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The ground bound state of hydrogenic impurity in a double quantum well consisting of alternate
layers of Ga,;_,Al, As and GaAs is investigated. The dependence of the binding energy on the im-
purity position in the barrier, on the barrier heights of the quantum well, and on the thickness of
the wells and the barrier is calculated. The results of the present calculation in the single well lim-
it agree with previous results and have much simpler formula expressions. The condition under
which the impurity and the electron are separated from each other in the ground state is given.

I. INTRODUCTION

Due to the progress in the epitaxial crystal-growth
techniques such as metalorganic chemical vapor deposi-
tion and molecular-beam epitaxy, studies of the hydro-
genic shallow impurity state in a quantum well consist-
ing of alternate layers of GaAs and Ga,_, Al,As have
recently attracted considerable attention.

Some authors! ~? calculated the impurity binding ener-
gy in a single quantum well with the infinite or finite po-
tential barrier height in the Ga,_, Al As regions as
functions of the GaAs well thickness and the position of
the impurity which is located in the GaAs well. But the
more important and realistic case of doping is the modu-
lation doping, the case of the impurity location inside
the Ga,_, Al As barrier region, in order to achieve a
high electron mobility parallel to the GaAs well layers.*
Tanaka et al.® and Greene and Bajaj® dealt with the case
of the modulation doping in the single-quantum-well
structure. The only study to date of the effects of finite-
width barriers was done by Chaudhuri,” who calculated
the binding energy in GaAs/Ga,_,Al ,As three-
quantum-well structure, which is valid for the thin- or
small-barrier-height superlattice, but the impurity was
located at the center in the middle GaAs well.

In this paper we propose a model of double quantum
well with the hydrogenic impurity inside the
Ga,_,Al,As barrier region in order to investigate the
tunneling effect in the modulation-doped quantum-well
structure.

In Sec. II we derive the formula expressions of the
binding energy in the Ga,_, Al As/GaAs double-
quantum-well structures, and give the formulas in the
single-quantum-well limit which agree with previous re-
sults but have much simpler expressions. In Sec. III the
results of the variational calculations are presented. In
Sec. IV a brief summary is presented.

II. BINDING-ENERGY FORMULAS
IN A DOUBLE QUANTUM WELL

In the framework of the effective-mass approximation,
the Hamiltonian for an electron is given by

36

H=—-V?>-2/r+Vi(z), (1)
where

Vo, 1z <b,a+b<|z| <+ w

= (2)
0, b<|z|<a+b.

The Hamiltonian is written in a dimensionless form so
that all energies are expressed in units of the effective
Rydberg R*=m*e*/2#%>~5.83 meV and all distances
are expressed in units of the effective Bohr radius
a*=#/m*e® (~ 98.7 A), where m* and € are the
electronic effective mass and the dielectric constant, re-
spectively, of GaAs. The small differences in the
effective masses and dielectric constants of GaAs and
Ga,;_,Al,As have been neglected. The position of
donor impurity is represented by (0,0,z;), and
r=[x24y24+(z —z;)*]"/2. The origin of the coordinate
system is chosen to be at the center of the central barrier
(Fig. 1). The barrier height V| is obtained from the
85% rule® of the band-gap discontinuity AE, for donor
impurity

Vo=0.85AE, , (3)
and
AE,=1.155X +0.35X %, @)

(Ref. 9) in eV.
We use the simple trial wave function for the ground
state of H in Eq. (1) as

lp:Nf(Z)g(xyy,Z,Z,—,}\) ’ (5)

where N is the normalization constant. f(z) is the
ground-state eigenfunction of H without the Coulomb
impurity potential

De %% a4b<z<+ o

A sin(kz)+B cos(kz), b<z<a—+b
f(z)=jcosh(k’z), |z | <b (6)
— A sin(kz)+B cos(kz), —a—b<z<—b
Dek? —w<z<—a—b,
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FIG. 1. Electron density distribution |(0,0,z)|? and f f | ¥ | *dx dy vs position along the axis normal to the interfaces. The
solid and dashed curves are for impurity ratio position, «=0.0 and 1.0, respectively, for [(0,0,z)|? The dotted and dot-dashed
curves are for a=0.0 and 1.0, respectively, for f f | ¥ |*dx dy. (a) and (b) are for equal well and barrier thicknesses a =L =1.0,

and (c) and (d) for a =L =0.5.
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where The variational function g (x,y,z,z;,A) is the hydrogenic
1]
k =(Ey)”? and k'=(Vy—Ey)'"? 7) eigenfunction containing the variational parameter A,
= = 0 .
g(x,y,z,z,»,k)=e_’/)‘ . 9

E, is the eigenenergy of an electron in the potential

given by Eq. (2). By matching ¢ and d¢//dz at the inter- The variational binding energy E, felt by an electron
faces z =b, a +b, the eigenenergy E, can be given by injected from the impurity is given by
the solution of the following equation:

