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Theoretical paramagnetic form factors for hcp transition metals
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The paramagnetic form factor of a metal gives detailed information about the response of the
metal to an external static magnetic field. Measurements of this quantity by elastic neutron
scattering have been carried out for many paramagnetic transition metals in the past decades.
Theoretical understanding of these results has been slow to develop because the orbital contribu-
tion of the band electrons to the magnetic moment is difficult to calculate. Recently, we have per-
formed a series of rather accurate form-factor calculations for cubic transition metals and in this
paper the same considerations are extended to hexagonal-closed-packed systems. Results based on
local-density bands have been obtained for Sc, Lu, Zr, and Y, and there is reasonable overall
agreement between theory and experiments.

I. INTRODUCTION

When a uniform static magnetic field is applied to a
paramagnetic metal, it responds by forming a spatial-
dependent-induced magnetic moment whose Fourier
transform, the form factor, can be measured by elastic
neutron scattering. The moment distribution, which
consists of an orbital and a spin part, is determined by
the energy levels and wave functions of the electrons in
the metal, mostly the itinerant electrons. The spin con-
tribution of the band electrons is determined by the
charge density of the electrons at the Fermi level, and
has been calculated for most transition metals. The or-
bital contribution proves to be difficult to calculate, and
for many years it was approximated by using the atomic
model. Recently we have developed a quite accurate
method to calculate the orbital form factor of cubic
transition metals starting from ab initio energy bands
and wave functions. ' We have found that, aside from
Cr, the orbital form factor of the metal diA'ers

significantly from that of the atom, and the calculated
form factors are in reasonable agreement with experi-
mental data for many metals. In this paper we report
the extension of this work to hexagonal-closed-packed
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systems.
As in the cubic case we calculate the form factor by

relating it to the wave-vector-dependent susceptibility
function of the band electrons. The hcp structure has
two atoms in a unit cell, and this introduces complica-
tions both in the relation between the form factor and
the susceptibility function and in the calculation of the
matrix elements in the susceptibility expression. We will
concentrate on these new features in this paper and refer
to our earlier paper' for that part of the formulation
which is common to both cubic and hcp systems.

II. THEORY

The general expression for the wave-vector-dependent
susceptibility for hexagonal systems is, of course, the
same as for cubic systems. The expression for the sus-
ceptibility for itinerant electron systems was derived by
Oh et al. The derivation was based on linear-response
theory. For a paramagnet in a uniform static magnetic
field 8, the itinerant electron contribution to the total
susceptibility is composed of spin, 7„and orbital, +0,
terms:
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(4)

where G is a reciprocal-lattice vector, V =
~

V ~, pz is
the Bohr magneton, No is Avogadro's number, and 0;, is
the spin enhancement factor. The wave vector q is an
infinitesimal vector parallel to G. The electronic energy

E(n, k) is assumed to be in units of rydbergs, and
denotes a unit vector. The matrix elements must be

evaluated over the unit cell. As was argued in the case
of cubic systems, the expression for the orbital suscepti-

36 9521 1987 The American Physical Society



9522 S. H. LIU, A. J. LIU, AND J. F. COOKE 36

bility can be simplified considerably by neglecting all
terms which contain the dipole matrix element
(nk

~

V
~

n'k') as a factor. This follows from the same
argument used in the cubic case; i.e., most of the contri-
bution to the orbital term comes from states near the
Fermi surface, which for transition metals are predom-
inantly d in character, and the dipole matrix element be-
tween such states is very small. This approximation has
been verified by direct numerical calculation. With this
approximation

Si f.k f.k—
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The first step in evaluating the susceptibility is to
determine the band structure. At this point the pro-
cedure begins to deviate from that used in the cubic
case. The band structure was generated from a self-
consistent nonrelativistic Koringa-Kohn-Rostoker
(KKR) method using the muffin-tin approximation. The
Kohn-Sham approximation for the exchange-correlation
potential was used. The hcp structure has two atoms in
a unit cell. We choose the unit cell such that the atoms
are situated at the origin and at 5=(a/&3)x+(c/2)z,
where a and c are relevant lattice parameters. Inside the
muffin tin the wave functions are expanded in terms of
symmetry orbitals, P (r, E), where E is the state energy
and p is a composite symmetry index for conventional
angular momentum indices (l, m).

