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Jump rate of the fcc vacancy in the short-memory —augmented-rate-theory approximation.
II. Dynamical conversion coefFicient and isotope-effect factor
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The framework of short-memory —augmented-rate theory is employed to partition the vacancy

jump rate into two factors related, respectively, to the Vineyard theory and to corrections for mul-

tiple barrier crossings inherent in the dynamics. This paper treats the second of the factors using

molecular dynamics to locate critical trajectories that lie on invariant manifolds of the dynamica1

systems, starting from states of motion in the saddle plane. For models of Ar, Cu, and Ag the er-

rors of the Vineyard treatment are negligible at low temperature and contribute a rate reduction of
only —10% at the melting temperature. These factors are, however, strongly mass dependent and

give dominant contributions to the isotope effect. Our calculations reproduce the experimentally

observed ~=0.87 near the melting temperature very well, and are similarly model insensitive; ~ de-

creases nonlinearly from its harmonic value at T =0 as the temperature is increased. Detailed ex-

amination of trajectories shows that the isotope effect is largely determined by the deformation of
the manifolds caused by core repulsive forces. In effect, the isotope dependence derives mainly

from infrequent energetic collisions that take place in jump events.

I. INTRODUCTION

Classical statistical theory of diffusion jumps, as
exemplified by Vineyard's' many-body formulation, has
been unable to account for the isotope effects for
diffusion observed in simple solids. The isotope-effect
factor ~ conveys the mass sensitivity of the jump rate R
through the equation

R (M) dM
R (M +dM) 2M

so that E =1 when R -M ', as is appropriate for an
independent particle in thermal equilibrium. For fcc
metals v is typically 13% below unity, and between
40% and 50% for bcc metals. ' These are the conse-
quences of cooperative motion by neighbors during the
jump, which reduce the mass sensitivity. Regarded in
this light the isotope effect offers a direct, and indeed the
only, monitor of dynamics during the jump event itself.
Calculations based on Vineyard's theory give reductions
several times smaller than those observed. It was sug-
gested by Flynn that the discrepancies must be
temperature-dependent effects of anharmonicity that
cause incorrect accounting for jump events. This was
consistent with early molecular-dynamics simulations of
a Lennard-Jones model for argon near its melting point
by Bennett, ' who computed for that model a mass
sensitivity near the value actually observed in metals. A
good deal more data on various systems has accumu-
lated since that time but no theoretical advances have
occurred.

Because of its importance as a potential probe of jump
dynamics, the isotope effect in diffusion warrants careful
attention. Indeed, extensive experimental investigations
were originally undertaken in the hope that the results
could shed light on otherwise inaccessible phenomena

that take place in the jump process. At the same time,
the fundamental question of precise criteria by which
jump events can be identified has come to the forefront
in our own research, ' ' in that of Doll and Voter'
on surface diffusion and, in a different context, in the
rate processes exhibited by macromolecular systems. '

One of the main results of the present paper is that the
mass dependence of the jump criterion plays a critical
role in determining the isotope effect in solid-state
diffusion. By means of a precise formulation of the jurnp
problem we are able to obtain an accurately predictive
treatment of the isotope effect and to understand the
physical causes of its hitherto unexplained behavior.
These topics form the subject matter of the present pa-
per.

This paper, the second of two, is concerned with the
accurate description of jump processes within the short-
memory —augmented-rate theory (SM-ART). " As
scribed in the companion paper by De Lorenzi et al. '

that precedes this, certain invariant manifolds in phase
space divide the Hamiltonian flow over a potential bar-
rier in a convenient way. Figure 1 shows schematically
the stable (CS+) and unstable (CS ) center manifolds in-
tersecting at the center manifold (CM) itself. For a crys-
tal of N/3 atoms CM is the (2N —2)-dimensional mani-
fold of all trajectories that linger indefinitely on the bar-
rier; CS is the (2N —1)-dimensional manifold obtained
when CM is slightly disturbed so that this configuration
decomposes, and CS+ is its time-reversed analog. CS+
and CS divide phase space into four sectors. Two of
these pertain to flow over the barrier parallel to the reac-
tion coordinate q, . The important point is that each of
the two contains all the flow in one sense, so that any
surface X cutting the appropriate sector intersects all the
flow. Consequently, the rate R at which jumps take
place in one sense may be written as an integral of the
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and

