
PHYSICAL REVIEW 8 VOLUME 36, NUMBER 18 15 DECEMBER 1987-II

Phonon renormalization effects in quantum wells

S. Das Sarma and M. Stopa
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742

(Received 2 July 1987)

We investigate the effects of screening on polaronic corrections to the effective band edge and

effective mass in a quasi-two-dimensional GaAs quantum well. We find that both screening and

finite well width significantly reduce the polaron energy and thus oppose the polaronic band-gap
renormalization. We calculate how this "counter-renormalization" depends on the free-carrier
density and temperature. We show that static screening overestimates screening in comparison
with dynamical screening. We calculate the polaronic effective mass as a function of free-carrier
density and temperature and show that the calculated temperature dependence of screening is too
small to account for the observed temperature dependence in recent cyclotron resonance measure-

ments of effective mass.

I. INTRODUCTION

The coupling between electrons and LO phonons in
weakly polar semiconductor quantum wells affects the
band-gap energy and the electronic effective mass. Indi-
vidual (and hole) energies and consequently the energy
gap between the valence and conduction bands are re-
normalized by the emission and absorption of LO pho-
nons. Equivalently, one can picture the energy change
as resulting from the polarization of the ions surround-
ing a given electron. Since electronic motion necessi-
tates the polarization of the region into which the elec-
tron is moving (i.e., the electron must carry the phonon
cloud with it), which requires energy, the effective mass
of the polaron is greater than that of a bare electron. '

Screening by free carriers (electrons in the conduction
band and/or holes in the valence band) serves to reduce
the coupling between electrons (or holes) and LO pho-
nons. The polaronic self-energy lowers the conduction
band and raises the valence band, thereby narrowing the
band gap. Thus screening, by reducing the magnitude of
the polaronic self-energy, acts to oppose the renormal-
ization and tends to widen the gap back to its unrenor-
malized bare value. This "counter-renormalization" is
the central concern of this paper.

We calculate the polaronic band-edge renorrnalization
for a GaAs-Al„Ga& As quantum well as a function of
temperature and carrier density in this paper. The un-
renormalized gap between the valence and conduction
bands in bulk GaAs is roughly 1.5 eV. Our renormaliza-
tion of the band gap due to LO-phonon coupling is of
the order of 10 meV. This is comparable to the magni-
tude of exchange-correlation corrections to the band
gap. We also calculate the electronic effective mass
correction due to the screened electron —LO-phonon in-
teraction as a function of temperature, generalizing the
earlier work of Das Sarma and Mason. Our results are
compared with recent cyclotron resonance experiments
on the electron effective mass in GaAs quantum wells.

Electron —LO-phonon coupling depends upon well
width, free-carrier density, and temperature, which we
discuss in turn. The electronic wave function is quan-

tized in the direction normal to the interface (the z direc-
tion). Free effective-mass-like motion is possible in the
x-y plane. We ignore interface effects on phonons (i.e.,
we assume the lattices are well matched) and consider
the coupling of electrons to bulk phonons. The quan-
tized z-direction wave functions lead to a form factor'
which modifies the otherwise two-dimensional interac-
tion. This form factor, and hence the electronic self-
energy, naturally depends on well width. We span the
range of typical well widths by calculating energies
and masses in wells from 0 to 400 A.

We do not limit the phase space in the self-energy in-
tegral via a Fermi occupancy factor since the typical
Fermi energy (EF) is substantially less than the GaAs
LO-phonon energy. We do, however, incorporate the
effects of free-carrier density in screening since two-
dimensional screening in the leading-order approxima-
tion is density independent. Typical densities are of the
order of 10" particles/cm . Our main interest in this
paper is in studying the effects of carrier density, well
width, and temperature on screening corrections to the
renormalization of band edges and effective mass. Pho-
non occupancy and screening are both temperature
dependent. We include the relevant Bose factors in the
perturbative self-energy calculations.

We calculate the band-gap renormalization in two
ways. The first calculation is the straightforward pertur-
bative approach of evaluating the leading-order self-
energy diagram. Since full dynamical screening in the
perturbative calculation is intractable, we are forced to
use static screening. Our second approach is to use a
variational expression involving the structure factor.
This employs the dynamical dielectric function in the
calculation of the screened electron-phonon interaction
via the electronic structure factor. We have carried out
the variational calculation at T =0 only.

