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Gap solitons in nonlinear periodic structures
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In a medium with a dielectric constant periodic in one spatial direction, there are gaps in the
dispersion relation of electromagnetic waves which propagate in the structure. If the index of refrac-
tion also contains a term proportional to the local-field intensity, we show that for frequencies within

the gap, there exist soliton solutions to the nonlinear wave equation of the medium. This is demon-

strated by analytic methods; the results agree with conclusions reached earlier, in numerical studies
of power-dependent transmission through a finite superlattice, with a nonlinear element in each unit

cell ~

I. INTRODUCTION

A superlattice may be viewed, from the perspective of
an electromagnetic wave which propagates within it, as a
structure in which the dielectric constant exhibits a
periodic variation with the coordinate in a direction nor-
mal to the interfaces. When an electromagnetic wave
propagates in this direction, its dispersion relation is
modified by the periodicity. Most particularly, gaps in
the dispersion relation open at the various special points
in the Brillouin zone, in a manner well known from the
theory of wave propagation in periodic structures.

Recently Chen and one of us calculated the transmis-
sivity of a finite superlattice, illuminated by radiation
which propagates normal to the interfaces, and with a fre-
quency which lies within a forbidden gap. ' Interest was
focused on the nonlinear optical response of the structure,
when one film in each unit cell has a dielectric constant
whose value depends on the local intensity of the optical
wave. Dramatic transmission resonances were found at
rather modest input power, with the transmissivity driven
to a value of unity at the peak. The resonant peak had a
skewed shape familiar from the theory of optical bistabili-
ty, so such samples are predicted to exhibit hysteretic be-
havior, with switching from a state of low to high
transmissivity as one sweeps through resonance by in-
creasing the incident power. It was argued that for fre-
quencies in the gap, soliton solutions to the nonlinear
wave equation of the structure exist, and the resonance
has its origin in soliton-mediated self-induced transparen-
cy.

These conclusions were based on numerical calculations
carried out for a model superlattice. The purpose of the
present paper is to explore the nonlinear wave equations
for such structures by analytic methods, and we demon-
strate that solitons with properties identical to those in
Ref. 1 emerge from the analysis, under the conditions de-
scribed below.

The present analysis is based on a model introduced in

II. THE BASIC EQUATIONS

We consider propagation of plane electromagnetic
waves with frequency co which propagate down a struc-
ture with a dielectric constant that varies periodically with
path length z. As elsewhere, ' we ignore harmonic gen-
eration on the assumption that the interactions which lead
to its presence are not phase matched, and these beams
are therefore weak.

The dielectric constant E(z) is taken to have the
sinusoidal spatial variation

e(z) =@+he cos(Gz) . (2.1)

If we wish to consider more complex spatial variations
of e(z), then we are to replace b.e by the appropriate spa-
tial Fourier coefficient of the profile. Only the particular
spatial Fourier coefficient displayed in Eq. (2.1) enters our
discussion importantly. A similar statement applies to the
nonlinear coefficient A, defined below. If A, varies with po-

the work of Winful, Marburger, and Garmire, who were
interested in bistability in distributed feedback structures.
This model is somewhat simpler than that used in Ref. 1,
if we have application to superlattices in mind, but it
clearly contains all the essential physical e6'ects and can
be applied directly to superlattices if the parameters are
interpreted appropriately. Winful et al. based their
analysis on a slowly varying envelope approximation, and
we do so also. However, the set of equations that we ob-
tain divers from that presented in Ref. 2. In our view, an
essential feature that should be incorporated into the dis-
cussion is a proper description of the band gap and wave
mixing produced by the periodic modulation of the dielec-
tric constant of the structure, in the absence of nonlineari-
ties in the response. This is absent from the discussion in
Ref. 2, as discussed below.

In Sec. II we derive the equations central to our
analysis, and Sec. III examines the analytic description of
the solitons. Section IV concludes with brief comments.
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sition, it is its average value (the G =0 spatial Fourier
component) that is to be identified with the parameter A.

of the present paper.
Then the wave equation we wish to study is identical to

that used earlier

d E N 2

e(z)E+ eA.
I

E
I

E=O,
dz c c

(2.2)

where E (z) is the electric field in the plane-polarized
wave.