E,=E,—min{y |H |¢) . (10)

[k2—k’?tanh(k’b )] tan(ka)—kk'[1+ tanh(k'b)]=0 .
The normalization constant N and the expectation
@) values of H are as follows:

N =(1m)"2(DYK (LK) +Ko(—A, —k')]4+0.5( 42+ B*)[K,(1,0)+Ks(—A,0)]
+0.5(A%2— B[, (A k)+Is(—A, —k)]+ AB[J5 (A, k) +Js(—A, —k)]+0.5[K;(X,0)+ K ,(—A,0)]
+0.25[K3(A k" )+ K3 (A, —k" )+ K4 ( =AMk )+ K (—A, —k)] 72, : (11

(Y| =V24+V(2) | ) =k>+1/A24+2aN¥(2D?[P (A k') +Ps(—A, —k')]+( A*+B2)[P,(A,0)+Ps(—A,0)]
—(A2—BH[S,(AKk)+S5(—A,k)]—2AB[R,(Ak)—Rs(—Ak)]
+P4(A,0)+P,(—1,0)
+0.5[Py(Ak" )+ Py(A, —k")+Py(—A k") +P,(—A, —k"]} , (12)

(p| —2/r | 9)=2aNH —DHQ,(Ak')—Q¢(—A, —k")]1—0.5(A*+ B[ Q,(X,0)—Q5(—A,0)]
+0.5(A2— B[ T, (A k)—Ts(—Ak)]4+ AB[M, (A, k)+Ms(—A, k)]
—0.25[2Q;(A,0)—2Q4(—A,0)+ Q3 (A k" )+ Q3(A, —k')—Q4(—A, k") —Q,(—A, —k")]} .
(13)

The integrals K,,, I,,, J,,, P,, Sy, R,,, @, T,,, and M, are defined in the Appendix. The subscript n denotes the region
of integration.

In Eq. (12) we put the expectations of the operators —V? and V(z) together and pick up the kinetic term of a free
electron, k2, in order to obtain a simple expression. In the single-quantum-well limit (b —0), the right-hand side of
Eq. (12) reduces to the following result:

(Y| =V24+V(2) | ¢)=k>+1/A%. (14)

Equation (14) is consistent with the results of previous authors”!® and has much simpler expression. [In fact, the
third and fourth terms in Eq. (10b) can be canceled by Eq. (10d) in Ref. 7.] Meanwhile, Egs. (11) and (13) reduce to
the following results, respectively:

N=Q/aA)""2(14+1/A*—e 22" 14a /A4 (1/A)a/A+1/A) cos(2ka)—(Ak /2A)(1+2a /A+2/A)sin(2ka) (15)
—[cos¥(ka)/(1+Ak")][14+2a /A+1/(14+Ak)IPV2,

(Y| —=2/r | ) =—aNA*{14+1/A—e ~22/"[14(1/A) cos(2ka) — (Ak /A) sin(2ka) —2 cos*(ka) /(1+Ak")]} ,  (16)

where
A=1+A%2. (17)

Here the results in Eqgs. (15)=(17) are just the same as the corresponding expressions obtained by previous authors.”°
It is easy to get electron density distribution at (0,0,z)

[4(0,0,z) | 2=N?| f(z) | *exp(—2|z —z; | /A), (18)

and total electron density distribution in the superlattice layers

J [ 1w1%dxdy=N?|f(2)|}[0.50+ A |z —z; | exp(—2 |z —z;/M)] . (19)
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III. RESULTS

The ground states of the above Hamiltonian are found
by using the general variational method. Then the bind-
ing energy E, is calculated through Egs. (11)—(13).

The results are displayed in the figures. The barrier
thickness is L =2b. The parameter a=z, /b is the ratio
position of the modulated impurity which is doped in-
side the positive barrier region, 0 <z; <b.

In the case of the modulation doping, electrons and
impurities are separated from each other, so a high elec-
tron mobility in the superlattice layers can be achieved.*
In Figs. 1(a)-1(d), the dependence of the separation of
electron and impurity on the well-barrier size and the
composition of alloy in the ground state are shown. Fig-
ures 1(a)—1(d) show the electron density distribution for
L =a=1.0 and 0.5, x =0.1 and 0.3, and a=0 and 1.
The solid and dashed curves are for the electron density
distribution | ¥(0,0,z)| 2. The dotted and dot-dashed
curves are for the total electron density distribution
f f | ¢ | %dx dy in superlattice layers. The electron den-
sity distribution is mainly localized to the well region for
L =a =1.0 [Figs. 1(a) and 1(b)], especially for the high
alloy composition, x =0.3, so that the impurity and the
electron are separated from each other in the ground
state. But if the well-barrier size goes to a smaller value,
for example, L =a =0.5 [Figs. 1(c) and 1(d)], the impur-
ity and the electron are not separated. Figures 1(a) and
1(b) show that the electron are not spread to the next-
nearest-neighbor wells, so that our double-well model
with parameters of L =a =1.0 is valid. From these
figures one can judge at which condition the electron is
separated from the impurity in the ground state.

