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The ground bound state of hydrogenic impurity in a double quantum well consisting of alternate
layers of Ga& „Al As and GaAs is investigated. The dependence of the binding energy on the im-

purity position in the barrier, on the barrier heights of the quantum well, and on the thickness of
the wells and the barrier is calculated. The results of the present calculation in the single well lim-

it agree with previous results and have much simpler formula expressions. The condition under
which the impurity and the electron are separated from each other in the ground state is given.

I. INTRODUCTiON

Due to the progress in the epitaxial crystal-growth
techniques such as metalorganic chemical vapor deposi-
tion and molecular-beam epitaxy, studies of the hydro-
genic shallow impurity state in a quantum well consist-
ing of alternate layers of GaAs and Ga, Al„As have
recently attracted considerable attention.

Some authors' ' calculated the impurity binding ener-

gy in a single quantum well with the infinite or finite po-
tential barrier height in the Ga

&
Al As regions as

functions of the GaAs well thickness and the position of
the impurity which is located in the GaAs well. But the
more important and realistic case of doping is the modu-
lation doping, the case of the impurity 1ocation inside
the Ga& Al As barrier region, in order to achieve a
high electron mobility paralle1 to the GaAs well layers.
Tanaka et aI. and Greene and Bajaj dealt with the case
of the modulation doping in the single-quantum-well
structure. The only study to date of the effects of finite-
width barriers was done by Chaudhuri, who calculated
the binding energy in GaAs/Ga, A1 As three-
quantum-well structure, which is valid for the thin- or
sma11-barrier-height superlattice, but the impurity was
located at the center in the middle GaAs we11.

In this paper we propose a model of double quantum
well with the hydrogenic impurity inside the
Gai Al As barrier region in order to investigate the
tunneling effect in the modulation-doped quantum-well
structure.

In Sec. II we derive the formula expressions of the
binding energy in the Ga

&
A1 As/GaAs double-

quantum-well structures, and give the formulas in the
single-quantum-well limit which agree with previous re-
sults but have much simpler expressions. In Sec. III the
results of the variational calculations are presented. In
Sec. IV a brief summary is presented.

II. BINDING-ENERGY FORMULAS
IN A DOUBLE QUANTUM WELL

In the framework of the effective-mass approximation,
the Hamiltonian for an electron is given by

H = —V 2/r —+ V(z),

where

Vo, ~z
~

&b, a+b& ~z
~

&+~
V(z) = ~

0, b&~z~ &a+b. (2)

The Hamiltonian is written in a dimensionless form so
that all energies are expressed in units of the effective
Rydberg R*=m "e /2A' e —5.83 meV and all distances
are expressed in units of the effective Bohr radius
a'=A' e/m'e ( —98.7 A), where m" and e are the
electronic effective mass and the dielectric constant, re-
spectively, of GaAs. The small di6'erences in the
effective masses and dielectric constants of GaAs and
Ga, Al As have been neglected. The position of
donor impurity is represented by (0,0,z, ), and
r =[x +y +(z —z, ) ]' . The origin of the coordinate
system is chosen to be at the center of the central barrier
(Fig. l). The barrier height Vo is obtained from the
85% rule of the band-gap discontinuity AE for donor
impurity

Vo ——0.85~E (3)

LmkEg 1 155L +0 35X (4)

(Ref. 9) in eV.
%'e use the simple trial wave function for the ground

state of H in Eq. (l) as

Q=Nf (z)g (x,y, z, z, , A, ),
where X is the normalization constant. f (z) is the
ground-state eigenfunction of 0 without the Coulomb
impurity potential

De, 9+6 (z++~
A sin(kz)+8 cos(kz), b &z &a+b

f (z) = cosh(k'z),
i
z

i & b
—A sin(kz)+8 cos(kz), —a b&z & b- —
De, —oo ~z& —a —b,k'z
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l
and f f [

zP I dx dy vs position along the axis normal to the interfaces. The
solid and dashed curves are for impurity ratio position, a=0.0 and 1.0, respectively, for

l
1((0,0,z)

l
. The dotted and dot-dashed

curves are for a=0.0 and 1.0, respectively, for f f l
t(i

l

'dx dy. (a) and (b) are for equal well and barrier thicknesses a =I =1.0,
and (c) and (d) for a =L =0.5.
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where

k =(Eo)' and k'=( Vo E—o)'~2

Eo is the eigenenergy of an electron in the potential
given by Eq. (2). By matching it and dgldz at the inter-
faces z =b, a+b, the eigenenergy Eo can be given by
the solution of the following equation:

[k —k' tanh(k'b)]tan(ka) —kk'[1+ tanh(k'b)]=0 .
Eb =Eo —min( g ~

H
~

1(j ) . (10)

The normalization constant X and the expectation
values of H are as follows:

The variational function g(x,y, z, z, , X) is the hydrogenic
eigenfunction containing the variational parameter k,

g (x,y, z, z, , A, ) =e

The variational binding energy EI, felt by an electron
injected from the impurity is given by

N =(-,'ir)'"[D'[K, (l, , k')+K, ( —A. , —k')]+0.5(A '+8')[K, (A, , O)+K, ( —X,O)]