We seek solutions of Eq. (2.2) of the form

E(z) =E+(z)e' '+E (z)e'" (2.3)

where E+ (z) are envelope functions assumed to vary
slowly in space, on the length scale that is set by the
periodic variation of e(z). We shall be interested in wave
vectors k that lie very close to the Brillouin zone bound-
ary at k =G/2, so we write

k = —,'G —Ak,

where Ak «Gl2. Then Eq. (2.3) becomes

E (z ) e
—i Akz[E (z )e ((G 2/)z +E (z)e

—((G /2)z]

(2.4)

It is at this early point that our discussion departs from
that presented by Winful et al. These authors also con-
sidered a solution in the form of right and left running
waves, each modulated by an envelope function that
varies slowly in space. However, the running waves were
assumed to have the form exp(+ikoz), where ko =cov'elc
is the wave vector of a wave propagating in a uniform
dielectric, with he=0. In any periodic medium, in fact,
the frequency and wave vector of the basic waves are cou-
pled through a dispersion relation which must emerge
from the analysis of the underlying wave equation. This
is true also for waves in a nonlinear medium as well; the
dispersion relation then depends on field intensity. As a
consequence of the procedure just described, a dispersion
relation does not emerge from the analysis in Ref. 2, but
one appropriate to the perfectly uniform medium is im-

posed at the outset. We shall see that in the present treat-
ment, the proper dispersion relation emerges when the
strength A, of the nonlinearity is set to zero. Without this
feature, the soliton solution discussed in Sec. III would
not be contained in the theory.

The discussion here, and that in Ref. 2, assumes impli-

citly that both Ae and X are small; if Ae were not small,
for example, for X=O and for wave vectors near the zone
boundary, the eigensolution could not be represented as a
linear combination of only two counterpropagating waves,
as in Eq. (2.5). It is our view that the treatments here and
in Ref. 2 contain different assumptions about the relative
magnitude of the two small parameters Ae and A, . Our
theory is built around a solution that is exact when A=O,
and is appropriate when the nonlinearity is regarded as a
weak perturbation on the mixing provided by the corruga-
tion in the dielectric constant. On the other hand, when
he=0, then the approach in Ref. 2 provides a complete
description (within the slowly varying envelope approxi-
mation) of the strong backscattering present by virtue of
the nonlinear term controlled by k. The equations de-

scribe a situation where the amplitude of the backscat-
tered wave generated by the nonlinearity is so strong that
depletion of the pump wave is large, and feedback be-
tween the two counterpropagating waves is important.
The approach is appropriate for examining the influence
of small-amplitude corrugations in the dielectric constant
on this picture. Thus, in essence, Ref. 2 assumes implicit-
ly that Ae«A, , and results appropriate to the limit X~O
are not contained in the scheme. We believe the present
approach is the one suitable for discussing distributed
feedback devices, for frequencies near a gap, where a
proper description of the strong Bragg reflections provided
by the corrugation of the dielectric constant must be in-
corporated into the theory.

We proceed by inserting the form in Eq. (2.5) into Eq.
(2. 1), ignoring second derivatives of E+ and E, and re-
taining only terms proportional to exp(+i ,

' Gz ——i Akz)

Equating the coefficients of each term to zero leads to two
differential equations for the pair of functions E+ and
E . These have the form, for Ak «G/2,

2
co G

2
e — — +Ghk E++ 2

AeE
M

c 2 2c

dE+ Q)+iG + ek( E+ +2 E
I

)E+ =0,
dz c

(2.6a)

and

CO E—
c 2

2
G CO—Ghk E + 2 AeE+
2 2c

dE
iG —+ ek(IE

I
+2 E+ )E =0.

z c

(2.6b)

From Eqs. (2.6) it is straightforward to establish that
the quantity

II'=
I
E+ I' —IE (2.7)

is independent of position, a property shared also by the
envelope functions studied in Ref. 2.

If the parameter A, is set to zero, then E+ (z) and E (z)
are independent of z. The dispersion relation of waves in
the structure is obtained by setting the appropriate 2&2
determinant equal to zero. One finds the two-branch
dispersion relation, with coG ——cG /2&@,

2 2 1/2
Ae 46k

co+(k) =coG+ —coG +2 G
(2.8)

1 Ae
co =co 1—G (2.9a)

and above by

The gap at the zone boundary 6k=0 thus is bounded
from below by

1/2
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1 Ae
co~ =WAG l+

2 E

1//2

(2.9b)

Suppose we consider solutions of Eqs. (2.6), again
linearized with A. =O, for frequencies cu within the forbid-
den gap, ~ &co&su+. With 6k=0, these are exponen-
tially damped, with the spatial variation exp(+az), where
a is given by

sin(2$)

2

+ sin(4$) =0 . (3.3)

then use Eq. (3.2b) to eliminate dD/dz. This leads to an
equation for P alone:

2 2 2
4 d p be ~ —~G

+
G dz2

(
2 2 )1/2( 2 2)1/2

a=G
Q)G

(2.10)

This completes our discussion of the general structure
of the equations that form the basis of the analysis in Sec.
III.