~

nk) = g (i) "a„'„(k)P„(r—5,E(nk)), (6)
Prj

III. COMPUTATIONAL PROCEDURE

The general matrix element given in Eq. (8) is evalu-
ated by using a Wigner-Seitz sphere approximation.
That is, the unit cell integrals are replaced by an integra-
tion over spheres located at each of the two atomic posi-
tions in the cell. The volume of each sphere is chosen to
be equal to half the unit cell volume. The wave function
between the muffin-tin and Wigner-Seitz sphere radii is
obtained by extrapolating the radial function R, (r, E) in

Eq. (7). The contribution from the muffin-tin spheres is
exact. The contribution from outside the muffin-tin
sphere is approximate but also relatively small. At this
point we also drop the energy dependence of the radial
functions. The spin susceptibility given in Eq. (3) de-
pends only on the wave functions evaluated at the Fermi
energy. Since the predominant contribution to the orbit-
al susceptibility comes from states near the Fermi energy
and energy dependence of the radial functions is intrinsi-
cally weak, it appears, to a good approximation, that the
orbital susceptibility can also be calculated using radial
functions evaluated at the Fermi energy. These approxi-
mations do not alter significantly the numerical accuracy
of the result but they do lead to two important numeri-
cal simplifications. First, it is clear from the result in

Eq. (8) that all of the band and wave-vector dependence
of the matrix elements comes from the expansion
coefficients and that the D„can be factored out of any
Brillouin zone sum. Second, the Wigner-Seitz approxi-
mation leads to a representation for D„which is
straightforward to evaluate.

There are three different integrals which must be
determined. Since the wave functions have been expand-
ed in terms of real spherical harmonics, we can use the
same expansions derived from the cubic case. For com-
pleteness the outline of the derivation is reproduced in
the Appendix. The general results are

where j is a site index and 5- locates the atomic sites in

the unit cell (either 0 or 5). The Ia~„(k)I are relevant
expansion coefficients and are complex. As in the cubic
case, the symmetry orbitals are chosen to be products of
real spherical harmonics and radial functions.
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P„(r,E)=R&(r,E)y„(r) . (7) X W~( l„,1„,L:G)yl M ( Cx ),
A site-diagonal approximation is used to evaluate the

matrix elements which appear in the expression for the
susceptibility. That is, products of radial functions lo-
cated on different sites are neglected. This is a good ap-
proximation for d-symmetry terms. This approximation
is not as good for s- and p-symmetry terms but their con-
tribution is relatively small. The matrix elements can
then be written in the form

(nk
~

6
~

n'k) = g a '„„(k)a„',(k)D„,(6),
p~»

J

D„,(6)= j P„(r,E(nk))6$, (r, E(n'k'))d'r,

and a ~„=(a~„)*. Note that D„, depends on both the
state energies as well as on symmetry.

D (
' ')=4 g( —1)"

L,M

X A (l„,l,L:G)yl M(Cx), (12)

g, r=a, r, s =1, . . . , 12

g, r=o.a, r+5, s =13, . . . , 24

(13)

(14)

where o. is the inversion operation and 6 locates the

where the various terms are defined in the Appendix.
Let Ig, I represent the 24 operations of the hcp space

group. These are related to 12 simple rotation-reAection
operations ta, I as follows:
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Y, (G) =X)(G)+X)(—G)e

X)(G)= g'P„k'(G)5(E (n k) Ef—),
n, k

(15)

where E is the Fermi energy, g'k denotes a sum only
over the irreducible Brillouin zone, and

12 —la —'G.r
P k (G) X f P k(r)e 0 k(r)d

s =1
(17)

atom not at the origin. The computer time and core re-
quirements can be reduced significantly by building in
the symmetry where possible. For example, the full Bril-
louin zone sums can be reduced to irreducible zone
sums. In addition, it turns out that dividing the space
group operations into the two parts given above leads
directly to a result for the form factor which is easier to
treat numerically.