ZSH

PZr

Zcc=
Z5H

Or, alternatively, from Eq. (1), we may write

P)

FIG. 1. Section of the tunnel in phase space connecting two
equilibrium configurations A and B. The plane (q&,p&), with

q, the reaction coordinate, is shown for a given choice of the
remaining normal coordinate and momenta on SH. By
definition (see text} SH is the origin while the intersection of
this plane with the center manifold CM is the point specified

by the crossing of the center stable (CS+) and unstable (CS )

manifolds; CS+ and CS partition the flow of trajectories with

different fates. For a given state on SH a change of the normal
momentum corresponds to displacement along p, . Only trajec-
tories with initial normal momentum p, ~ max(p, ,p 1+ ) belong
to the successful jump flow from 2 to B [p, & min(p, ,p ~+ ) to
the one from B to 3]. The full jump rate is obtained by in-

tegrating the How through the surfaces X—.

flow velocity X over the surface X:

R= e ~ XdX,1

Zp

with H the Hamiltonian, exp( PH) the density —distribu-
tion, and Zz its normalization integral over the initial
equilibrium configuration in phase space. When the sur-
face X is chosen to extend from CM to regions of inac-
cessibly high energy, a more elegant formula, obtained
by means of the Stokes theorem, displays the rate as a
ratio between the partition function Z& and that of the
system constrained on the CM, namely Zz.

ZcR= (3)
Zr

This is the principal result of the SM-ART treatment of
Toiler et al. ,

" on which the work that follows is based.
We reiterate further, as in De Lorenzi et al. ,

' that it
is often useful to work with a reference surface that has
a simpler geometry than CM itself. This allows the total
flow to be regarded as the flow with respect to the refer-
ence surface, together with a correction term that ac-
commodates differences between the reference surface
and the center manifold. A natural choice of reference
is a "saddle hyperplane, " SH, namely the product space
of a saddle plane and the momentum coordinate it con-
tains; the plane itself can usefully be defined by diagonal-
izing the potential function about the saddle point of the
potential barrier. Then the rate follows from Eq. (3) as

c= J e ~ XdX.
Zs~

Here Zs~ is the partition function of the system con-
strained on SH. The separation of these terms in Eq. (4)
is the basis on which the present calculations are under-
taken.

Equation (5) for Ro is essentially the Vineyard result'
for the rate at which transitions take place through a
planar saddle surface. Its precise evaluation for simple
models of fcc solids is the task completed in the preced-
ing paper. Our purpose in the present paper is to evalu-
ate the dynamical "conversion coefficient" c to find the
size of the error rate theory makes in counting the flux
of transitions.

A point of special interest concerns the isotope effect
which, from Eq. (1), is given by the expression

3 lnR
8 lnM

(8)

Using Eq. (4) for R, we can factorize Ir into two terms:

3 lnRo 0 inc 0 incK= —2 —2 =K~ —2
3 lnM 0 lnM 0 ln.M

It has long been known that the isotope-effect factor
~&, for a barrier that is planar but otherwise arbitrarily
anharmonic, is defined by the normal to the plane. For
realistic models this gives predictions that are incorrect
at high temperature, as first pointed out by Huntington
et al. ' In general the barrier is not planar, ' however,
and anharmonicity can bring mass-dependent terms into
the conversion coefficient. ' ' The consequent sugges-
tion that the experiments must probe the mass depen-
dence of c is consistent also with the results of molecular
dynamics simulation of Ar near its melting tempera-
ture. ' Our interest in what follows therefore focuses on
both the magnitude of c and its mass dependence.

The plan of the paper is as follows. In Sec. II we first
address the topological structure of the invariant mani-
folds associated with the migration barrier, and then de-
scribe a numerical procedure for sampling the re1evant
manifolds to obtain the required correction factor. Sec-
tion III presents the results of the calculations for mod-
els of Ar, Cu, and Ag. In the subsequent discussion of
these data, and particularly their dependence on the in-

teratomic potential, it is possible to identify without am-

biguity the unexpected fact that energetic hard-core col-
lisions play a major role in determining the isotope effect
in diffusion. Section IV provides a brief summary of the
results.