This possesses a first integral. We write this
2 '2 2 2

1 4 dp 1 be ~ —~G
+ —

2 [1—cos(2$) )
2 G dz 2 e

2

[1—cos(4$)] =C,1 Ae

4 2e
(3.4)

III. GAP SOLITONS

We explore solutions of the full nonlinear equations,
Eqs. (2.6), for frequencies cu which lie in the forbidden
gap, co &co(co+. The parameter W'=

I
E+

I

—
I
E

is related to the rate of energy transport in the wave, and
the solitons of interest are stationary and transport no en-
ergy. Thus for these solutions 8'= 0, and

I
E+

I

=
I

E
I

=B(z). We may rewrite Eqs. (2.6) in the
form (we set b,k =0 for the stationary solution)

2 2 ~G A6 ~G dE~2 2

(co —cuG)E~ ~ E +i4
2 e G dz

~3coGM E~ =0, (3.1a)

2

2 8 e ~G
+ G2 g~ 2 2

(3.5a)

and define

where C is a constant of integration.
The differential equation displayed in Eq. (3.3) is a

well-known form in the study of nonlinear systems. It is
known as the double sine-Gordon equation; a particularly
clear tabulation of its soliton solutions has been given re-
cently by Campbell and collaborators. In what follows,
we cast the equation in a form that places it in contact
with their results. It is convenient to consider first fre-
quencies in the upper half gap, coG &su&co+, then fre-
quencies in the lower half gap, ~ &co &coG.

(i) The case coG (co ~co+. We let z =a+x, where

coG Qg GAG dE2 2

(cu —coG )E E+ —i4
2 e G dz

2
Ae ~G

I+ 2 286 ~ ~G
(3.5b)

-)f-3cggA, 6" E =0 . (3.1b)

Upon taking the complex conjugate of Eq. (3.1b), then
comparing with Eq. (3.1a), one may establish that
E =(E+ )*. Hence, we seek solutions of the form
E+(z)=6(z) exp[i/(z)], E (z)=6'(z) exp[ iP(z)]—Upon.
inserting these forms into Eq. (3.1a), and separating real
and imaginary parts, we have a pair of differential equa-
tions for 6'(z) and P(z):

d g 4
[—,

' sin( —,
'

1J/) q+ sing] =—0 .«' I+4ln+
I

(3.6)

If we regard 1t/ as the displacement of a particle as a
function of a fictitious time x, then Eq. (3.6) describes the
motion of the particle in the effective potential

and we set /=1)//4. The Eq. (3.3) assumes the form of
Eq. (1.1) of Ref. 5:

+ cos(2$)+ 3A, A
4 dp ~ —~G b~
G dz Q) G 26

(3.2a) V(g) =4[cos(1tj/2) —rI+ cosg]/( 1+4
I g+ I

) .

and

4 dD
G dz

Ae 6 sin(2$) .
26'

(3.2b)

One may now differentiate Eq. (3.2a) with respect to z,

One sees easily that as co is swept through the frequen-
cy range coG &co&co+, we have —~ &g+ & ——,

' which
corresponds to region I in the classification scheme em-
ployed in Ref. 5. In this parameter regime, one en-
counters two distinctly different types of kink solution.
These are written, for the kink (K) solution or the an-
tikink (K),

4f n+ I

—I 41m+ I

—I
ti1+1g1(x) = (2n + 1)2vr+4 tan tanh

4ln I+1 (3.7a)

and for that of type II,
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4
I n+ I

+1
P~(g )(x)=(2n)2vr+4 tan tanh

4
I n+ I

—1

1/2
4I n+ I

—1

16
I n+ I

(3.7b)

In the above expressions, the plus sign describes the kink, and the minus sign the antikink.
We shall examine the properties of these solutions in more detail below, but first we turn to the solutions in the lower

half gap, co (co (coG.
(ii) The case co &co & coo. We let Q=B+2m. , so Eq. (3.3) becomes, after introducing

and

2
2 8 e ~G

CX 6 ~& co —cc)+

2
Q)g

2 2
COG

—CO

(3.8a)