Then from Eqs. (8), (12), and (15) and the space group
operations given in Eqs. (13) and (14), the spin contribu-
tion to the susceptibility becomes
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Substitution of results given in Eqs. (A8), (A12), and
(A21) yields

Substitution of the result given in Eq. (8) yields
X(1—e ' '

)B (G)) (29)
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The orbital contribution can be written in a form simi-
lar to the spin contribution given in Eq. (15):
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In order to calculate the orbital contribution some fur-
ther manipulation of the result given in Eq. (5) is re-
quired. The first step is to separate the inter- and intra-
band terms. Equation (5) becomes

X.(G) =I;„„,(G)+X,„„,(G),
where

(24)
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~

n'k)—
s =1

Notice that since A~~ (G) does not contain terms for L„
even, and in particular for L„=O, the orbital contribu-
tion, which has 1/G as a factor [see Eq (5)], re.mains
finite as G~0.

IV. NUMERICAL RESULTS

The results given in Eqs. (18), (25), and (26) for the
spin and orbital susceptibility are straightforward to
evaluate. Computer programs have been developed to
evaluate accurately the band structure, Wigner-Seitz
sphere integrals, and spherical harmonic integrals. The
tetrahedron method was used to evaluate the irreducible
zone sums. We have included terms of s, p, and d sym-
metry (nine terms altogether), and the six lowest energy
bands.

The itinerant electron contribution to the susceptibili-
ty was calculated for Sc, Lu, Zr, and Y. These are all of
the hcp paramagnets for which experimental form factor
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TABLE I. Calculated values of the spin (a„P, ), orbit (P, ), and total (+=a,P, +P, ) susceptibility.
All values are in 10 emu/mol.

000
100
002
101
102
110
202
103
200
201
300
004
400
203

301.048
86.700
61.565
19.516
19.452
15 ~ 545
27. 185
18.330
17.664
28.092

—0.821
31.436

—8.151
8.309

Sc
0! =2.2

13.661
11.893
12.025
12.051
10.297
8.781
5.088
8.299
6.685
6.290
1.449
4.844
0.157
3.317

314.709
98.593
73.590
31.567
29.749
24.326
32.273
26.629
24.349
34.382
0.628

36.280
—7.994
11.626

105.790
23.689
13.426

—2.307
—1.500
—0.555

6.959
1.299
2.543
5.523

—2.253
8.010

—0.838
0.403

Lu
a, =1.0

Y.

9.640
3.579
3.034
3.040
1.680
1.158
0.164
1.436
0.245
0.436

—0.807
—0.506
—0.256
—0.331

115.430
27.268
16.460
0.733
0.180
0.603
7.123
2.735
2.788
5.959

—3.060
7.504

—1.094
0.072

data exist. The total susceptibility, Xr(G), determined
experimentally is a combination of the itinerant electron
contribution discussed above and the diamagnetic contri-
bution from the core electrons, Xd';,"(G),

X,(G) =X(G)+X,";,"(G),
where

(34)

Xd;,"'(G)= —0.7923 K 10 (r )fd;, (G) emu/mol, (35)

and r is in units of the Bohr radius. The diamagnetic
form factor fd, , is given by Stassis. In many cases, ex-
perimentalists give Xr(G) directly by subtracting out the
core diamagnetism from their data.