II. APPLICATIONS OF THE THEORY

R =Roc,
with

(4) The framework outlined in Sec. I can be applied to the
conversion coefficient in different ways and with various
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levels of approximation. A principal purpose of this pa-
per is to describe its exact, numerical evaluation within
the SM-ART theory using the full interatomic potential.
This is the main subject matter of Sec. II B. Section II A
focuses on some analytical aspects that give useful in-
sight into both the topology of the manifolds and the
character of the trajectories around CM. In particular,
one can calculate the partition functions of Eq. (3) for a
truncated series expansion of the anharmonic potential
energy and in this way obtain the jump properties as a
power series in T. The first-order term in T has been
determined and evaluated earlier"' for particular mod-
el fcc systems. The results provide a theoretical frame-
work on which the numerical methods may be based. A
comparison among results from the various approaches
in Sec. III gives new physical insight into the processes
that determine the isotope effect.

A. Critical trajectories and the invariant manifolds

where V, is an infinitesimal of third order containing all
anharmonic parts of V. These normal coordinates q; are
obtained by an orthogonal transformation of the X
mass-weighted atomic Cartesian coordinates, x, M, '

with associated velocities x, , i =1, . . . , X, that diagonal-
ize the dynamical matrix for the system at the saddle
point Po —=(x, , . . . , x~). Thus

D„,=(M M )
8 V

Bx„Bx,. p

such that

D„'a„=c,, a (12)

where c. , = —g, c2 ——~2, . . . , and c& ——co& are the eigen-2 = 2 2

values and a'„ the orthonorrnal eigenvectors which define
the transformation

(13)

We associate the position and velocities of the jump-
ing atom with indices 1, 2, and 3 of the Cartesian coor-
dinates. Further, q, and p, are the normal coordinate
and momentum associated to the unstable mode at the
saddle point; they define the "reaction coordinate" of the
system.

For a dynamical system of this kind the center stable
manifold CS+ and the center unstable manifold CS are
given by equations of the kind:"

We are interested here in the trajectories available to a
dynamical many-particle system near points at which the
potential energy V possesses a simple saddle point Pp.
The Hamiltonian of a crystal with X/3 atoms can be ex-
pressed in terms of mass-weighted normal coordinates q,-

of this saddle point, together with their canonically con-
jugate momenta p;, as

N N

X Pk+VO 7 ql+ X ~kqk+~. (q»
k=, i k=2

(10)

The functions F+, f, and g are defined for sufficiently
small values of their arguments. Explicit analytical ex-
pressions for these functions, given in Ref. 11, and col-
lected in the Appendix, are valid for a truncated power-
series expansion of the anharmonic term V, of the po-
tential.

We wish to calculate the rate at which representative
points pass through the surface X in Eq. (2). When this
surface is defined by coordinates and conjugate momenta
of a planar saddle surface, the behavior in the neighbor-
hood of Pp is simplified. This "saddle hypersurface, "
SH, defined by the equations

qi ——0, pi=0, (16)

comprises a second (2X —2)-dimensional hypersurface
analogous to the center manifold. The two coincide in
general only for planar potential barriers. A given set of
values for all the normal coordinates and momenta in
SH are required to specify the Harniltonian flow in the
plane (q&,p& ). In this plane SH is a point that locates
the origin. The center manifold is also a point but, be-
ing determined by Eq. (15), is in general different from
SH. The forms of CS+ and CS remain determined by
Eq. (14) and are represented in Fig. 1 as curves.

CS+ and CS separate the flow paths through phase
space of trajectories with different fates. This is the
most important realization of the SM-ART treatment.
All trajectories that cut the surface X that extends along
the p, axis from SH to remote regions, may cut it again
later any number of times as the system evolves. How-
ever, only those trajectories that cross X in this section
with p, & max(p &,p ~+ ) belong to the fiow of successful
jumps from the equilibrium in configuration 3 to that in
8, while for p& & min(p, ,p &+ ) they belong instead to the
net flow from B to A.

