spectrum of interface
states is a rather featureless, U-shaped continuum that
stretches across the silicon band gap with large values at
either band edge. On the other hand, a process involv-
ing a high-temperature dry O, oxidation, but excluding
both of the above-mentioned annealing steps, can pro-
duce total interface state densities in excess of 10'2
cm ™2 In this case the interface state spectrum is altered
dramatically in that two peaks are superimposed on the
U-shaped background, as shown in Fig. 1(b). These data
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were obtained by Johnson et al.* using deep-level tran-
sient spectroscopy (DLTS).'?* Other groups have repro-
duced these results using both quasistatic and low-
frequency C-V¥ methods. !> These two peaks are direct-
ly related to the P, center.
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FIG. 1. Interface state spectra for two different cases of de-
vice processing. (a) All oxides have been annealed after metali-
zation (from Ref. 8), (b) no postmetalization anneal (from Ref.
4).
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B. Electron-spin resonance

While electrical measurements give insight into the
spectral dependence of the density of interface states,
other techniques are sensitive to the chemical nature of
the interfacial defects that give rise to the observed elec-
trical activity. Electron-spin resonance (ESR) is possibly
the most important tool for obtaining detailed micro-
scopic information about localized, paramagnetic defects
in solids.'® The earliest ESR experiments on oxidized
silicon with no metal gate revealed all the important
spectroscopic features. !’ That is to say, three peaks,
labeled P,, P,, and P,, were observed, two of which, P,
and P,, showed strong dependence on the orientation of
the crystalline substrate with respect to the applied mag-
netic field. Furthermore, etch-back experiments revealed
that the P, signal peaked very close to the Si/SiO, inter-
face. In hindsight then, it is surprising that the P, sig-
nal was attributed to a dangling silicon orbital in the SiO
network. !

The MOS system was carefully reexamined by Poin-
dexter and Caplan.'® By comparing the g tensors of P,
P,, and P, to the literature of defects in crystalline sil-
icon, they were able to identify P, as the donor electron
residing in phosphorus doped substrates, and P, as Fe®,
also in the bulk silicon. The anisotropy of the P, g ten-
sor combined with the absence of the P, signal in unoxi-
dized silicon led them to identify the P, center as a sing-
ly occupied dangling silicon orbital at the Si/SiO, inter-
face. We should point out that the same fabrication
technique that gave rise to the two peaks in the density
of interface states also maximized the observed density
of P, centers.

Recently, Brower observed the 2°Si hyperfine spectrum
associated with the P, center on the (111) interface.?
His results are shown in Fig. 2. While we note that
there are at least two sets of hyperfine interactions [as
seen in Fig. 2(a)], Brower only analyzed the strong
hyperfine lines. His analysis gives strong support to the
Poindexter model. First, the ratio of the total intensity
of the strong hyperfine interaction to the total intensity
of the central ESR line (0.03) is consistent with the natu-
ral abundance of 2°Si (0.047), and not with the natural
abundance of any other spin-} species known to be
present in the sample. Second, the magnitude of the
hyperfine splitting can be directly related to the defect
wave function through the relations'®

A =a+2b, (1)

A, =a—-b, (2)
where

a=87”ggnwtn | 4,(0)] 2, (3)

b=2gg,up, (¥, [r ¢, . 4)

In Egs. (3) and (4), g and g, are the g factors of the free
electron and the magnetic nucleus, respectively, while u
and p, are the associated magnetons. ¥, and ¢, are the
s and p components of the defect wave function (we are
ignoring all higher angular momentum components). If
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(111) Si/Si0, Interface B, spectrum
v =19.939 GHz
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FIG. 2. ESR spectra of the P, center observed from (111)
Si/SiO, interface. The magnet is rotated in a (112) plane; 0 is
the angle between the (111) direction and the direction of B.
(6=90" corresponds to B parallel to the (110) direction.) Fig-
ure taken from Ref. 3.

the defect wave function is expressed as a molecular or-
bital of the form

Y= mila; |s;)+B; |p:)), (5)

where / indexes atomic sites, then the observed splittings
imply that 80% of the unpaired spin is located on a sin-
gle silicon atom, and that this localized spin density has
12% s character and 88% p character, with the p lobe
pointing in the (111) direction.