II. PERTURBATIVE CALCULATION

A. Electron self-energy

The leading-order electron (hole) —LO-phonon self-
energy (within a static screening approximation) is given
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where a+ is the Frohlich coupling constant and equals 0.07 for electrons and approximately 0.192 for holes, coLQ is the
LO-phonon energy and equals 36.5 meV, m+ is the bare-hole (electron) band mass, no the Bose occupancy factor, and

Eo(k —q) the bare-electron energy. We take 0.067mo as our bare (band) mass for the electron and 0.50mo for holes.
If we assume only the lowest subband is occupied, we have the form factor
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where a is the well width. We approximate the quantum well by an infinite square-well potential of width a which is
known to be a fairly good approximation in the electric quantum limit with only the lowest subband occupied. We as-
sume a static random-phase approximation (RPA) for the dielectric function:

e(q, E =O, T)=1+
'qTF (q) qTF

+ (2.3)

where

1 —tanh( Ax —6)
qTF (q) = q, dx F(q),+ o (1 —4x)'i (2.4)

2 = 2 pkF /2m
where q, =2m+e /x, 3 =13q /4am+, 13=1/k&T, 5=In(e —I )/2', kF is the Fermi wave vector equal to

(2wlV, )' . We take ir, the static dielectric constant, to be 12.5. Temperature enters the theory through the chemical
potential and the screening function as shown above.

Several assumptions underlie Eq. (2. 1). They are as follows. (1) Electron-phonon coupling is given by the Frohlich
Hamiltonian. (2) Any dispersion in the phonon energy is negligible. (3) The electron can be described by a bare pro-
pogator, rather than solving Dyson s equation self-consistently. (4) As discussed in the Introduction, we have assumed
a single particle in a subband by neglecting Fermi statistics, but we maintain a free-carrier density dependence in the
screening (this is the usual "polaron" limit).

We are at liberty to consider screening by both electrons and holes, as is appropriate for a photoexcited intrinsic
semiconductor; or by holes only for hole energies and electrons only for electron energies, as is appropriate for doped
p- and n-type semiconductors, respectively. We will usually take the latter approach for purposes of comparison with
our variational calculations (Sec. III).

We take the usual parabolic form of the electron energy: Eo=k /2m. We note that certain compound semicon-
ductors (e.g. , InSb) can be quite nonparabolic and would require that we keep higher-order corrections' to the bare
energy. In addition, we consider electrons on the mass shell (E =k /2m). Thus, we obtain

3/2
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2 +
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(2.5)

Finally, since we are interested in the band edge, we set k =0 and perform the angular integration to get the following
results for the polaronic corrections e + to the band edges:
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In the limit where F~1 (strictly two-dimensional well)
and e~ 1 (no screening), we have e~+ ~ 17cx+coLo /2.
This is about 4 meV for electrons and 10 meV for holes
in a CxaAs structure.

giving the well-known result m ' =m(1+ma/8) in the
weak-coupling limit.

III. VARIATIONAL CALCULATION

B. Effective mass

The definition for the polaron effective mas is

The dynamical structure factor is the spectral function
for the density-density correlation function in an elec-
tron gas. It is related to the dynamical dielectric func-
tion:

a= lim — =—+ lim — ReX(k, E),
m k o k 8k m k o k Bk

(2.7)
S(k, co) = 1 —1

ImU„e(k,co)
(3.1)

where E~(k)=(k /2m )+ReX(k, k /2m) is the polaron
dispersion. For low temperatures (T (50 K) the pho-
non occupancy is negligible. Taking no~0 in Eq (2..5),
we expand the remaining integrand in powers of k, take
the k derivative, and perform the angular integration.
Letting k ~0 once more, we obtain

Here, U& is the Fourier transform of the Coulomb in-
teraction. A variational expression for the polaron ener-
gy which allows us to take advantage of the dynamical
response information contained in the structure factor
has been derived '" by Devreese et al. for a polaron gas.
The corresponding two-dimensional result can be ob-
tained in a straightforward manner:

(~Lo/m )'"
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(3.2)

1
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where C is the quantity within large parentheses. In the
weak-coupling limit we get m * =m (1+o'C ). In the
two-dimensional, zero-screening limit [F(q)~ 1,e(q, 0)~ 1], this reduces to

is the static structure factor (note that it is not the sim-
ple static limit of the dynamical structure factor). We
employ different approximations for the static structure
factor (frequency integral already performed) to test
various screening results. The first is the simple
Hartree-Fock approximation

(2/m. ) sin '(k/2kF)+(k/mkF)[l (k l2kF) ]'—, k (2kF
S k='