By means of exact numerical evaluations of the dy-
namics we have verified that the monotonic behavior in-
dicated in Fig. 1 does indeed occur in real systems. In
Fig. 2 we show the time evolution from an initial state
on SH, projected along the reaction coordinate, for the
three values of normal momentum p I corresponding
schematically to the points a, b, and c of Fig. 1. Those
momenta larger than pi+, e.g. , point c, give trajectories
leading directly to transitions from 2 to B; upon reduc-
ing the normal momentum to p i+ (point b in Fig. 1)
there occurs a critical trajectory that lies on CS+.
Smaller momenta, e.g. , point a lead to return jump tra-
jectories that reverse their perpendicular momentum.
Further reductions would result in a trajectory that
originated at a prior time from oscillations near the bar-
rier (CS at p &

) and finally trajectories that correspond
to jumps in the reverse direction. Note that the critical
trajectories associated with CS+ and CS approach and

p) ——+gq)+F (q), q2, . . . , qv;pq, . . . ,P~) . (14)

CS+ and CS intersect in the center manifold CM de-
scribed by the equations

qi=f(q» . q~ p'2

pi=g(qz qw'p2 px) .
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FICz. 2. Time evolution from an initial state on SH, project-
ed along the reaction coordinate q&, for a sequence of normal
momenta, p&, corresponding to points a, b, and c in Fig. 1.
The monotonic behavior predicted by the theory is confirmed.
The CM+ trajectory (solid line, point b in Fig. 1) oscillates
about the saddle plane in the forward time evolution. It
separates the flow of return jumps having smaller normal
momentum (dashed line, a in Fig. 1) from the flow of successful
trajectories having larger normal momentum (dash-dotted line,
c in Fig. 1).

linger indefinitely on top of the potential barrier, thus
oscillating through the saddle plane. Similarly, all criti-
cal trajectories associated with the center manifold oscil-
late indefinitely about the saddle plane. For simple mod-
els of the anharmonic barrier, the nature and amplitude
of such oscillations can be computed explicitly. ' The
fact that the critical trajectories do behave in this way
plays a central role in their identification for the case of
a general potential in Sec. II B.

The full jump rate is calculated by integrating the flow
through the surface X—of equations

q, =0, p, & max(p, ,p,+ )

for X+ and

(17)

q, =0, p, (min(p, ,p )+ ) (18)

+ oo
I 2

0( p&~"p~=PE i Idp&) . sH
C

(19)

An analogous expression holds for the flow in the oppo-
site direction. Equation (19) is a central result of the
present treatment. The topological structure of the
manifolds provides a rigorous definition for the critical
momenta p, (P) as the momentum component perpendic-
ular to SH required to place the trajectory on the center
stable (or unstable) manifold for any given initial state
on SH. The same structure then ensures that all larger
momenta lead to complete jumps within the SM-ART
formulation, much as assumed empirically in Bennett's
calculation for a different definition of critical trajectory.
As noted by Bennett, the existence of a critical momen-
tum allows sampling over the crossing momenta, still

for X . The dynamical conversion coefficient for the
flow from 3 to B can then be evaluated by a thermal
sampling of the hypersurface SH with analytical integra-
tion over all momenta larger than the critical one,
p, (P) =p ~+, be it positive or negative, for each sampling
point P on SH; thus

x, (M/M')'~, i =1,2, 3
X; =

x, , i =4, 5, . . . , N
(20)

used in other approaches, ' to be replaced by a more
efficient integral from p, to infinity.

We now turn attention to a determination of the
isotope-effect factor. It is important to realize that,
within the SM-ART treatment, the conversion coefficient
c for a particular jumping atom and that, c ', for a
different isotopic mass constitute two entirely different
problems. For both systems c is correctly represented by
the ratio of partition functions in Eq. (6) or by the flux
through a surface X— as defined in Eq. (7). However,
both the partition functions and the definition of X—are
complicated by the fact that the system with a different
mass possesses a distinct saddle hypersurface SH' and
center manifold CM' that are rotated and distorted with
respect to those of the system with all masses equal. An
accurate treatment of the isotope effect must therefore
incorporate a correct description of the different jump
conditions for the two systems.

