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Surface topography in scanning tunneling microscopy: A free-electron model
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The topographic image as given by scanning tunneling microscopy (STM) is deduced in analytic
form in a free-electron, or Sommerfeld model. The method is non-numerical and employs perturbed
wave functions for an arbitrarily modified plane metal surface to approximate the local density of
states (LDOS), at the Fermi level. The curves of constant LDOS, hence also the contours followed

by the probe in an s-wave tip model, are calculated in terms of h (x~~), a surface profile function. The
image of an arbitrary periodic or nonperiodic surface structure is determined by contours of the form

z(x~~) =z+A(x~~, zg where z is the average probe-surface separation, and A(x~~, z) is a convolution over
h (x~~). We also discuss the parallel and perpendicular resolution of surface structures such as a one-
or two-dimensional Gaussian, a perfect step, and a cosine surface, as a function of distance and tip
radius. We find there is considerable smoothing of the image in STM for finite surface defects for
typical tip-surface separations and tip radii.

I. INTRODUCTION

The work of Tersoff and Hamann' provides both a
fundamental understanding of scanning tunneling micros-
copy (STM) at low voltages and, in particular, a detailed
discussion of the measured surface topography in the
constant-current mode. At low voltages, as is well
known, the current is Ohmic and depends on tunneling
between states at or near the Fermi level of each elec-
trode. In particular, Tersoff and Hamann (TH) find the
tunneling conductance for STM to be proportional to the
local density of states (LDOS) of the surface, at the Fermi
level.

This result is obtained by applying Bardeen's formal-
ism to the tunneling problem in the low-bias limit and re-
lies on two basic assumptions. Firstly, the tip wave func-
tion is modeled by an l=0 state external to a spherical
potential well of radius R. Secondly, it is assumed that
the effect of the image potential in the gap can be neglect-
ed. In addition, the Bardeen method requires that the
overlap between tip and surface wave functions be small.
While the tip is given a model form, the surface wave
function remains quite general and thus can be calculated
independently. For the tunneling conductance (cr =I/V),
the authors find,

o =0. 1R e " p(r, EF) ohms

with

where r is the location of the center of curvature of the
tip, a distance R +d from the surface.

It follows from (1) that the curves of constant conduc-
tance, in the s-wave tip model, are identical to the curves
of constant LDOS, defined by Eq. (2). For this judicious
choice of tip wave function, i.e., s wave, the density of
states of the tip is a multiplicative factor and is not convo-
luted with the LDOS of the surface, as one might expect.
The further work by Feuchtwang et al. and the calcula-
tions of Lang on tunneling between two adsorbates
across a vacuum gap tend to confirm that the surface to-
pography, as measured by STM, is close to a contour of
the surface LDOS.

An alternative approach to STM is provided by Garcia
et al. ' and by Stoll et al. in which an analogy is drawn
between tunneling electrons at nonplanar metal surfaces
and scattering theory. The electrodes are treated as free-
electron metals with a periodically corrugated abrupt po-
tential step at each interface. In representing the tip elec-
trode by a periodic structure, whose repeat distance is
large compared to the surface lattice constant, it is impli-
citly assumed that the current between a single probe and
surface is reproduced. One drawback in this method is
that it remains essentially numerical, while employing a
simple model for both tip and surface. However, in Ref.
10 Stoll derives an approximate expression for the tunnel-
ing current at a free-electron metal with a weakly
sinusoidal boundary. The resolution for this particular
case is also discussed.

In spite of the improved knowledge of the tip struc-
ture"' that has been obtained since TH's work, we feel
that model calculations of the STM system are instructive
(see, for example, the discussions in Refs. 13—15). For
this reason, in this work we retain the free-electron model,
as in Refs. 7—10, but calculate p(r, EF) in a perturbative
expansion in terms of h (x)=h (x,y), the surface profile
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function. This is achieved, in Sec. II, by first calculating
the first-order correction to the perfectly-plane-

surface wave function 1(i(„', which is known. We then ap-
ply Eqs. (l) and (2) to obtain the tunneling conductance
(Sec. III). The expression obtained, valid for large dis-
tances compared to the inverse decay length of the surface
electron wave function, has the advantage of being easily
solvable for z (x), the position of the probe in the
constant-conductance mode. In Sec. IV, we derive the
general form

i(q+6).x ~q+6—~~ aoe ecy~ —~—~ Q e

where
1/2

2mE
q pq —— 2m 2(E+ V0) —q

pe'q+ '"(bGe' " +cGe '+ ') (&b)