Figure 2 shows the binding energy E, as a function of
the well thickness a, with the barrier thickness L, and
the ratio doping position a as parameters for two barrier
heights corresponding to aluminum composition x =0. 1
and 0.3. The curves with L =0 corresponding to the
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case of a single well limit coincide with those obtained
by Chaudhuri.” In the figure one can find that the bind-
ing energy, E,=E,—min{¢|H |¢) has a maximum.
The on-edge donor increases the binding energy and
causes the maximum of the binding energy to shift to the
large well thickness a. With the increase in the donor
composition x, the maximum of the binding energy goes
to the small well size. When x =0.3, L =2.0, and
a<0.5, the maximum of E, almost does not appear.
The situation looks like the one of the infinite-barrier-
height model,! and gives the condition in which the
infinite-barrier-height model is valid.

Figure 3 shows the binding energy E, as a function of
the barrier thickness L, with the well size a and the ratio
doping position a as parameters, and the donor compo-
sition is x =0.3. The on-edge donor . causes the
minimum of the binding energy.

Figure 4 shows the binding energy E, as a function of
the ratio position a of the modulated impurity. Figure 5
presents the binding energy E, as a function of the well
thickness when the GaAs and Ga,_,Al As layer
thicknesses are equal for alloy compositions x =0.1 and
0.4 of Ga,_,Al, As and ratio positions a=0 and 1 of the
impurity.

IV. SUMMARY

We derive the formula expressions of binding energy
in a double-quantum-well structure, and obtain a simpler
formula for the single-quantum-well limit. The varia-
tional calculations for the ground binding energy have
been done. The more distant from the edge of the bar-
rier the modulation-doping impurity is, the lower the
binding energy is.

The electron density distribution | ¥(0,0,z) | 2 and the
quantity ff | ¥ | %dx dy are shown for different well-
barrier parameters and impurity positions. The situation
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FIG. 2. Binding energy for the hydrogenic-donor ground state as a function of the GaAs layer thickness a for different
Ga,_, Al, As layer thicknesses L and different impurity ratio positions, a=2z; /L. The solid, dashed, and dot-dashed curves are for
barrier thicknesses L =2.0, 1.0, and 0.0, respectively. (a) and (b) are for the alloy composition x =0.1 and 0.3 of Ga; _,Al, As, re-

spectively.



Barrier Thickness L

FIG. 3. Binding ground energy as functions of the
Ga, _,Al, As layer thickness L for different well widths a and
different impurity ratio positions a. The solid and dashed
curves are for the impurity on-center and on-edge, respectively.

which is dealt with in this paper is valid for the thin- or
small-barrier-height superlattices, and the impurity is lo-
cated in the Ga,_, Al As barrier region.
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APPENDIX

The coefficients 4, B, and D in the eigenfunction f(z)
are obtained from the matching conditions at the inter-
faces as

A = sin(kb) cosh(k'b)+ (k' /k) cos(kb)sinh(k'b) ,
B =—(k'/k)sin(kb)sinh(k'b)+cos(kb)cosh(k’'b) ,
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D ={ A sin[k(a +b)]+B cos[k (a +b)]} exp[k'(a +b)] .

The integrals involved in the normalization constant
and the expectation value of the Hamiltonian are defined
as the following:

n 1 2 3 4 5 6 7

z, — o0 —a—-b —b z

K, (Ak')=[0.25 2 /(1+1k)[ —z +2z; +0.5A+0.5A /(1 +Ak") ] exp[2(z —z;) /A + 2k 'z] | ;:“ ,

In(k,k):(0.25k2/A)[(z —z;—A/A)cos(2kz)+Ak (z —z; —0.5A—A/A)sin(2kz) Y exp[2(z —z;) /A] | f’"’ A

A=1+A%2,

J, (A, k)=I,(cos— sin, sin— —cos) ,

P, (A k")=0.25(z —z,) exp[2(z —z,) /A +2k'z] | "+,

0, (A k") =[0.542/(1+Ak") exp[2(z —z,) /A +2k'z] | "+,

S, (A,k)=0.25(z —z;) cos(2kz) exp[2(z —z,) /A1 [ [+,

R, (A k)=S,(cos— sin) ,

T, (A k)=(0.5A2/A)[ cos(2kz)+ Ak sin(2kz)] exp[2(z —z,) /A | 2"+,

M, (A, k)=T,(cos—sin, sin— —cos) .
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