Numerical results for the wave-vector-dependent sus-
ceptibility in units of emu/mol are given in Table I for
Sc and Lu and in Table II for Zr and Y. Since the spin
enhancement factor a, has not been calculated for these
materials, values were estimated by requiring that the
calculated bulk susceptibility Xr(0) fall within the range
of experimental data. No attempt was made to deter-

4 «IF~(G)Xr(G) IR (G)—
IF+«)

I

' (36)

where F~(G) is the nuclear structure factor

F~(G)=b(1+e' ' ), (37)

mine a best fit to the form factor data. As can be seen
from Tables I and II, the spin term dominates in all
cases except Zr. As was found for the cubic case, the
orbital term falls off more slowly and, in general, exhib-
its less anisotropy than the spin term. This appears to
be a universal feature of both cubic and hcp paramag-
nets. The Wigner-Seitz sphere approximation may
smooth out inherent anisotropy but there is no reason to
believe that it would aftect one term more than the oth-
er.

The induced magnetic form factor is more complicat-
ed for hcp than for cubic systems. The form factor is
defined in terms of the neutron spin-flip ratio R (G),

TABLE II. Calculated values of the spin (a,P, ), orbit (P, ), and total (+=a,L, +7, ) susceptibility.
All values are in 10 emu/mol.

000
100
002
101
102
110
202
103
200
201
300
004
400
203

54.133
11.243
6.873
3.853

—0.246
—0.010

2.562
1.411
1.720
1.979

—0.732
3.081
0.442
0.431

Zl
a, =1.14

I.
65.810
33.051
23.904
22.444
11.424
10.178
2.604
5.443
5.555
4.050
0.703
3.346
0.529
1.289

119.943
44.294
30.777
26.297
11.178
10.168
5.166
6.854
7.275
6.029

—0.029
6.427
0.971
1.720

184.969
41.709
23.926

—3.987
—2.224

1.663
14.484
4.302
8.416

11.388
—4. 127

16.481
—1.602

1.140

Y
cx = 1.52

5.517
3.892
4.172
3.572
3.053
1.940
0.294
2.368
1.072
0.893

—0.783
0.091

—0.322
—0.451

190.486
45.601
28.098

—0.415
0.829
3.603

14.778
6.670
9.488

12.281
—4.910
16.572

—1.924
0.689
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and b is the nuclear scattering amplitude. Then the
form factor, normalized to XT(0) at G=O, is given by

where

1+cos G 5
(38)

XT(G) =X'T(G)+iX'T'(G) . (39)

The results given in Tables I and II are reproduced in
terms of conventional form factor plots (normalized to
unity at G=O) in Figs. 1 —4. Experimental results are
given where available. The core diamagnetic term
has been subtracted from the experimental data so that
the comparison in Figs. 1 —4 is for the itinerant electron
contribution alone. As was found in the cubic case, the
overall agreement is reasonable but not spectacular.

Calculations of the spin contribution from band struc-
ture have been carried out before. The results given in
this paper are the first to include the itinerant electron
orbital term for hcp structures. In previous work, the
orbital contribution was taken from atomic theory. A
comparison of the orbital part of the normalized form
factor for Zr calculated from atomic and itinerant mod-
els is given in Fig. 5. These results are typical and indi-
cate that the itinerant result falls off somewhat faster
than the atomic result and is not smooth, but exhibits
anisotropy.

V. DISCUSSION AND CONCLUSION

As in the previous case, comparison between theory
and experiments for hcp metals is subject to the same
uncertainties, namely, the spin enhancement factor a„
the considerable scatter of bulk susceptibility data, and
the absolute scale of the form factor data. Unlike the
cubic systems, there exists no independent estimate of
the spin enhancement factor for hcp transition metals.

0.8—

V)

g 06-
Q)

0.4—

0.2—

x THEORY
z Expt.

0.0— x
X

—0.2
0.0

I

0.2
I

0.4

sin(e)/X

0.6
I

0.8

FIG. 2. Form factor for lutetium. Experimental data from
Stassis et al. (Ref. 6).

We have determined e, by requiring that the bulk sus-
ceptibility falls within the range of experimental results.
Different choices of the enhancement factor would affect
both the absolute value and the shape of the form factor.
A possible reason for the scatter of the bulk susceptibili-
ty data is the amount of magnetic impurities in the sam-
ples.