1/2

z(x) =z+b(x, z), (3)

where

A(x, z) = fd x'h(x')f (x—x',z),

i.e., a convolution over the surface, and z is the average
distance between tip center and the surface. As Eq. (3)
can be determined for any h (x), it provides a general
solution for the surface topography at a distance z from a
periodic, or nonperiodic, surface. Finally, in Sec. V, we
discuss and compare Eq. (3) for a variety of possible sur-
face structures such as a cosine, a one- or two-
dimensional Gaussian, and a single perfect step. The
resolution of such structures, both in the parallel and per-
pendicular directions, as a function of distance from the
surface and radius R of the probe, is also discussed.

q(0) ( ~ q(0) &

az " at
, z=o

=0,
(6a)

(6b)

and n stands for (q, E).
More generally, h (x) is nonperiodic and the sum over

G- is replaced by a Fourier integral. Although the present
problem could be solved numerically, an analytic expres-
sion for it)„can be determined perturbatively in orders to
h (x). Thus, both expanding g„=)t)(„)+g(„')+. in the
usual fashion, and further doing a Taylor-series expansion
about z=O, i.e., iti„"', ),

——p'„" ~, 0+hp„"'
~

0+. . . ,

the boundary conditions are (order by order)

II. CALCULATION OF THE WAVE FUNCTION

y() ) ( y(1) &

az "
az "

z=0

Let g„be the wave function of an electron in the pres-
ence of a nonplanar step barrier potential of the form
V(x,z) = —V08(h (x) —z ), where h (x) is the surface
profile, and e(x) is the usual Heaviside step function.
The equation to be solved is:

A V'

+ V(x, z) P„=E„)t)„,
2m

(4)

where P„ is subject to the usual boundary conditions at
z =h(x). For z +&h (x) the solution to (4) is that of a free
particle with an abrupt barrier of height V0 at z =h (x).
Assuming that h (x) is periodic, g„can be expanded in
the general form:

a2 a2
h (x) q(0)( q(0) &z2" az2" z=0

In addition we expand the coefficients in (5a) and (5b)

QG=Q~ +QG +(0) (1)

and likewise for bG and c~. The energy F. is not expand-
ed as, by inspection of Eq. (4), together with the explicit
form of the potential, E is independent of h (x). The
coefficients a &', b &', and c G', which are determined up to
a normalization constant using the boundary conditions
(6a), are simply those corresponding to the plane-surface
wave function g(„). Hence through first order
( q q(0) +q(1) ).

iq x(0) ~.qx+ y (1) i(q+G) x ~qyGx

iq x (0) ' q q ' I y ((q+G) x(h (1) Pq+& (1) Oq+ocos[ z —6(q) ]
&
—e cq

& +&— e Ge +cGe (8b)

where cq '=Be' (q)cos5(q). 5(q) is an energy-dePendent
phase due to the step potential, defined by
tan6(q) = —aqlpq, and B is a normalization constant.

Two of the three coefficients, a&', b&', and co' are
determined using the boundary conditions (6b). Solving

for b&' and c&' in terms of a 6', the solution is

(o)
2cG —— a G — hG(2m V0/fi ), (9a)

2i pq+G 2i pq+G
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(0)
2bG = . aG + . hG(2mV0/A' ) (9b)

l q+G l q+G

where hG=(l/(2) fd xe ' *h(x). This leaves (2G' to be

determined by the orthonormalization of I g„], which im-
poses a further condition on P„". One finds
a G' ——cq hGaq+G, and the final result for (i('„" is

(0)
I (] ) ) q ~ h i (q+G)-x q+G

y"n = ~~ ~ G«q+Ge
G

(10a)

(0).I,(1) & q ~ h i (q+G).xGe
+q+G 2m V0

cos[pq+ Gz —5(q+ Ci) ]+ sin(pq+ Gz)
cos5 q+Cr &'Pq+G

(10b)

As a simple check, if h(x)=h, i.e., a constant shift of
the plane surface in the z direction, then hG ——h5GO.
Equation (10) then reduces to it/(„"= —hBQ(„)IBz which is
the first-order term of the exact solution ii/'„)(z —h). The
general result for itt'„" in Eq. (10) can equivalently be de-
rived using the alternative technique of perturbation
theory on the boundary condition, ' as applied in Ref. 17
to surface states. In principle, the perturbation expansion
can be carried out to any desired order.