For small changes in the mass of the jumping atom,
M, ~M, (1+25), the linear variation with 5 of the sur-
faces of interest can be calculated by use of first-order
perturbation theory. In order to obtain insight into the
computational problems this complication brings, it is
useful to consider the initial example of a system
represented by its anharmonic expansion carried through
to terms of third order. For this system the isotopically
modified manifolds can be expanded by perturbation
theory in terms of the coefficients of the unmodified sys-
tem. The algebraic details are collected in the Appen-
dix. It turns out that Eq. (19), when written for this sys-
tem, can be evaluated analytically to first order in T, and
this approach naturally leads to the result reported in
Ref. 12. Of greater interest here is the fact that Eq. (19)
can also be obtained by using a numerical sample of
states on SH and assigning to each the critical momen-
tum determined by the corresponding analytical expres-
sion of Eq. (14). We find immediately that the expected
difference is too small to be measured directly by
separate sampling runs on the two systems, since
c' —c =10 for 6=0.01. A determination of c' —c by
means of separate numerical sampling on SH and SH'
requires a number of sample points of the order of 10 to
achieve an accuracy of l%%uo in ~ for 5=0.01. Such large
samplings are not feasible, so the determination of ~ for
a general potential, where the critical momentum p,
must be determined by numerical methods, requires a
different approach.

To overcome this problem we have incorporated into
our calculation a difference sampling method analogous
to that proposed by Bennett to compute the mass
dependence of c. We investigate the mass dependence of
the critical momenta p, in a chosen sample of SH states
of the M, =M system by establishing a one-to-one
correspondence between each state P of SH,
P =(x, , . . . , xz, x &, . . . , x&) and the equiprobable
state of the M

~

——M' system, namely

=P( ,x, . . . , ~x, x, , . . . , x~). The transformation
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ensures that the two states have the same statistical
weight.

To employ this variance-reducing correspondence, one
finds the critical normal momenta p, (P) needed to place
the trajectory of the new initial condition P on CS+ (or
CS ) for the Mi ——I' system. The diff'erence in conver-
sion coefticient is then obtained as an average over states
on SH of the integral between the two critical momenta,
just as in Bennett's work. Application of this difference
sampling method dramatically reduces the number of
states in SH needed to obtain an accurate determination
for ~. In the case described above (see the Appendix)
the difference method requires about 10 states to obtain
the same accuracy achieved by a sample 3 orders of
magnitude larger, in the evaluation by separate runs.

q, (t)= g a, '(x, (t) —x, )=0 (21)

for every t Fro. m Eq. (21) it follows directly that also

p, (t)=0 for every t. The force P, applied in the direc-
tion of the constraint q, =(Ia I), has Cartesian com-
ponents

1. Sampling on a surface in phase space

Different methods have been widely used ' ' ' to
sample initial states on a surface in phase space for a
given interatomic potential. In the present work we use
an independent method to sample states on the saddle
hyperplane. To maintain the dynamical system on SH
we introduce an explicit dynamical constraint in the
form of an external force P, so that

B. Sampling methods g a'F (t) a
a=1

(22)

For an arbitrary potential it is not, in general, possible
to write down an analytical form for the CM. Numeri-
cal methods are therefore needed to locate CM, CS
and CS+. For this purpose it is convenient to start from
some specifi locus in phase space. As explained in Sec.
II, a natural choice that provides easy sampling of initial
configurations is the saddle hyperplane SH.

The desired critical values of pi and q1 are those for
which the evolution of the representative point lies on
the particular manifold of interest. These are deter-
mined by imposing the corresponding asymptotic behav-
ior on the time evolution of the trajectory, namely, (a)
the CM trajectory should oscillate indefinitely about the
saddle plane; (b) the CS+ trajectory should oscillate
about the saddle plane only for the forward time evolu-
tion for the trajectory; and (c) the time-reversed behavior
should occur for the trajectory CS

Any determination of CM trajectories themselves
would require finding critical values for both q, and p„
and it would be necessary, in addition, to project the in-
variant measure of CM onto SH. We have therefore fo-
cused our effort instead on the determination of the criti-
cal momentum p, required for an initial configuration on
SH to obtain a trajectory on CS+ or CS and so to
evaluate c by means of Eq. (19).