HF 1 otherwise . (3.3)

kS(k)= for all k,
2m[ak +k2B2(k)]~~2 (3.4)

One should use the random-phase approximation'
(RPA) for e(k, co) to obtain the static structure factor by
doing an integration over the frequency. An easier ap-
proxirnate expression for the structure factor is obtained
by noting that for small k, plasmons dominate the struc-
ture factor, whereas for large k it must approach unity.
In fact, for k & k, (where k, is the critical wave vector
for plasmon damping by electron-hole pair production)
the main contribution to the structure factor comes from
electron-hole pairs. Thus for large k ( k & 2kF ), the
Hartree-Fock form for the structure factor (which takes
into account only the electron-hole pairs) should be ap-
proximately correct, whereas for small k ( &2kF) the
plasmon-pole form should suftice. This enables us to use
the following plasmon-pole approximation for the static
structure factor:

where

g 2

B (k)=
[1—6(k —2k )[1—(2k /k) ]J'

with

B =UF/2= —,'(kF/m )

and

a =2nN, e /(am) .

Here, 8(k —2kF ) is the step function. Screening here is
incorporated through the zero-temperature Lindhard'
function in B (k). This plasmon-pole approximation for
the dielectric function has been shown' to work ex-
tremely well for a two-dimensional electron gas and
should be numerically equivalent to the full RPA.
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IV. RESULTS

A. Static and dynamical screening ( T =0)
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In Figures 1(a) and 1(b) we show electron and hole
band-edge polaronic corrections, respectively, in the
zero-well-width limit as a function of free-electron densi-
ty for each of our three approximations: the perturba-
tive and the two variational methods. The completely
unscreened polaron energy is indicated by a horizontal
line at the bottom of each figure. There is considerable
screening in all methods even for the lowest density
which we consider ( —10" cm ). Nonetheless, all the
curves approach the unscreened limit as the density van-
ishes.

We also note that static screening "counter-
renormalizes" the band gap more strongly than dynami-
cal screening. Since static screening only considers the

long-time response of the system to external fields, we
are not surprised that this approach tends to overesti-
mate screening. The Hartree-Pock screening always un-
derestimates screening effect and we do not show any ad-
ditiona1 result with this approximation.

B. Well width

The effects of finite well thickness are dramatically ap-
parent in Fig. 2(a) for the perturbative calculation and
Fig. 2(b) for the dynamical variational calculation. In
each of these figures the results for zero well thickness
are replotted for comparison. Evidently, the polaron en-
ergy drops off very rapidly as the well increases from 0
A (strictly two dimensions) to 100 A. It continues to fall

0

more slowly as the well thickness increases to 400 A.
Although the shapes of the curves for different well sizes
are roughly the same, there is a tendency for higher den-
sities to be slightly less affected by an increase in well
width (say, from 0 to 100 A) than lower densities. This
can be seen by recognizing that at higher densities the
self-energy depends more strongly on coupling with
shorter wavelength (higher q) phonons; the others being
screened out. The form factor for finite well thickness
affects most strongly those short-wavelength phonons.
In Fig. 2(c) we show the polaronic band-edge correction
for the electrons in a photoexcited situation with equal
number of electrons and holes in the perturbative static
screening calculation. Figure 2(d) shows the corrections
to the valence-band edge, with screening by holes only,
in the dynamical variational calculation. Again the vari-
ation of the band edge with well width is most pro-
nounced between 0 and 100 A.

Figures 2 clearly indicate that finite well thickness
affects the perturbative and variational calculations in
much the same way, and typical conduction- and
valence-band edges in GaAs quantum wells are shifted
by polaronic corrections of the orders of 1 —2 meV and
5 —8 meV, respectively.
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FIG. 1. Polaronic corrections (in the strictly two-
dimensional zero-well-width limit) to the conduction-band edge
(a) and valence-band edge (b) as a function of free-carrier densi-
ty [electrons only in (a), holes only in (b)] for T=0, for three
approximations: the perturbative calculation (solid lines), the
variational calculation employing the plasmon pole structure
factor (dashed lines), and the variational calculation employing
the Hartree-Fock approximation for the structure factor
(dash-dotted lines). The dotted lines denote the unscreened
limits.