(1)( E ) g P(0) g(1)5(E (1 lb)

p' ' and p'" are particularly easy to calculate asymptoti-
cally for Kz »1. This limit is consistent, however, with
the simplified choice for the potential, and the original use
of the Bardeen formalism for the tunneling current.

From Sec. II, the relevant solution for iti„ is

III. CALCULATION OF THE LDOS

As we have calculated it)„ through first order, we
proceed to derive an expression for the LDOS at the Fer-
mi level also to first order. Expanding ii)„ in Eq. (3) in
terms of h (x) we have

p"'(r EF)= 2 I
i)/"

I
'5«. EF)— (1 la)

n

xe ' " «qF —
I
q+6

I
» (16)

where the step function ensures the proper cutoff in the
sum. p"', in contrast to p'"', contains a single Fourier
sum, and therefore a first-order calculation is considerably
simplified. An approximate expression for p"' is likewise
obtained for Kz»1 by expanding the exponent about
q= —Cx/2 and extending the integration to oo

2qF 2

p r F= ~ Ge
;G.„cos 5(Cx/2)

G PG/2

Ra =const && eR+d
where we have used z =R +d. To lowest order in d/R,
the conductance is linear in the tip radius, o. ~Re
and not quadratic. On the other hand, if d »R,
o. ~R e "/d, and a factor of d appears in the denomi-
nator. '

In a similar manner, we calculate p"' given by (1 lb) us-
ing the expressions for both ij/( ' and itt(" in Eq. (12). We
obtain

p (r,EF)=2C shoe' '* d q aq+G(i) cos 5(q)
(qF' q')'"—

q(0) ) iq x (0) q (12a)
'Il'CX G /2

2

e " 1+, (17)
Z 2a G/2Z

,(,(&)) (0) ~ h i(q+G). x q+G

G
(12b) where the sum is cut oif at

I
Cx

I
=2qF. Putting together

(14) and (17) we obtain for the LDOS,

p' '(z, EF)=C J d q, cos 5(q)e
(qF —q )

and p(r, EF ) for the flat-surface LDOS is —2kz

p(r, EF)= A
Z

CX2

+ Z, Ge2~h iGxpG/2 G/2

G gFK

7TK ep' '(z, EF)=Ccos 5(0)
gF Z

(14)

The tunneling conductance for a sphere and perfect plane,
using Eq. (1), is then

(13)
where aq ——(q +i~ )', qF =2m (EF+ V0)/A', and C is
m/m. fi. The factor (qF —q )

' =Pq ' arises from the
one-dimensional density of states evaluated at
EF —h q /2m. For large vz, the integral in (13) can be
approximated by expanding the argument of the exponen-
tial about q=0 and extending the upper limit to infinity.
As the exponential decay dominates, the prefactor can be
evaluated at q =0,

G/2

2(XG//2Z

(18)

e
—2KZ

p(z, EF ) = A
Z

—2Kz

+2Kb 1+ 1

2KZ
(19)

which is precisely p' '(z) —h Bp( )(z)/Bz the desired result.
Using (18) the tunneling conductance, consistent

through first order, is

where 3 is a constant. Again, (18) is exact to first order
for a "raised" surface. Indeed, if we substitute
hG ——h6G 0.
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—2~[z —b, ( x,z) ]
o(r) =const)&R e

(z —A(x, z))

where A(x, z) is defined by

iX;G.x G/2 G/2
2

G qFK

—2(n G
—a)z + / Q//2

Xe 1+1/2Kz

(20)

z =z+A(x, z) . (26)

which we can solve for z(x) through first order. The
above constant is obtained by averaging over the surface
[over a unit cell if h (x) is periodic or over the entire sur-
face if h (x) is nonperiodicj. Using the fact that
(b, )„=ho——(h )„, gives const= (z)„—(h )„—=z. The
latter constant is thus the average distance from the center
of the probe to the actual surface. The equation to be
solved is then