We have recounted the hyperfine results in detail, be-
cause they are the most convincing experimental data,
and because we can relate them to our calculated wave
functions through Egs. (1)-(4). Below, we will discuss
our interpretation of both the strong and weak hyperfine
interactions. %

C. Field-dependent ESR

Several groups have combined ESR with various elec-
trical techniques for altering the position of the Fermi
level in the band gap.*'*?' By monitoring the strength
of the P, signal as a function of Fermi level, it was
found that the two peaks in the density of interface
states correspond well with the (4 /0) and the (0/—)
transitions of the P, center. That is to say, if the Fermi
level is within 0.3 eV of the valence-band edge, then the
defect level is unoccupied and gives rise to no spin sig-
nal. If the Fermi level is between 0.3 and 0.9 eV above
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the valence band, then the P, center is singly occupied,
and the normal spin signal is observed. Above 0.9 eV
the defect becomes doubly occupied and diamagnetic.
This result clearly shows that the P, center is a
positive-U system with a 0.6-eV effective e-e correlation
energy.

To summarize, the peaks in the density of interface
states observed in specially fabricated samples have been
correlated with the (+ /0) and (0/—) transitions for a
dangling orbital on a trivalent silicon atom at the
Si/Si0O, interface. Any theoretical treatment of this de-
fect should address both the level positions and the
hyperfine data.

IT1I. THEORETICAL BACKGROUND

Several groups have studied the dangling silicon orbit-
al. The calculations can be conveniently split into two
categories: Green’s-function techniques applied to
infinite systems, and molecular-orbital techniques ap-
plied to finite clusters of atoms.

A. Green’s-function calculations

The earliest and simplest Green’s-function calculations
on the interface and its defects, by Laughlin et al.,??
were non-self-consistent, wherein the bulk silicon and
bulk SiO, were represented by Bethe lattices connected
through a single interface bond. The dangling bond was
generated by removing the oxide Bethe lattice. (Note
that this calculation might be more representative of the
dangling bond in a-Si.) The important predictions were
that the perfect interface would have no gap states,
while the dangling orbital would yield a state in the gap.
However, the lack of self-consistency, and hence of
effects of changes in electron occupation, combined with
the absence of defect-lattice interaction, limit the useful-
ness of these calculations severely.

A far more interesting study of the same system (a sin-
gle trivalent silicon atom attached to three silicon Bethe
lattices) was performed by Ngai and White.?> By using
Harrison’s®* universal expressions for the distance-
dependent, tight-binding parameters, they modeled the
effect of relaxation of the defect atom. Furthermore, by
using a generalized version of Harrison’s bond-orbital
approximation,?® in which lattice relaxation and charge
state effects are treated simultaneously, these investiga-
tors were able to capture much of the physics revealed in
other more complex calculations.

Two other non-self-consistent calculations have ad-
dressed the two-dimensional character of the problem.
Sakurai and Sugano®® considered only the (111) Si/SiO,
interface while Carrico et al.?’ considered {111) as well
as (110) and (100). Both of these groups used tight-
binding Green’s-function techniques, and both represent-
ed the oxide with Bethe lattices. If one considers only
the results for the (111) dangling bond, then these cal-
culations add no new insight. Rather, they demonstrate
that, within the simple tight-binding scheme, the results
were not altered significantly by considering a surface
rather than a single atom. Both of these papers have
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other features to recommend them. By considering the
three differently oriented surfaces, Carrico et al. showed
that the (111) dangling bond and the (110) dangling
bond were essentially the same, which is in agreement
with spin resonance. 8 Further, the particular dangling
bond considered at the (100) interface (on a silicon
atom attached to two silicons and one oxygen) does not
give rise to a gap state in their calculations. This is in
agreement with other calculations.?>?® The value of the
Sakurai-Sugano calculations lies in their exploration of
the effects of strained bonds and impurities at the inter-
face.

Recently, two self-consistent-model calculations have
appeared on the dangling silicon orbital.?3° Neither of
these calculations includes lattice relaxation effects, but
both predict two levels in the silicon gap separated by
0.5eV.

Finally, we note that two calculations have been per-
formed on the dangling bond in crystalline silicon using
Green’s-function local-density techniques.’!=3* The
most recent,* in which total-energy surfaces as a func-
tion of atomic position were calculated for the positive,
neutral, and negative charge states, predicts that this
system has an Anderson negative U.** If true, this
would imply that the dangling bond is always
diamagnetic—contrary to experiment. We will discuss
this calculation in Sec. IV.