C. Temperature dependence (perturbative calculation)

Figure 3 shows the effects of finite temperature on the
electron self-energy. In Fig. 3(a) we show the
conduction-band correction as a function of free-carrier
density for a variety of temperatures in the strictly two-
dimensional zero-well-width limit. Figure 3(b) shows the

0

same curves for a well whose width is 200 A. The
overall trend is clearly for the self-energy to decrease (in-
crease in magnitude) as temperature increases. The
zero-temperature curve is everywhere above the 25-K
curve. Nonetheless, when we plot electron energy versus
temperature for a variety of densities in Fig. 4, we see
some slight structure at low temperatures. Again Figs.
4(a) and 4(b) differ in well width only. Figure 4(a) is the
zero-width limit and Fig. 4(b) is 100 A this time. Evi-
dently, there is some competition between effects to in-
crease and to decrease the self-energy at very low tem-
peratures.

This phenomenon is easily explained physically. As
we explain in Sec. I the effect of temperature is twofold.
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FIG. 2. Polaronic corrections (at T =0) to the band edges for a variety of well widths as a function of free-carrier density. (a)
shows the perturbative corrections to the conduction-band edge with screening by electrons only. (b) shows the variational calcula-
tion corrections to the conduction-band edge with screening by electrons only. (c) shows the perturbative corrections to the
conduction-band edge with screening by an equal number of holes and electrons. (d) shows the variational calculation corrections
to the valence-band edge with screening by holes only. The thick curves are for the two-dimensional zero-well-width limit. The
other well widths are, from bottom to top, 100, 200, 300, and 400 A. The horizontal dotted lines indicate the completely un-
screened, zero-width limits.

First, the self-energy at T =0 is due entirely to virtual
phonons (there are no real phonons). As we move to
room temperature we obtain a small but finite number of
real phonons. But the emission and absorption of these
phonons makes a relatively small contribution to the
self-energy even at these higher temperatures—
amounting to no more than 10%%uo of the self-energy at
300 K. For the most part, the dependence of self-energy
on density and temperature merely reflects the depen-
dence of screening on temperature and wavelength. In-
tuitively, we expect screening to decrease as the temper-
ature rises, and indeed for disturbances whose wave-
length is longer than the average interelectron separation
( —1/kF ), increased T serves to decrease screening. The
electron is affected by long-wavelength disturbances
more clearly and hence these renormalize the energy
more effectively than at T =0. However, for phonons
whose wavelength is small compared with the interelec-

tron spacing, screening actually increases with tempera-
ture. At T =0 other electrons are apparently "frozen
out" of the region immediately surrounding a given elec-
tron. As thermal effects set in the other electrons
penetrate this region so that very short wavelengths are
screened better at nonzero temperatures. For low densi-
ties, long-wavelength screening is a more sensitive func-
tion of temperature than for high densities. Since this is
the "normal" q region where screening decreases with
increasing T we find that at low densities the self-energy
monatonically decreases (increases in magnitude) with
increasing T. At somewhat higher densities the short-
wavelength antiscreening behavior is sufficient to over-
come a less sensitive screening increase at long wave-
lengths and even produce a weak maximum in the self-
energy at nonzero temperatures, as in Fig. 4. Both
screening and antiscreening effects are present for all
self-energies, since we integrate over all wave vectors.
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Which effect will dominate depends on which phonon q
region is making the dominant contribution to the self-
energy.

For polaron holes the phonon cloud is much more
compact. Consequently, the dominant contribution to
the self-energy comes from shorter-wavelength phonons
than in the electron case. Since it is this region where
screening increases with T, we expect the hole self-
energies to exhibit more antiscreening throughout the
range of temperatures. This is precisely what we see in
Fig. 5, where the hole self-energies do not approach
their unscreened limit ( = 10 meV) with increasing
temperature as quickly as the electrons do in Fig.
4. Figure S(a) is for zero thickness; Fig. S(b) is for 200
A.

D. Effective mass

The effect of temperature-dependent screening on the
effective mass can be explained in the same terms in

1 a
1 ——~m *=m (1+a/6) .

m 6
(4. 1)

The most significant result in Fig. 6 is simply the
overall magnitude of the change in m * with changing T.
We find that m * changes by less than 1% over the
whole temperature range (0—300 K) in the zero well
thickness limit shown in Fig. 6(a). In Fig. 6 we also

which we understand the behavior of the polaron self-
energy. In both cases, the electron-phonon coupling is
reduced by finite well width and also by screening.
Equation (2.9) gives the two-dimensional, zero screening
limit of m . In the limit of infinite screening (e~ ~ )

the electron no longer couples to the phonon at all and
we recover m ' =m. Thus, m ' is bounded between
0.067 and 0.0689 (in units of the free-electron mass).
For purposes of comparison, the three-dimensional
effective mass in the zero screening limit is given by
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FIG. 3. Pclaronic corrections to the conduction-band edge
as a function of electron density for a variety of temperatures,
from top to bottom: 0, 10, 150, and 300 K. The horizontal
dotted line is the unscreened limit for T=O K. (a) shows the
corrections for the strictly two-dimensional zero-well-width
limit. (b) shows the corrections for a 200-A well. (All results
are perturbative. )