While we have tabulated our best estimate of the abso-
lute values of the form factors, we continue to adhere to
the convention by comparing theoretical and experimen-
tal results in terms of normalized form factors. Experi-
mental data in absolute units are often unavailable.

There is one feature in the Zr data worth mentioning',
namely that the bulk susceptibility shows considerable

0.8—

V)

g 0.6-

0.4-
nf

0.2-

x THEORY
z Expt.

0.8—

U)

g 0.6—

0.4-
5$

0.2-

x THEORY
T Expt.

00- 0.0—

—0.2
0.0 0.2 0.4

sin(e)/X

I

0.6
I

0.8
—0.2

0.0
I

0.2 0.4

sin(9)/X

I

0.6
I

0.8

FICx. 1. Form factor for scandium. Experimental data from
Koehler et al. (Ref. 5).

FIG. 3. Form factor for zirconium. Experimental data from
Stassis et al. (Ref. 7).
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0.6—
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0.4-
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0

0.2—

—0.2
0.0

I

0.2
I

0.4
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I

0.6
I

0.8
0.0

0.0
I

0.1
I

0.2

sin(e)/X

I

0.3
I

0.4

FIG. 4. Form factor for yttrium. Experimental data from
Moon et al. (Ref. 8).

FICz. 5. Comparison of orbital part of the form factor calcu-
lated from itinerant and atomic theory for zirconium.

anisotropy depending on whether the field is applied
parallel or perpendicular to the c axis of the crystal.
On the other hand the form factor data show no such
anisotropy. The theoretical results are also insensitive to
the field direction. Thus, whatever causes the anisotropy
in the bulk susceptibility must be a uniform magnetiza-
tion. This could be the Landau diamagnetic contribu-
tion, but we have no way to confirm this speculation.
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ry( (r),

where m =1,—1,0 for o. =x,y, z, respectively,

(A2)

APPENDIX

The derivation of expressions for the unit cell integrals
necessary for calculating the static susceptibility is out-
lined in this appendix. There are three integrals which
must be evaluated, namely D(r V&), D(e ' 'V' ), and

I

1/2

and

y( (r)y, (r)= g C( .(. .yL M(r),
L, M

yLM ry( ryt'. ~ r dr,

(A3)

(A4)

4~
V R, (r)y& (r)= d l

I( )rrf C 1, ;I, yI 1,+M( )r1+1,M
dr r M

d tt+1 I —1,M+ + Ri(r) 2 Ci,
M

where m =1,—1,0 for a=x,y, z, respectively.
Then with

e ' '=4m g (i ) J'~(Gr)yL M(R)yL M(r),
L, M

P, (r) = rR, (r),

(A6)

(A7)

I

that

D„(r V&) =[B+,T„P(+)+B„T„~(—)],
1/2

T P(+) ( 1) P

3

(A8)

where j~(Gr) is a spherical Bessel function, it follows

+1,M ~ +1,M
1,m;l, m 1, m&, l, m

M
(A9)
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"wsg+ rP r
0 dr

I.+&
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r v

Rws d I
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(A10)

(A11)

d
X

I.+1

W+(l„,l,L:G)= f PJ (rj)L(Gr)
r

P, (r)dr,

(A14)

D„,(e ' 'V )= g [Kt . ) (+,a)W+(1„,1„L:G)
LM p' p

+~I,M
( )

X W (l„,l,L:G)jyl M(G),

Rws
W (l„,l„L:G)=f P, (r)j (Gr)

d
X +—Pi (r)dr,

dr r
(A15)

(+,&)=(—1) " ' " 4~
{I —1 +I +1)/2

1/2
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L, M

Xct ';I, yLM(Cs) (A16)
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M g 9 P V
' cz' v v

(A13)
Rws

P, (.)J, (Gr)P, , (r)dr .
0
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