B. Cluster calculations

Several calculations have appeared on finite clusters of
atoms used to represent the dangling bond. Redondo
et al. performed ab initio, generalized valence-bond
(GVB) calculations on the Si;H, cluster.?>3 They per-
formed calculations for positive, negative, and neutral
charge states and found the equilibrium geometry in
each. In fact, as we will show in Sec. III C, we obtain
very similar results when we consider the same size clus-
ter, even though we are using much simpler methods.

Very recently, Cook and White’” have performed a set
of calculations using scattered-wave X-a techniques ap-
plied to very large clusters. Because the scattered-wave
technique does not yield reliable total energies, they con-
sidered only two geometries: the ideal tetrahedral
configuration and an equilibrium geometry we discuss
below. The strength of these calculations lies in the
quality of the numerical wave functions with which they
calculate the hyperfine coupling constants from first
principles. The agreement with experiment is very good,
considering the sensitivity of these observables to very
small changes in the calculated defect wave function.
This sensitivity is discussed in Sec. IV.

C. Present theoretical technique

In our calculations, we used a semiempirical LCAO
molecular-orbital program, MOPN.® This is a spin-
unrestricted version of MINDO/3 (modified intermedi-
ate neglect of differential overlap).’ The most important
features of the technique are the following.

(1) MINDO/3 is part of the family of neglect of
differential overlap (NDO) approximations, i.e.,
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¢,,A(r)¢,,,8(r)dr=0, n,#mg . (6)

Here, A and B denote different atomic sites, and n 4, and
mpy denote the different sets of atomic quantum numbers
associated with the functions ¢, (r) and ¢,, (r). This

approximation eliminates all three- and four-center in-
tegrals, and reduces the number of two-center integrals
greatly.

(2) In MINDO/3 the remaining one- and two-center
integrals are either evaluated using semiempirical formu-
las, or are fitted to experimental heats of formation,
molecular geometries, dipole moments, and ionization
potentials.

(3) This program includes software that optimizes the
total energy with respect to chosen atomic coordinates. *

Because MOPN is self-consistent, we are able to consid-
er several charge states. Further, it is a total-energy
technique, so that electron-lattice interactions are well
represented. Finally, because it is spin unrestricted, we
can calculate a spin-density matrix that is summed over
all occupied states. That is to say, we can go beyond
simple one-electron theory wherein we consider only the
defect molecular orbital to estimate ESR parameters. As
we will show in Sec. IV, this will be very important in
understanding some of the details of the hyperfine in-
teraction.

In our calculation of hyperfine matrices we use a more
general form of Egs. (1)-(4). For a single Slater deter-
minant in the unrestricted Hartree-Fock formalism, the
hyperfine dyadic for magnetic nucleus k is*

Ay=ggutty [ 2 (65| Hyy, | 65)
n

— 3 (b Hyy, [65) ) . %)
n

Here, |¢5“') are the one-electron molecular orbitals, a
and f3 are spin quantum numbers, and

8 3ry 7y —8,rF
thp:TWSJ(rk)+__.kk/5—’/k . (8)
Tk
In LCAO theory,
65y =2 C1 ny), 9)
V]

where A labels the atom and n , indexes a set of atomic
quantum numbers (s,p,,p,,p,). In the atomic basis, Eq.
(7) becomes

A;; =88, 11, ZSnAmA(nA|thp|mA> > (10)
"
where S"AmB is the net spin-density matrix, i.e.,
Su,m,= % crec — % crcy (1)
(n is summed over occupied states), and where we have

used the NDO approximation. Hence, the hyperfine
dyadic on a single atom can be written
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Sy +[Sy —4(S,, +5,,)]2b 3S,,b 3S,.b
3S,.b Sya +1S,, —4(S,, +5,,)12b 3S,,b , (12)
3S,.b 3S,,b Sy +[S, — LS. +5,,)]12b

where a and b are given in Egs. (3) and (4). Our sem-
iempirical molecular-orbital technique precludes calcula-
tion of these matrix elements directly, as its valence-only
basis set is not orthogonalized to an appropriate set of
core orbitals. Instead, we use our calculated spin-density
matrix, combined with ab initio Hartree-Fock values'
for a and b, to calculate theoretically predicted hyperfine
dyadics.