FIG. 4. Polaronic corrections to the conduction-band edge
as a function of temperature for a variety of electron densities.
From bottom to top: 1.6, 12.8, and 100.0& 10' electrons jcm'.
(a) shows the corrections for the strictly two-dimensional zero-

0
well-width limit. (b) shows the correction for a 100-A well

(perturbati ve).



960136

here are clearly mur y much too smallma to account f

In Fig. 7 we

ma for experi-

w p tth ss calculated with
g: the long-

ic PA with

hi
ation is

ica statistic
h 1 D

ure, lon-
e ebe
c assical scree

e(q, T) =1

c reening:

reproduce the ff
resonance ex

e e ective-
experiments

a from recent
f B 11

e temp erat
e et al.

R
of 5 too sm 11

e ced

PA screenin
I dd' '
n a dition to

...,.d.„h
a istics. ' A

'
screenin

side from
ive mass t

a slight ov
e curve

actor for a 170-0-A well width

e temperatu

p

h fi

h h h k
ti th f '1

ing of th

emperatu
d

couplin ing high m
a systems. T r

y states in t
L

p o
evels in high

h fi ld- e resultults presented

where

qD(T)=q, T /T=
2m, I,T (4.2)

(a)
6.90—

E
6.87—

O
+

6.84

PHONO N RENORMALI IZATION EFFECTS IN QUANT

ss da

NTUM WELLS

~ ~ ~ ~
~ ~ ~ ~

—10.0—

—12.0—

—14.0—

~ ~ ~ ~

I ~
~ ~

6.8 I

0
6.78—

6.75
0

6.88

I I

50 100 150 200 250
TEMPERATU RE (K)

300 350

—16.00

-0 75

-150-

-2.25—

-3.00—
CD

E—-375—

(a)
I l

50 100 1500 200 250
TEMPERATURRE (K)

300 350

—6.85—

E 6.83—
O

~ 6.80—

6.78—
OJ

I

O:6.75—

E
6.73

0
I I

50 IOO 150 2 0200 250 300
T E MPE RAT UR E (K)

-5.25
0

(b)

50
I

0 200 250 300 300 350

FIG. 5. Polaro aronic corr
of h

f

ities, from

r the stri tl
s t e corre fo 200

ensional ze - - i t
a -A well ( ve.a - e perturbative).

FIG. 6. Polaron effec
'

d
' ' f f 11 screen-

1 ns, pectively. The thi
h arne densities

fro

shows

g

the effectiive
xperimental

e. 4. For pur-

re eftective
een norm

h f h e two we11 widths
screen-



9602 S. DAS SARMA AND M. STOPA 36

This final approximation is the only one that reproduces
the order of magnitude of the effective-mass temperature
dependence. Again, however, the magnitude of the tem-
perature dependence is somewhat greater in the zero-
well-thickness limit [Fig. 7(a)] than in the 170-A experi-
mental thickness case [Fig. 7(b)].

While we cannot say that the system, in any sense, is
classical at the experimental temperatures (far fram it),
still, the fact that long-wavelength classical screening
changes the effective mass by the correct order of magni-
tude is not very surprising. En the zero-field case screen-
ing is limited by the amount of available phase space for
pair creation by phonons. Electrons far below the Fermi
sea (at zero temperature, say) cannot participate in
screening because the nearest available states are too far
away. Therefore, screening is due predominantly to
electrons within k~ T of the Fermi surface. In a strong
magnetic field in two dimensions, each Landau level has
a degeneracy of order g =1/2~l, where / is the radius
of the ground orbit, given by l =c/eH. For H =100
kOe, for example, I =81 A and g =2.5&10" cm
These are nearly all the electrons for the kind of densi-
ties we are considering. Therefore, just as in the classi-
ca1 case where no transitions at all are prohibited by
statistics, the strong magnetic field leaves each electron
the same amount of phase space to scatter into. Just
what the structure of the energy levels in this phase
space is, and how that affects screening in detail, awaits
a more complete theory of screening in a strong magnet-
ic field including full effects of level broadening which is
crucial' in getting nonsingular results at high magnetic
fields.
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V. CONCLUSION

The polaron self-energy in a two-dimensional GaAs
quantum well is comparable in magnitude to exchange
correlation effects on the e1ectron energy. This coupling
of the electrons to LO phonons works to shrink the gap
between the conduction and valence bands. Screening
and finite we11 thickness weaken the electron-phonon
coupling and so counter-renormalize the band gap.
Screening increases uniformly with free-carrier density
but has a complex dependence on temperature and pho-
non wavelength. Screening of 1ong-wavelength phonons
decreases as T increases, but phonons within the inter-
particle distance are not maximally screened at T =0.