An implementation of these principles for any given
structure and model potential requires several distinct
steps. The saddle-point configuration Po=(x i, . . . , xz)
must first be determined and the potential diagonalized
at Po to yield eigenvalues and eigenvectors of Eq. (12)
that define the saddle hypersurface SH. It is then neces-
sary to sample representative points in phase space on
the surface SH, and for each to iterate the evolution of
trajectories for various normal momenta in order to lo-
cate the specific critical trajectory. The first step of the
procedure has been carried out here using standard re-
laxation techniques such as those described in Ref. 10.
The sampling on SH was performed by means of a
molecular-dynamic (MD) run constrained to remain on
SH. Details of the latter calculation are described in
Sec. EE8 1. The last step, name1y the search for the crit-
ical trajectories, is the main topic of Sec. II 82.

where F (t) = —(BV/Bx )„i,i is the usual force acting on
particle a in the absence of the constraint.

Because P acts along the direction of the constraint it
does no work on the system. Likewise, all linear mo-
menta are conserved when the initial configuration is
chosen on SH, the natural choice for it being Po. By
starting a molecular-dynamics run from Po at a given
temperature, subject to the Hamiltonian of the con-
strained system, we thus generate an ensemble of
configurations on SH whose members are representative
of configurations that would occur at thermal equilibri-
um for the unconstrained system of Hamiltonian H.

2. Determination of critical trajectories

Given an initial state on SH it is necessary to deter-
mine the critical value p, of the perpendicular momen-
tum. Our procedure uses a brief search of a generically
broad interval of values of p, to locate the transition
from the flow of returns and to the flow of successful
jumps. With a specific initial value p for the perpendic-
ular momentum, chosen from within this interval (the
natural choice being its arithmetic mean), the evolution
of the system backward and forward in time is computed
by MD for a period ~=n~o with ~o the time step. In
this run we monitor the quantity

N

q, (t;p )= g a (x;{t;p ) —x, ) . {23)

This projects the motion of the particles in the Cartesian
space of the crystal onto the many-body reaction coordi-
nate.

In addition, we calculate the time evolution of a per-
turbed trajectory, q, (t;p ), for a slightly diff'erent initial
value, p', of normal momentum. For small values of
such perturbations the motion of the system falls in a
linear-response regime where the magnitude of the
mechanical response depends linearly on the strength of
the applied perturbations. ' ' Within this regime a gen-
eral trajectory of normal momentum p can be obtained
approximately as
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0

g1(r ip) —gl(rip )+ 5q1(r;p ip )

p —p

where

(24)

(25)

f q, (t;p)dt =0
0

for CS+ and
0f q, (t;p)dt =0

(26)

(27)

for CS . We can now estimate the critical normal
momentum within the linear-response approximation by
use of Eqs. (24) and (27) or (28) as

p& =p +p ~++ 0 1

where

qi t;po dt

f 5q, (t;p, p ')dt

for CS+

f q&(t;p )dt
pf 5q, (t;p,p ')dt

(28)

(29)

(30)

for CS . By iterating the procedure, using successive es-
timates of p, as initial momenta p, the critical momen-

0.2

q, 0.0

-O.2
l.5 0.0 l.5

Time (psec)

FIG. 3. Example of the numerical procedure used to deter-
mine the critical momentum p, required to place the trajectory
on CS+ for any initial state on SH. The thick line is an initial
guess at the critical momentum; fine lines are trajectories com-
puted in the linear-response approximation for different values
of p, . The dashed line is the improved estimate of the CS+
trajectory.

In this way it is possible to study, within the linear-
response approximation, the behavior of a family of tra-
jectories, all originating from the same initial state on
SH but corresponding to different values of the crossing
momentum. An example of the resulting trajectories is
given in Fig. 3.