We have made limited use of GAUSSIAN 82,%C an ab in-
itio molecular-orbital program that allows the use of a
variety of basis sets in both restricted and unrestricted
Hartree-Fock formalisms.

IV. CALCULATIONS AND DISCUSSION

We have applied the techniques discussed in Sec. III
to the atomic clusters shown in Fig. 3. With the excep-
tion of cluster 1, we have not shown the hydrogen atoms
used to complete the fourfold coordination of all silicon
atoms with the exception of the defect silicon atom, solid
circles in Fig. 3. While there are other more sophisticat-

to buabs

5 6
FIG. 3. Atomic clusters used in present calculations. In

clusters 2-6, we do not show hydrogen terminators. The de-
fect atom is shown by a solid circle.

f

ed methods of cluster termination,*"** the hydrogen
atoms achieve the principal goal of removing the
surface-state energy levels from the neighborhood of the
defect energy level. Thus these levels do not admix, and
there is no appreciable spin density appearing at the
surface—in agreement with experiment. We used these
several clusters to study the convergence of the various
calculated results—ESR  parameters, equilibrium
geometries, and energy levels—as a function of cluster
size. For each of three charge states ( + 1,0,—1) we cal-
culated the total energy as a function of defect relaxa-
tion. Except where noted, we allowed only the defect
atom to relax.

A. SiH,

While the calculations on larger clusters reveal more
of the physics of the P, center, for the sake of calibra-
tion, we compare our semiempirical results with other ab
initio results for cluster 1. Redondo et al.3%3% studied
this cluster as part of a larger investigation of the (111)
silicon surface. We have studied it using both MOPN and
GAUSSIAN 82. In our ab initio study we used several basis
sets—STO-3G and STO-6G (minimal basis sets wherein
three and six Gaussian functions, respectively, are used
to represent each Slater orbital), STO-3G* (a basis set
that includes 3d silicon atomic orbitals), and 3-21G [a
split-valence basis set in which the valence orbitals (3s
and 3p in the case of silicon, 1s in the case of hydrogen)
are represented by two Slater-type orbitals labeled inner
and outer]. Table I is a compilation of equilibrium
geometries and defect orbital compositions obtained in
these ab initio unrestricted calculations. For compar-
ison, we have included our semiempirical results as well
as the GVB results of Redondo et a/. While we have al-
lowed the defect atom complete freedom, the relaxation
is essentially perpendicular to the (111) silicon surface.
This was true for all the clusters we considered. Here,
as in other cases, there is a rather broad distribution in
the ab initio results, depending upon basis set and calcu-
lation scheme. Note that in all cases the defect atom
moves toward the plane of its three nearest neighbors in
both the neutral and positive charge states, while mov-
ing away in the negative charge state.

As a special case, we have calculated an equilibrium
geometry for a completely unconstrained cluster. In this
case, the defect atom is virtually in the plane of its three
silicon neighbors. This is expected in the case of com-
pletely covalent bonds. The pyramidal geometry in all
other calculations is thus a result of the constraints im-
posed by the host silicon crystal.

We now turn to the wave-function composition.
There is no unique scheme for determining the orbital
composition except when the atomic orbitals are nono-



36 THEORY OF THE P, CENTER AT THE <111 Si/SiO, INTERFACE

9643

TABLE 1. Equilibrium geometries for the (4,0, —) charge states, and defect orbital composition
for the (0) charge state for various ab initio techniques and for MOPN applied to SisHy. D(, o ) (in
A) measures the motion along the (111) direction away from the ideal tetrahedral position of the de-
fect atom. p,, is the total defect wave-function density on the defect atom, and p, is the associated p

density on the defect atom.