2
;G x PG/2 G/2 —2Ia&/2 —xjz

G gFK'
(21)

neglecting the term in parentheses for Kz ~~1. The form
given in (20) for the conductance is better than a first-
order calculation since, for example, it is exact for the
raised surface, for which b, (x,z) =h, and (20) reduces to z(x) =z+b, (x,z), (27)

It is clear that for a first-order expression for z(x) a
first iteration of z in (26) is sufficient, as b, is first order in
h. A single iteration gives z+b(x, z)=z+A(x, z) and the
probe position is then found to be

2 2ee —2~(z —h )

o(z)=constXR e"
(z —h)

However, 6 is still a first-order correction to z in the ar-
gument of the exponential.

b, (x,z) can further be expressed in the form of a convo-
lution:

A(x, z) = f d'x'h (x')f(x —x',z), (22)

and a mere readjustment of the probe-surface distance re-
sults. The next term in (21) is the G& coefficient corre-
sponding to a corrugation of the largest wavelength. Each
subsequent Fourier component is further damped by the
exponential, as also noted by Tersoff and Hamann in Ref.
2. A similar approximation for b.(x,z) is obtained for
nonperiodic surfaces:

2

q (2qF qFK'

with

h(q)= fd x e 'q'*h(x) .

IV. STM IMAGE

The topographic image as seen using STM is given by
the contours of the surface z(x) that maintains constant
conductance. Setting cr(r)=const in Eq. (20) leads to the
expression:

z —b, (x,z) =const, (25)

where f (x,z) is a function that smooths the surface
geometry. By inspection of Eqs. (20) and (21) we see that
the LDOS, or the conductance, is very nearly Oat with
A(x, z) defining the relevant modulation. For example, as
z~oo, we only pick up the Cx=O Fourier component in

(21), i.e., b, = h 0 ——( h )„. The conductance has no x
dependence,

2K(z ( h ) ay)

(23)

where b„defi end in Eqs. (21) and (24), is evaluated at z, a
quantity independent of the original coordinate system
chosen to define g„.

The probe thus follows a perturbed path approximately
a distance z from the surface. The deviation about this
path, given by b, (x,z), can be calculated for an arbitrary
h (x) which we illustrate in the following section. The im-
age a distance z =R + (d ) from the surface is a damped
and smoothed version of h (x) and, as z increases, the im-
age of an arbitrary surface structure becomes increasingly
fiat (z-z). By combining Eqs. (27) and (22), an alterna-
tive expression can be found:

z (x)=z+ fd'x'h (x')f(x —x', z ) . (2&)

One can think of the ideal image as being h (x), while

f (x) is an independent resolution function. More
specifically, one can show that, for Kz » 1, f (x)

(K/~z )exp( —x K/z ), i.e., a Gaussian with full width at
half maximum 2(ln2z/K)'/ which characterizes the la-
teral resolution. The nominal resolution thus diminishes
rapidly for large tip radii (R), or large tip-surface separa-
tions ((d ) ), as discussed in Ref. 19.

In the following section we make use of two charac-
teristic parameters b.i and b. of the actual image z(x).
We define A~ and A~~ as the response of the tip at a dis-
tance z such that b, i is the maximum change in b, (x,z)
and A~ is the parallel distance over which Az is defined.
For example, if b, (x,z) is a Gaussian, then hi and 5

~

are
the amplitude and width, respectively. These two charac-
teristic lengths are related to an alternative notion of
"resolution": the ability to image a given surface (not to
be confused with the nominal resolution discussed above).
For example, Aq is related to the resolution by requiring
that the signal-to-noise ratio, Aq/n, be greater than one
(as in Ref. 19). If the STM system noise is larger than
A(z), then no real resolution of the surface occurs. In ad-
dition, the parameter A~~ indicates the characteristic width
or broadening of the image as a function of z. As the fol-
lowing examples illustrate, Aq and A~I are dependent on
the surface geometry and also dependent on the lateral
resolution: 2(ln2 z /K) '
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V. EXAMPLES

z(x)=z+h cos(G) x)
2

PG) /2QG) /2 —2(ao /2
—«)z

QFK
(29)