+0.5( A' —8')[I,(A., k)+I, ( —A, , —k)]+ AB [J,(A, , k)+J,{ k, —k )]+0.—S[K,(A, , O)+K, ( —A, , O)]

+0.25[K3(k, k')+K3(A, , —k')+K~( —A, , k')+K4( —A, , —k')])

(Q
~

—7 + V(z)
~
Q) =k +1/A, +2vrN [2D [P)(l,, k')+P6( —A, , —k')]+( A +8 )[P2(A, , O)+P5( —X, O)]

—( 2 2 8~)[ S~(—A, , k)+S~( A, , k)] —2AB [R—z(k, , k) —R5( —A, , k)]

+P, (X,O)+P, ( —X, O)

+0.5[P,(l, ,k')+P, (k, k')+P, (—A, k')+—P,, ( —A, , —k')]I,

(g
~

2/r
~
P) =2irN~[ —D [Q, (A, , k') —Q ( —A, , —k')] —0.5(A +8 )[Q (X,O) —Q, ( —X,O)]

+0.5(W' —8')[T,(z, k) —T, ( —k, k)]+ AB [M, (A, , k)+M, ( —&, k)]

—0.25[2Q3(A, , O) —2Q4( —A, , O)+Q3(k. , k')+. Q3(k, —k') —Q4( —A. , k') —Q4( —A. , —k')]] .

(13)

The integrals K„,I„,J„,P„,S„,R„, Q„, T„, and M„are defined in the Appendix. The subscript n denotes the region
of integration.

In Eq. (12) we put the expectations of the operators —V and V(z) together and pick up the kinetic term of a free
electron, k, in order to obtain a simple expression. In the single-quantum-well limit (6~0), the right-hand side of
Eq. (12) reduces to the following result:

( q (

—V'+ V(z)
[ @)=k '+ I /X' . (14)

Equation (14) is consistent with the results of previous authors ' and has much simpler expression. [In fact, the

third and fourth terms in Eq. (10b) can be canceled by Eq. (10d) in Ref. 7.] Meanwhile, Eqs. (11) and (13) reduce to
the following results, respectively:

N =(2/ark. )' (1+1/b, —e ' [1+a/A, +(1/b, )(a/k+1/b, ) cos(2ka) —(Ak/2b. )(1+2a/A+2/b, ) sin(2ka)

—[ cos (ka)/(1+Ak')][1+2a/2+ 1/(1+Ak')] I
)'

(lt
~

—2/r
~
p) = AN A. [1+1/6—e —'~ [1+(1/6) cos(2ka) —(kk/b, ) sin(2ka) —2cos (ka)/(1+Ak')]I, (16)

where

b, =1+k'k'
Here the results in Eqs. (15)—(17) are just the same as the corresponding expressions obtained by previous authors. ''

It is easy to get electron density distribution at (0,0,z)

I
«0*0 z)

I

'=N'
I «z)

I
'exp( —2

I
z —z; I

/~»
and total electron density distribution in the superlattice layers

f f ~f~ dxdy=N
~
f(z)

~

[O. SA, +A, ~z —z,
~

exp( —2~z —z, /A, )].
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FIG. 3. Binding ground energy as functions of the
Ga& „Al As layer thickness L for different well widths a and
different impurity ratio positions a. The solid and dashed
curves are for the impurity on-center and on-edge, respectively.

FIG. 4. Binding ground energy as functions of impurity ra-
tio position for different well-barrier sizes. The solid and
dashed curves are for the well thicknesses a =1.0 and 0.5, re-
spectively.

which is dealt with in this paper is valid for the thin- or
small-barrier-height superlattices, and the impurity is lo-
cated in the Ga& Al As barrier region.
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APPENDIX

The coefficients A, 8, and D in the eigenfunction f (z)
are obtained from the matching conditions at the inter-
faces as

3 = sin(kb) cosh(k'b)+(k'/k) cos(kb)sinh(k'b),

8 = —(k'lk) sin(kb) sinh(k'b)+cos(kb) cosh(k'b),

D =
I 3 sin[k (a +b)]+A cos[k (a +b)]] exp[k'(a +b)] .

The integrals involved in the normalization constant
and the expectation value of the Hamiltonian are defined
as the following:

3 4 5 6

b a+b

K„(k,k') = [0.25k, /(1+ kk')][ —z +z;+0.5K+0.5A /(1+ Ak')] exp[2(z —z; )/X+2k'z] ~,"+',

I„(k,, k)=(0.25K /6)[(z —z, Rib, ) cos(2—kz)+t(k (z —z, —0. 5t(.—A. /5) sin(2kz)] exp[2(z —z, )/k] ~ ."+',

5=1-pX k

J„(k., k)=I„(cos~ sin, sin~ —cos),

P„(l., k') =0.25(z —z, ) exp[2(z —z, )/k+2k'z] ~,
"

Q„(k,k')=[0. 5X /(1+kk') ] exp[2(z —z, )/A+2k'z] ~,"+',

S„(t(,, k) =0.25(z —z, ) cos(2kz) exp[2(z —z, )/iL] ~,
"

R„,(k, k) =-5„( cos~ sin),

T„(A., k) =(0.5X /5)[ cos(2kz)+ Ak sin(2kz)] exp[2(z —z, )/A, ] ~,
"

M„(k,k)=T„( cos~sin, sin~ —cos) .
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