STO-3G STO-6G STO-3G* 3-21G Ref. 36 MOPN
D, —042 —042 —043 —0.33 —0.38 —0.46
D, —0.16 —~0.16 —0.16 —0.003 —0.08 —02
D_ 0.19 0.19 0.15 0.34 0.17 0.13
Prot 0.73 0.74 0.93 0.74
Py /Prot 0.98 0.98 0.93 0.94

verlapping, as is formally the case in any NDO approxi-
mation. For our ab initio calculations, we used

| (6 [69) 2= 3 CI°CR=(dp [n, Y my [dp) . (13)
nA N
ng
In all of our calculations, there is strong localization
of the highest occupied molecular orbital on the defect
atom (~73%). This is smaller than the quoted GVB
value (93%), though the method of decomposition is un-
stated in Ref. 36. The ratio of the s and p contributions
on the defect atom is virtually independent of
molecular-orbital technique. The results presented in
Table I lend support to our use of semiempirical tech-
niques in all calculations described in the balance of this
paper.

B. The paramagnetic P, center

We gain an appreciation for the physics of the
paramagnetic charge state of the P, center by consider-
ing the effects of cluster size. In Fig. 4, we show the
equilibrium geometry for clusters 1-6. In this figure, D,
denotes the distance between the defect atom and the
plane containing its three nearest-neighbor silicon atoms
for the ideal tetrahedral configuration, while D’ is the
same distance in the equilibrium configuration (D’'=D,
—D, where D is defined in Table I). Note that in all
cases, the equilibrium position for the P, atom lies below
the ideal tetrahedral position. This should be expected,
as it allows the nearest-neighbor bonds to strengthen.*
The decrease in total energy is due principally to
changes in the Hamiltonian matrix elements. That is to
say, the changes in the bond-order matrix as a function
of position are at least an order of magnitude too small
to account for the change in energy. We note that the
equilibrium geometry changes noticeably with the addi-
tion of the three bulk silicon atoms in cluster 3.

In Fig. 4, we also show the spin density on the central
atom as a function of cluster size. Several features bear
comment. First, the value for cluster 1, 0.94, is larger
than the total defect wave-function amplitude on the de-
fect atom, 0.74. This difference reflects the spin polar-
ization of the valence-band states.** Second, we note the
importance of the three second-nearest-neighbor bulk sil-
icon atoms, labeled B in cluster 3, Fig. 3. Their addition
lowers the spin density on the defect atom by 0.13,
bringing it close to Brower’s experimental estimate. The

surplus spin density resides on these three silicon atoms.
We believe this transfer of spin density is not an artifact,
as it persists in all clusters larger than cluster 3. It is
also observed in Cook’s X-a calculations on a cluster
closely related to our cluster 6.% Furthermore, our
hyperfine estimates, discussed below, indicate that it ac-
counts for the weak hyperfine shoulders seen in Fig. 2(a).

Using the analysis outlined in Sec. III, we have calcu-
lated hyperfine dyadics on the defect atom, its nearest-,
and second-nearest-neighbors from our calculations on
cluster 5 in the minimum-energy configuration. The
principal values of these dyadics are shown in Table
II(a). These are to be compared with Brower’s experi-
mental values given in Table II(c). We consider the
agreement between experiment and theory to be very
good. Note that the only important hyperfine interac-
tions are on the defect atom and its second nearest
neighbors in the bulk. The predicted splitting on these
second nearest neighbors is in good agreement with the
observed superhyperfine shoulders evident in Brower’s
spectra [Fig. 2(a)]. We have also determined the direc-
tions of the principal axes of these dyadics. 43 on the
defect atom is 0.05° away from the (111) direction,
while it is 1.62° away on the bulk second nearest neigh-
bors.

For reasons discussed in Sec. III, Table II does not
constitute a definitive theoretical confirmation of
Poindexter’s model of the P, center, though it is entirely
consistent with it. Furthermore, as mentioned above,

: -
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FIG. 4. Equilibrium geometry and spin density on the de-
fect atom as a function of cluster size. D, denotes the ideal
tetrahedral distance between the defect atom and the plane of
its three nearest-neighbor silicon atoms.
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TABLE II. Principal values of hyperfine dyadics on various atom types for cluster 5. (a) Calculat-
ed in the equilibrium geometry for cluster 5; (b) calculated in the equilibrium geometry for cluster 2;

(c) experiment (Ref. 3). All values in Gauss.