These contours are illustrated in Fig. 1 for various dis-
tances z from the surface. The probe thus follows the sur-
face with a z-dependent amplitude:

2
PG /2&6 /2 —2(ao /2

—«)z
1 1

1A=h
2

e
FK

(30)

In this section we consider a few examples of the sur-
face geometry to illustrate the use of Eq. (27).

a. Cosine surface. Choosing h (x)=h cos(G).x), Eq.
(27) then gives (provided G) & 2qF )

1 'Xb(x, z)= J h(q)e'q "e
(2~)

(33)

where y=z/4K. Due to the exponential, the q depen-
dence of the prefactor is small. Expanding for small
q/2K=q/2qF there are corrections to the integrand of
(33) of order (q/21'), which can be neglected for the
present purposes of illustration.

For the step

z (x) =z + —[1+N(x /2&y )],2
(34)

h (q) =2vr 5(q~)h [n5(q )+P(1/iq )],
where P is the Cauchy principal value. Using this to
evaluate (33) the probe position becomes:

Tersoft and Hamann obtained the identical exponential
dependence, i.e., 3 ~e ~'. They further suggest that in
the limit of a small tip radius 3 =2K 'e

In the small-G&/2K limit, we obtain the very simple re-
sult

where 4(y) =erf(y) is the error function.
At the surface (z=0) we have a sharp step, while as a

function of z the ste~ becomes progressively smoother.
Indeed, for x

~

/2&y &&1, @(x/2&y) =x/&~y and in
this limit:

—G 1z /4v2—

3 =he (31) hz(x)=z+ —(1+x/v'vry),
~

x
~

/2&y &&1 .
2

(35)

having used Po, /2aG, /z = qF)r and aG) /2
—a =6 ) /Sic.2 2 2

For the cosine surface, the perpendicular resolution is
twice the amplitude

2z /4'
5] -2he (32)

which coincides with the expression of Stoll et al. ''

A~~
——~/6] is independent of z, rejecting the fact that at

any given distance (including R) such that b, ~ is larger
than the system noise, or (At /n ) & 1, the probe feels the
lateral periodicity of the surface.

b. Stepped surface. h (x) =h6(x) defines a step of
height h whose edge is parallel to the y axis. Here we as-
sume that Kz =qFz »1 such that we can evaluate an ap-
proximate form for b, (x,z) in Eq. (24)

The slope of the tip path near x=O is thus proportional to
(z )

'/2. In the opposite limit, i.e.,
~

x /2&y && 1,
N(x/2&y) = sgn(x), and using 1 + sgn(x) =26(x),

z(x) =z+hB(x),
~

x
~

/2&y &&1 . (36)

h —x 2/4y

2v'~y
(37)

and by taking A~~
——2x„where x, reduces the derivative by

a factor of e

The probe thus maps out a step of height h, as it is
swept from large negative to positive values in x. Howev-
er, as Fig. 2 illustrates, the step is considerably broadened.
For the resolution of a step: 6] =h, and is independent of
z, while A~ can be estimated by noting that the derivative
of z (x) with respect to x is the Gaussian,

20

10-

Z (a.u. )
5-

Z (a.u. )

0-

-5
-10

X (a.u. )
-2

-10

FIG. 1. Isoconductance traces for a cosine surface
h (x)=h cos(G1-x), along G1 direction, for distances z=6 to 18
a.u. in steps of 2 a.u. (G) =n/8, «= —' a.u. '), z=R +(d ),
where R is the tip radius and (d ) is the average tip-surface sepa-
ration.