The critical condition in which the system oscillates
about the saddle plane can be expressed analytically by
imposing an average of zero on the time integral of the
reaction coordinate:

TABLE I ~ Numerical example of the dependence of the
computed values p (P) and p (P) at T =0 1T, 6=0 01
[T =0.67e; see De Lorenzi et a1. (Ref. 17)] on the time of in-

tegration ~/~„(~„=2.2 psec), for a state P on SH of the model
potential described in the Appendix. Analytical values of p,
and P, reported in the last row for comparison correspond to
an infinite integration time.

0.40
0.80
1.20

p, (P)

0.050 644 563 4
0.058 150 133 3
0.058 152 309 0
0.058 152 327 7

p, (P)

0.050 038 766 3
0.057 494 734 1

0.057 508 694 4
0.057 508 7102

turn p, can be obtained to any desired accuracy and for
any interval ~ of integration. Such an estimate of p, de-
pends to some extent on the particular choice of ~, but it
must converge to a specific limit as ~ is increased. In the
case described in the Appendix an analytical value of p,
can be obtained exactly. For the iterative method just
described this example suggests that the convergence can
be considered complete as soon as ~ approaches the
characteristic time associated with the unstable mode
frequency g ( —5 —6 Debye periods in the model studied,
see Table I).

One further matter of computational significance war-
rants mention here. Rather than integrating q&(t;p )

and qt(t;p') separately it has been possible, and compu-
tationally more economical, to solve an approximate
diff'erential equation for 5q&(t) itself, valid within the
same linear-response approximation. The advantage lies
in the fact that the expression for the gradient required
in the integration of the equation of motion for 5q1(t)
can be written at time t in terms of the second derivative
of the potential function at the configuration of the un-
perturbed trajectory for the same time. ' This result can
be included at small cost in the same loop of the calcula-
tion of the gradient along the unperturbed trajectory. In
practice the final search for p, for any state on SH could
be automated to require —2.0 min of CPU (central-
processing-unit) time on an FPS264 processor.

It is evident that the values of critical momentum can
be obtained for each state on SH. One of these (on CS+)
is the critical momentum for jumps from A to B, and
the other (on CS ) for jumps from B to A. Both can be
used, as appropriate, in the evaluation of c. This halves
the required sample of initial states on SH.

To evaluate the isotope-effect factor by means of the
differential method described in Sec. IIA, precisely the
same procedure can be applied to find the critical
momentum p, for the corresponding state in the system
with a jumping atom of different mass. The critical
momentum p, corresponds in principle to the com-
ponent along the unstable mode q&, required to place the
trajectory on the different CS+ or CS of the new sys-
tem, where it oscillates about the plane q', =0 rather
than q, =0. However, the computation effort is greatly
reduced when the study is restricted to changes of criti-
cal momentum induced by a differential change in mass.
In effect we confine attention to the mass derivative of c
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at M, =M. It is important to observe that a trajectory
that lingers on the top of the barrier does so however
one defines the plane of oscillation. In fact, the new re-
action coordinate q', =q, +5+,a,,q, (see the Appendix)
oscillates with a phase that depends on q(t) so that any
individual q,- appears with an essentially random phase.
As it enters q,

'
linearly it thus vanishes from (q,'). The

criteria (q; ) =0 and (q,') =0 therefore lead to identical
results for p, .

A second useful point is that, when the mass change is
small, an excellent guess for p, is given by the value of
p, previously calculated for the corresponding state for
M& ——M, so that fewer iterations are needed to converge
on the new critical value. The same program, modified
only to treat the different dynamics associated with the
new mass, gave the value of p, for the new state in less
than 1 min of CPU time.

As examples Table II gives average values of c and K

at two different temperatures, obtained by the pro-
cedures just described, for the anharmonic expansion for
Lennard-Jones (LJ) argon (see the Appendix) for com-
parison with the exact values for the same model evalu-
ated analytically. There is excellent agreement between
the two sets of data. These results provide a check on
the procedures that are the basis for our subsequent ex-
ploration of conversion coefficients and isotope-effect
factors for full interatomic forces. A summary of these

lpga

latter calculations is provided in Sec. III.