Defect atom

Nearest neighbor

Bulk second nearest neighbor
Surface second nearest neighbor

Defect atom

Nearest neighbor

Bulk second nearest neighbor
Surface second nearest neighbor

Strong hyperfine
Superhyperfine

A, 4, A3
(a)
1239 123.9 179.2
—0.71 2.31 3.55
17.62 18.21 23.26
—1.24 —1.03 —1.02
(b)

96.5 96.5 157.2
—3.99 —0.93 —0.72
21.2 21.8 27.0
—2.86 —2.14 —1.87

(c)
91.0 91.0 156.0
18.0

these results give a natural explanation for the weak
hyperfine shoulders evident in Brower’s ESR data. That
the shoulders are significantly higher than the strong
hyperfine peaks (note change in scale; hyperfine peaks
are magnified ten times relative to the central peak) is
consistent with a threefold increase in the probability
that a magnetic nucleus will appear as one of three
second-nearest-nearest-neighbor silicon atoms. The good
agreement between our theoretical result and our esti-
mate of the experimental superhyperfine splitting, com-
bined with the absence of any other hyperfine interaction
of appropriate magnitude in our calculation, is a strong
argument that these shoulders indeed arise from the
three bulk second-nearest-neighbor silicon atoms.

It is instructive to study the variation of these
hyperfine parameters with the position of the defect
atom. Table II(b) lists our values for cluster 5 with the
defect atom in the equilibrium position for cluster 2.
The agreement with experiment, while excellent, should
not be considered definitive, for reasons stated above.
Rather, it demonstrates the sensitivity of ESR to small
changes in the defect environment. Differences of a few
percent in spin density have given rise to very large
differences, ~17%, in the predicted splittings.

We now turn our attention to the one-electron energy
levels. Recall that in the frozen orbital approxima-
tion these correspond to ionization potentials, and that
MINDO/3 has been parametrized to reproduce these ac-
curately in molecules. If we have included enough sil-
icon atoms to simulate bulk silicon, then we can estimate
the position of the optical levels of the P, center in the
band gap.

In Fig. 5 we show, as a function of cluster size, the en-
ergy levels for the two highest occupied valence states.
58% of the wave-function density of the highest occu-
pied valence state resides on the defect atom. Further-
more, as we will discuss below, this level is almost com-
pletely decoupled from the second highest orbital. For

these reasons we identify the highest level as the defect
level, and the second highest level as the top of the
valence band. In Fig. 5, the circles indicate the defect
energy levels with the defect atom in the same position,
0.26 A below the ideal tetrahedral geometry (toward the
back-bonded silicon atoms), so that they reflect only
changes in the electronic structure as a function of clus-
ter size. The squares indicate the same energy levels cal-
culated in the equilibrium geometry for each cluster, and
hence include electron-lattice effects.

For clusters 4, 5, and 6, the results are independent of
cluster size, so that we consider them well converged.
Note that the inclusion of surface rings in cluster 4 in-
creases the energy of the top of the valence band by 0.32
eV. We believe this increase is due to delocalization of
the highest valence-band wave function onto the third-
nearest-neighbor surface ring atoms from the nearest-
neighbor atoms. While delocalization is usually associat-
ed with decreased energy, in this case it is not, because it
lowers the bonding character between the nearest- and
second-nearest-neighbor silicon atoms.
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FIG. 5. Calculated one-electron energies corresponding to
the valence-band edge and the defect orbital. These are shown
as a function of cluster size.
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For the largest clusters, when the electron-lattice in-
teraction is included in the calculation, the defect level is
degenerate with the top of the valence band, contrary to
experiment. We believe this results from an underes-
timation of the defect atom relaxation. This is an obvi-
ous possibility in light of the results shown in Fig. 5.
The more strongly relaxed defects (circles) have energy
levels further away from the valence-band edge. Also,
our results on the unconstrained cluster, wherein the P,
center is planar, emphasize the proclivity toward
strong relaxation. Furthermore, as shown in Table III,
MINDO/3 systematically overestimates silicon-silicon
bond lengths, so that we would expect the predicted
equilibrium position of the P, atom to be too high,
hence driving the energy too low. Finally, as we noted
above, our predictions of the hyperfine parameters im-
proved when we increased the relaxation.

In Fig. 6 we show the position with respect to the
valence-band edge of the singly and doubly occupied de-
fect states as a function of the relaxation below or above
the tetrahedral configuration. (D has the same meaning
as in Table 1.) This figure shows clearly that the defect
state energy increases as the defect atom moves closer to
its nearest neighbors, while the top of the valence-band
stays relatively constant. Ngai and White predicted this
on the basis of increased p admixture and, hence, a
larger diagonal matrix element on the defect atom.?
We attribute this also to an antibonding interaction be-
tween the orbitals on the defect atom and the second-
nearest-neighbor bulk silicon atoms, as well as a weak
antibonding interaction between the defect atom and its
nearest neighbors.