We have presented calculations of the polaron ener-
gies using both a perturbative approach and a variation-
al calculation. The perturbative approach employs static
screening and the variational calculation employs a more
complete dynamical screening model. We compared the
methods of calculation and found that static screening
overestimates screening.

We used the perturbative polaron energy to derive a
formula for the polaron effective mass. The variation of
the effective mass with temperature resulted from the
temperature dependence of screening and showed the
same effects as the polaronic energy. The temperature
dependence of our static Thomas-Fermi screening was
not sufficient to reproduce the measured temperature

FIG. 7. Polaron effective mass as a function of temperature
in the long-wavelength limit. The thin solid and dashed curves
are for the q =0 limit of static RPA screening at 6 g 10"
electrons/cm-' and 1.4+10" electrons/cm, respectively. The
thick solid and dashed curves are for the q =0 limit of classical
screening for the same densities, respectively. {a) shows the
effective masses for the strictly two-dimensional zero-well-
width limit. Ib) shows the effective masses for a 170-A well.

dependence of the effective mass. Our overall ternpera-
ture dependence was too small by a factor of 5. A calcu-
lation using long-wavelength classical screening pro-
duced an effective mass whose temperature dependence
was the right order of magnitude. We explained this re-
sult as a consequence of the extreme degeneracy of two-
dimensional electronic systems in a strong magnetic
field. Nonetheless, we noted that anything more than a
passing resemblance to the effective-mass data will re-
quire a more sophisticated theory of electron-phonon
screening in a high magnetic field in two dimensions,
which is unavailable at the present time.

ACKNOWLEDGMENTS

We would like to thank the U S. Army Research
Office for their support in this research. The work has
also been supported by the U.S. Department of Defense.



36 PHONON RENORMALIZATION EFFECTS IN QUANTUM WELLS 9603

'S. Das Sarma, Phys. Rev. B 27, 2590 (1983). For a recent re-
view of polarons in two-dimensional systems, see U. Merkt,
M. Horst, and J. P. Kotthaus, Phys. Scr. T13, 272 (1986),
and references therein.

2D. A. Kleinman and R. C. Miller, Phys. Rev. B 32, 2266
(1985).

3S. Das Sarma and B. A. Mason, Phys. Rev. B 31, 5536 (1985).
4M. A. Brummell, R. J. Nicholas, M. A. Hopkins, J. J. Harris,

and C. T. Foxon, Phys. Rev. Lett. 58, 77 (1987).
5S. Das Sarma and B. A. Mason, Ann. Phys. (N.Y.) 163, 78

(1985).
T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437

(1982).
7F. Stern and S. Das Sarma, Phys. Rev. B 30, 840 (1984}.
8L. F. Lemmens, J. T. Devreese, and F. Brosens, Phys. Status

Solidi 82, 439 (1977).
S. Das Sarma, Phys. Rev. B 33, 5401 (1986); P. Maldague,

Surf. Sci. 73, 296 (1978).
' S. Das Sarma and B. A. Mason, Phys. Rev. B 31, 1177 (1985).
"W. Xiaoguang, F. M. Peeters, and J. T. Devreese, Phys.

Status Solidi B 133, 229 (1986).
' M. L. Glasser, J. Phys. C 10, L121 (1977).
~3A. Czachor, A. Holas, S. R. Sharma, and K. S. Singwi, Phys.

Rev. B 25, 2144 (1982).
'~F. Stern, Phys. Rev. Lett. 18, 546 (1967}.
~58. Vinter, Phys. Rev. B 13, 4447 (1976); S. Das Sarma, R. K.

Kalia, M. Nakayama, and J. J. Quinn, ibid 19, .6397 (1979).
' A. L. Fetter, Phys. Rev. B 10, 3739 (1974).

S. Das Sarma, Solid State Commun. 36, 357 (1980).