(3.8b)

(3.9a)

identical to Eq. (3.8), but with 21+ simply replaced by rl, and g by B. One sees also that —oo &g & ——,', as co is

swept from coG down to co . Hence we again have two distinct classes of kinks and their associated antikinks:

4
I n I

—1 4
I n

B~(g((x)= (2n + 1 )21r+4 tan tanh X
4

I
r)

I
+1 16

I
r)

and

4I r) I+1
Bz(g((x)=(2n)2vr+4 tan ' tanh

4lvy
I

—1
(3.9b)

Now notice the following identities: (Ct) + —Ci) )
2 2 1/2

z
pz(g1(z) = (2n + 1)—+ tan ' tanh—

(
2 2 )1/2

4lvy
I

—1

4ln I+1

and

4
I r)+ I

+1 (co —co )'

41~
I

—1

(3.10a)

(3.12b)

We next turn our attention to the envelope function
( (z), which may be calculated most easily by rearranging
Eq. (3.2a):

4lmy
I

—1

16lvy

1/2
4 g+I —1

16
I n+ I

&+

(3.10b)

( (z)= 1 4dg
3X 6 dz

COG
—CO

2 2

2
COG

Ae
cos(2$)

(3.13)

4' G 1

G (~2 ~2 )1/2( 2 2)1/2
(3.11)

If the expressions given above are compared, and
rewritten in terms of the original angle P, as co is varied

through the entire gap from co to co+, we have only two
distinct solutions. The pair Bz(g( evolve into 1t/zn(g( as co

is swept through the midgap frequency coG, while e~~~~
evolve into 1(/z(g(. We are left with the following two

kink-antikink pairs, throughout the gap co~.

(
2 2 )1/2

(CO+ —Ci3 )

(3.12a)

and

where an explicit expression for the dimensionless length
d 1s The study of 6 (z) will lead us to new constraints on the

allowed solutions.
For instance, for the type-I soliton, with P(z) given by

Eq. (3.12a), one finds

61(z)=—
2 2

CO —CO

3~G
1+

(+ 1+1)sech (z/d)
2 2

tanh (z/d)

(3.14a)

where the upper choice of sign is appropriate for the kink
solution, and the lower choice for the antikink. Clearly,
( 1(z)~0 only for the antikink solution. Furthermore, we
find this solution only if the nonlinear coupling constant
X &0. Hence, with this choice we have
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2(cu —co )
@1(z)=

1+

sech (z/d)
2 2

CO —CO

2 2
CO —CO+

tanh (z/d)

(A, &0; antikink) . (3.14b)

Similarly, if we consider the type-II kink and antikink
pair, Eq. (3.13) gives

2 2
CO+ —CO

@,1(z)=
3MG

1+

(+I+1)sech (z/d)
2 2

2 2
tanh (z/d)

(3.15a)

2(co+ —co )
&i~r(z) =

3~G
1+

secll (z/d)
2 2~+ —Q

2tanh (z/d)

Now we achieve a nontrivial solution if we choose the
kink solution, and also A, & 0. Thus, we have

4(co —co )
@2(z)= sech (z/d), (4.3a)

in the gap for a weakly modulated structure, for which
Ae«e. Such weakly modulated structures were of pri-
mary interest to Winful, Marburger, and Cxarmire. ) In
Ref. 1, the numerical studies found spatially extended sol-
itons (i.e., solitons with d »ao) only near either gap edge,
and it was noted that as one moved away from the edge
into the gap, the envelope indeed shrank in size. No soli-
tons were found near midgap, where numerical stability
problems were encountered in the solution. The method
of starting the procedure of integrating the equations is
readily seen to be inappropriate to the study of highly lo-
calized solitons, so this is not surprising.

Consider the case A. &0, and the antikink solution de-
scribed Eqs. (3.12a) and (3.14b). Near the lower band
edge co=co, one may overlook the tanh (z/d) in the
denominator, and replace Eq. (3.14b) by

(g&0; ging) . (3 15b) while the phase angle is given by

This completes our discussion. For each choice of k,
we have one solitary wave solution of the nonlinear wave
equation, for all frequencies within the gap. For the an-
tikink solution given in Eq. (3.14b), the spatial variation of
the phase is given in Eq. (3.12a), with the lower choice of
sign, while for the kink solution in Eq. (3.15a), the spatial
variation of the phase is given by Eq. (3.12b), with the
upper sign chosen.