Figure 6 suggests the possibility of a spin-dependent
DLTS signal.* If a restricted set of P, centers is under
significant compressive strain, then, as shown in Fig. 6,

OO0

_50 —
E (eV)
-100+

CHE A0 CRIE m

FUEIEE T W

-150 -
D°eq Deq -

— ] 1

-04 -0.2 00 0.

n

D(A)

FIG. 6. One-electron energy levels for cluster 6 shown as a
function of defect-atom position. D measures motion perpen-
dicular to the interface (D=0 indicates the ideal tetrahedral
position). The dashed line is doubly occupied, and the solid
line is singly occupied. The arrows indicate the spin states for
the spin-unrestricted wave functions of the neutral charge
state. ng and D indicate the equilibrium geometries for the
neutral and negative charge states, respectively.
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TABLE III. Equilibrium bond lengths for atomic colusters
used to simulate crystalline silicon. Rgg(expt)=2.35 A. All
lengths are given in angstroms.

SisH,, 2.37
Si,Ha 2.50

the one-electron levels will move in concert toward the
valence-band as the equilibrium position of the defect
atom moves toward the oxide. During a DLTS pulse
that would normally depopulate the singly occupied lev-
el, these compressed centers, which in equilibrium would
be doubly occupied, would be pulsed into their singly oc-
cupied state. Then, during the normal repopulation cy-
cle, these special sites would be subject to a classic
singlet-triplet bottleneck (the singlet or triplet state is
formed by the electron on the defect and an electron in
the conduction band), so that the capture rate would be
altered dramatically during spin resonance.

Our prediction of the positions of the singly and dou-
bly occupied levels as a function of strain can be tested
experimentally. Using diamond anvils, some researchers
have obtained hydrostatic pressures of 100 kbar.*6*
Using a semiempirical equation for the bulk modulus of
silicon, it can be shown that under this pressure the lat-
tice constant changes by 4.8%.* Simple calculations on
a compressed cluster indicate that the levels should
move by ~0.17 eV. This should be observable in high-
pressure in situ DLTS experiments. It is even conceiv-
able that spin-dependent DLTS could be observed as-
suming a diamond anvil could be mounted in an ESR
cavity.

C. Nonparamagnetic charge states

With the analysis of the neutral state of the P, defect
as a backdrop, the behavior of the positive and negative
charge states of the P, center can be understood easily.
By removing an electron from an antibonding state, we
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FIG. 7. Equilibrium geometry for the positive, neutral, and
negative charge states as a function of cluster size. D’ and D,
are the same as in Fig. 4.
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would expect the overall bonding to increase, and the
defect atom to seek an equilibrium configuration closer
to its three nearest neighbors. Conversely, by adding an
electron to the defect level, we would expect that the de-
fect atom would move away from its nearest neighbors
to lower the energy of the antibonding state. Both of
these predictions turn out to be the case. In Fig. 7 we
show the equilibrium position of the defect atom as a
function of cluster size for the positive and negative
charge states, respectively. We note that these changes
in bondlength with respect to charge state have been
used as a criterion for the character (bonding, nonbond-
ing, or antibonding) of pertinent molecular orbitals.*
On the basis of Fig. 7, then, we consider the defect orbit-
al to be antibonding.

D. Correlation energy

We can use Fig. 6 to estimate the effective correlation
energy for the P, center. The arrows indicate the levels
at equilibrium geometry. Using

U'=(Ey—Evg) —(Eg—Evyg)’, (14)

where E . and Eyg are the energy levels of the highest
and second-highest (valence-band) occupied molecular
orbitals for the neutral (0) and negatively charged (—)
clusters, we estimate that the effective correlation energy
is 0.6 eV. So, on the basis of these one-electron energy
levels, we predict that the P, defect is a normal,
positive-U defect.