X (a.u. )

FIG. 2. Isoconductance traces along the x direction for a step
of height 4 a.u. (see Table Ij. z is chosen at 4, 6, 8, 10, and 12
a.u. (K= —' a.u. ')



966 SACKS, GAUTHIER, ROUSSET, KLEIN, AND ESRICK 36

cases is I =2&ln2/&a. For the two cases, respectively,
the probe position is

Z (a.u. )

12-

10-
z(x) =z+ h —ax /(1+4ay)

(1+4oy)'i

z(r) =z+ h —ar /(1+4ay)
(1+4ay)

(39a)

(39b)

2-

0
-)0

X (a.u. )

As illustrated in Figs. 3(a) and 3(b), the probe also follows
a Gaussian curve but of much smaller amplitude and
larger width, as expressed above. For the perpendicular
resolution, hz, we have

Aq ——h /&1+4a y

and

g (a.u. ) 8- (b)

b~=h /(1+4ay),
respectively, while A~I is the same for both Gaussians,

1/2
4 ln2z

I (40)

0
-)0

X (a.u. )

FIG. 3. Isoconductance traces along the x direction for (a) a
1D Gaussian and (b) a 2D Gaussian, both of amplitude 4 a.u.
and width 4 a.u. z is chosen identically to Fig. 2, and K=

2

a.u.-'.

and gives the broadening as a function of z (see Table I).
Taking, for example, z=8 a.u. , K= —,

' a.u. ', and I =4
a.u. , Az is 0.51h and 0.26h, respectively. The amplitude is
reduced by 49% for the 1D Gaussian as compared to
84% for the 2D Gaussian. This could be compared to
0% for the step, and indicates that it is easier to resolve a
step edge (in the perpendicular direction) than a finite de-
formation of the surface. The lateral resolution of the
Gaussian is comparable to that of the step, however,

VI. CONCLUSION

8z
1/2

(38)

For example if ~= —,
' a.u. ', z=8 a.u. , then 6~~=11.3 a.u.

0

At this distance the step edge is already broadened to 6 A
laterally.

c. One and tu-ro dimensio-nal Gaussions Equation (.33)
can likewise be solved for a one-dimensional Gaussian

—Qxh (x) =he '", or a two-dimensional Gaussian
—Qrh(x)=he '", where r =x +y . The width in both

Our model indicates that, for simple metals, the STM
probe moves along a contour z (x) which is to first order a
single convolution over the surface profile:

z (x) =z + fd x'f (x —x', z )h (x'), (41)

where z is the average distance between tip center and
surface. This simple result is not appropriate where
band-structure effects' ' ' or image-potential effects may
become important. However the model could be extended
to include relevant corrections.

TABLE I. The resolution of four simple surface geometries, defined by h (x), is expressed in terms of
A&(z) and A~~(z), where z =R + (d ) (tip radius plus average tip-surface separation).

Surface h(x)

Cosine

Step

h cos(Cs1 x)

he(x)

—G1 z/4v2-
2he n. /G1

1/2
8z

1D Gaussian —QZ 2 hj 1+—az
K

1/2
4ln2zr'+

K

1/2

2D Gaussian —Qr 2 h/ 1+—az
K

I-2 4ln2zr+
K

1/2
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In the limit that the corrugation is very Aat, the above
expression simplifies to z=z+h (x)+(z/4tt)V h (x)+, which is obtained by expanding f (x—x', z)
about x in (41). The first two terms are in agreement with
Ref. 17, and in agreement with the conclusion that the tip
follows the surface in this limit. We also note that Eq.
(41) can be inverted giving h (x) as a function of the probe
displacement. Given an experimental 6z(x), one can in

principle calculate an effective h (x) provided an estimate
of z can be obtained.

An interesting feature of STM is the sample or
geometry dependence of the resolution, as summarized in

Table I. Provided Az is larger than the experimental reso-

lution, system noise, etc. , the scan will detect a periodic
surface of largest wavelength 2tr/6 &, or a step of height h,

as in these examples Aj~ and Az are independent of z, re-

spectively. This perhaps rejects the relative ease at imag-

ing stepped surfaces with large terraces. -" However the
for the step indicates that the edge is considerably

broadened ( b,
~~~

&& b i ). The 1D Gaussian, having an
infinite dimension along one axis, is easier to resolve than
the 2D Gaussian, which represents a finite deformation of
the surface. Indeed, for large z we have b, i —hatt/z and
b i —h (tt/z ), respectively.

The wave functions present in Sec. II may have further
applications. For example, we have calculated the tunnel-

ing conductance, and corresponding isoconductance con-
tours, in the case of both an arbitrary probe and arbitrary
surface geometry. This work, which includes a compar-
ison between spherical and Gaussian tip electrodes, and
the resulting probe position z(x), will be presented in a
future report.
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