IV. DISCUSSION

In this section, we make contact with the solitons stud-
ied in Ref. 1.

First note that the spatial scale of the soliton is con-
trolled by the length d, defined in Eq. (3.10). Near either
the lower gap edge, cu =co, or the upper gap edge,
co =~+, d becomes very large compared to the lattice con-
stant ap of the periodic structure. Recall that G is related
to the lattice constant by the relation G=2~/ap, so we
may replace Eq. (3.10) by

2ap COGd=
(

2 2 )1/2( 2 2)1/2 (4.1)

For frequencies near midgap, co =coG, we have

8ap

Ae
(4.2)

The numerical calculations in Ref. 1 examined a pa-
rameter set where Ae=e, in the present language. Then
Eq. (4.2) shows that in midgap, there are no spatially ex-
tended solitary waves with envelope-function many-lattice
constants in extent. As one moves away from either gap
edge toward midgap, the envelope function shrinks, to be-
come the size of the lattice constant ap itself in the
midgap region, when b,e=e. (Note, incidentally, that the
slowly varying envelope approximation used in the
present paper is valid only when d »ap, so we can only
regard the predictions found here as approximate, when
Ae-e. The present treatment is valid for all frequencies

Pg(z) =n~ 2—I

Ae

( CO —
Ci& —)

1/2
Cc) G

z
tanh

d
(4.3b)

In Ref. 1, for k &0, spatially extended solitons were found
only near the lower band edge, co=co, it was noted that
here 6(z) was accurately fitted by the functional form
sech(z/d), as displayed in Eq. (4.3a). Also, examination
of the numerical results (see, for example, Fig. 2 of Ref. 1)
shows that P~(z) is very small for all z. The results are
consistent with P~(z) = n ~, as given by Eq. (4.3b) for

Thus the above limiting forms nicely describe the soli-
ton states explored near the lower gap edge in Ref. 1 for
the case k&0. When k&0, spatially extended solitons
were found only near the upper gap edge, ~=co+. One
sees that properties of the type-II kink soliton [Eqs.
(3.15b) and (3.12b)) reproduce the results obtained in
these studies, near the upper gap edge.

For k &0, as we have seen, the type-I soliton also exists
near the upper gap edge, co=co+, though the numerical
work in Ref. 1 yielded solitons here only in the opposite
case A. &0. For k &0 and for co=co+, the spatial profile of
the type-I soliton is very diA'erent from the limiting forms
that apply near the bottom of the gap [Eqs. (4.3a) and
(4.3b)] despite the fact that scale length d becomes very
long near co&, as it does near co . The point is that now
the denominator in Eq. (3.14b) plays a crucial role, while
it may be set to unity to good approximation for co=~
as we have seen. For co close to ~+, and values of z com-
parable to the scale length d, the denominator in Eq.
(3.14b) becomes very large and drives 6'1(z) to zero every-
where except in the region z «d. There the soliton does
have a "core," in the region z —a p « d, within which
61(z) is large. A description of this core is found by re-
placing tanh (z/d) by (z/d) in Eq. (3.14b), when z «d.
Note that for any fixed z, as co approaches co+, this ap-
proximation will always become valid since then d ap-
proaches infinity. One finds
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1

4ao2
z +

. z (z « d, co =co+ ) .

(4.4)

The "core" of the type-I soliton is thus localized to a spa-
tial region on the order of ao, for Ae-e, and once again
the methods of Ref. 1 prove inadequate for the study of
such states.

The discussion presented here shows how the solitons
found in Ref. 1 emerge from an analytic discussion when
the frequency is near either edge of the forbidden gap. If
we have a structure within which Ae ~& e, then the
description obtained here applies for all frequencies within
the gap, and we see that either choice of the nonlinear

coupling constant k allows a solitary wave soliton with an
envelope function that has a large spatial extent compared
to the lattice constant ao, for all frequencies within the
gap. If Ae-e, both the discussion presented here and the
method used in Ref. 1 prove inadequate to study the
type-I solution away from the lower gap, or the type-II
solution away from the upper gap edge.

The earlier work' elucidated the relationship between
the spatially extended gap solitons and the nonlinear
response of superlattice structures, as remarked in Sec. I.
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