We have also estimated the correlation energy using
total-energy calculations. We have used a double-cluster
approach, involving a completely passivated cluster
(cluster 5 with a seventh OH group attached to the de-
fect atom), to calculate a theoretical electron affinity,
ionization potential, and band gap. These were calculat-
ed by letting only the defect atom move, as in the defect
calculations. We estimate the singly occupied level posi-
tion with respect to the valence-band edge,

Edef—EVB:(E(ch+Egass)_(Egef+E;iss) ’ (15)

and the doubly occupied level with respect to the
conduction-band edge,

Eger—Ecp=(E gor + E Do) — (E o +E 1) - (16)

Here, all energies are total energies, def refers to cluster
5, pass refers to the passivated cluster, and the +, O,
and — superscripts refer to the charge state of the clus-
ter. The band gap, 1.6 eV, is estimated from an excited
triplet-state calculation performed on the neutral pas-
sivated cluster.’® This calculation assumed that the en-
ergy difference between the excited singlet and triplet
states is negligible. From these calculations we estimate
the correlation energy to be + 0.32 eV.

As was mentioned above, using a Green’s-function
local-density technique, Bar-Yam and Joannopoulos ob-
tained a negative U for the dangling orbital in crystalline
silicon. This result is in contrast with the DLTS and
spin-resonance data’! that indicate that the dangling or-
bital in amorphous silicon has a positive U of about 0.4
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TABLE IV. Computed defect charges Q in the +, 0, and
— charge states for the Haldane-Anderson model (Ref. 29),
and for MOPN. Q is in units of e.

g, [ o_
HA 0.235 —0.013 —0.282
MOPN 0.436 0.122 —0.034

eV, as well as with the DLTS data on the P, center that
indicate a positive U of 0.6 eV. While the Bar-
Yam-Joannopoulos result has prompted new defect
models to account for the experimental observations, 52
we suggest that the lack of spin polarization in their cal-
culation may explain the negative correlation energy. In
his unrestricted X-a calculations on the P, center, Cook
encountered sizeable spin-polarization splittings.?” In
any case, a calculation of the correlation energies of
some of the best understood dangling-bond-like defects
in crystalline silicon, for which the correlation energies
are known, would go far to establish confidence in the
local-density results.

Controversy over the sign of the correlation energy
should not overshadow the striking reduction from
atomic values, ~10 eV, to tenths of an eV. The origin
of this reduction is clearly illustrated in the Haldane-
Anderson (HA) model Hamiltonian.*® The interaction
between the defect-atom orbitals and the band states of
the unperturbed system leads to a delocalization of the
defect wave function. Recently, Fowler and Elliott?’
have modified the HA Hamiltonian to include electronic
and lattice polarization effects. This modification
preserved the simple form of the HA Hamiltonian, while
clarifying the approximations used in choosing the mod-
el parameters. They chose the dangling silicon orbital as
the model system in their calculations. The degree of
delocalization is measured by the net charge shifts on
the defect atom arising from adding or subtracting an
electron from the neutral defect. In Table IV we com-
pare the Fowler-Elliott results with our own for cluster
6. We note that in our calculations the band states are
replaced by the atomic orbitals on the other atoms. The
agreement is striking, even though the finite cluster in-
herently limits the extent of the defect wave function.
The charge shift between the positive and neutral charge
states, 0.3e, is especially interesting when compared to
the associated change in spin density on the defect atom,
0.8 spins. This clearly indicates the presence of large ex-
change effects.

V. CONCLUSION

In this paper we have presented a molecular-orbital
study of the P, center at the (111) Si/SiO, interface.
From our calculated spin-density matrix we have calcu-
lated hyperfine dyadics that agree in detail with Brower’s
observations.® It is gratifying that we can account for
the superhyperfine shoulders as interactions on three
second-nearest-neighbor silicon atoms. We also note the
sensitivity of the principal hyperfine dyadic to relatively
small displacements of the defect atom.
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We have also studied the level structure of this defect
in the positive, neutral, and negative charge states,
where we have included electron-lattice interactions.
Our estimates of the effective correlation energy agree
well with the DLTS results of Johnson et al. Our re-
sults disagree with the recent calculation of Bar-Yam
and Joannopoulos, who obtain a negative U, as well as a
qualitatively different equilibrium geometry for the neu-
tral state.** Finally, based on the response of both the
singly and doubly occupied defect levels to compression,
we predict the existence of a spin-dependent DLTS sig-
nal at high pressure.
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