III. NUMERICAL RESULTS

Our calculations follow earlier simulation of vacancy
jumps by Bennett in which the conversion coefficient and
nonharmonic isotope-efFect factor were first computed
for a Lennard-Jones fcc crystal near its melting point.
Our work expands on these efforts in two directions.
First, as explained above, we base our calculations on
the SM-ART treatment in order to establish a rigorous
theoretical framework for the results. Second, we have
pursued these goals with much improved statistical pre-
cision. As will be apparent in what follows, the more ac-
curate results allow new insight into the temperature,
volume, and model potential dependences of the proper-
ties, and hence to a specific understanding of the anhar-
monic effects and their origins in atomic interactions.

As in the original SM-ART formulation by Toiler
et al. " our numerical results focus on particular models
of Ar, Cu, and Ag. Details of the Lennard-Jones poten-
tia1 employed for Ar and the Morse potential used for
Cu and Ag are provided in the paper by De Lorenzi
et al. ' that immediately precedes the present work, to
which the reader is referred. For reasons of computa-
tional effort our calculations were confined to a 32-site
fcc cluster with periodic boundary conditions, and with
all sites but one occupied by atoms interacting through
the chosen force laws. Details of the potential range and
boundary effects are discussed by De Lorenzi et al. ' It
is our experience that these questions have little material
effect on the conclusions drawn from the results reported
in what follows.

In order to obtain a broad understanding of the pro-

cesses under study we have completed model calcula-
tions at several levels of approximation. These include a
full numerical investigation in which the real manifolds
are sampled for the complete force law in order to ob-
tain a complete and accurate determination of c and ~,
together with their temperature and volume depen-
dences. We refer to these calculations below as pertain-
ing to the exact model. In addition, it has been valuable
to examine the analogous results obtained by sampling
methods when the exact model potential is replaced by a
smoothed model that contains only the low-order terms
of a truncated anharmonic expansion of the potential en-
ergy about the saddle-point configuration, as described
in the Appendix. This system differs from the exact
model mainly by the elimination of hard-core repulsive
energy as two atoms approach each other closely. We
refer to these results as deriving from sampling for a
model with a truncated anharmonic expansion. Finally,
from earlier work, we have available analytical results
that express c and K by a low-temperature expansion in
powers of T, that also depends on an anharmonic expan-
sion of the potential energy in the vicinity of the saddle-
point configuration. These results are referred to as
deriving from an analytica1 treatment of the anharmonic
expansion.

Results for the conversion coefficient c and isotope-
effect factor ~ as functions of temperature for these three
different calculations are given for fcc Ar in the upper
panels of Fig. 4. Each point in Fig. 4 required a sample
containing 400 independent configurations. The error
bars, where visible, indicate that the final uncertainties
are kept below 1'% in both c and ~. Figure 4, together
with Table II, shows that the analytical and numerical

Conversion Coefficient Isotope Effect Factor

'1.0— 1.0

0.9— —0.9

0.8-

1.0

0.9-
Ag

1.0 ——

- —,; —0.9
Ag

( i I a I I i "(
~ oM

—0.90.9-
Cu Cu

( i ( i I ~ (, ( ~ I I I I I I ( I l

0.0 0.4 0.8 0.0 0.4 0.8
T/T T/T

FIG. 4. The conversion coefficient c and the isotope-erat'ect
factor K as functions of T/T for the exact models of fcc Ar,
Ag, and Cu are shown by solid circles and connected by a
dashed line as a guide to the eye. Analytical results for the
anharmonic expansion (Ref. 11) (solid line) and sampling re-
sults for the same potential give identical results for argon
(open circles). Points (6) are values for c and ~ computed by
Bennett (Ref. 6) for Ar. Points (A) are experimental measure-
rnents of ~ from Peterson (Ref. 2); they agree with the exact
models but not with the anharmonic expansion (see text).
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TABLE II. Values of the conversion coefticient and isotope-effect factor at two temperatures for
the model potential of the Appendix, as computed by the numerical procedure (fourth and sixth
columns) together with the corresponding analytical values (Refs. 11 and 12) (third and fifth columns).
The second column gives the number of states on SH used in the sampling.

0.50
1.00

400
400

C

Analytical

0.9868
0.9790

C

Numerical

0.9855+0.0016
0.9801+0.0020

K
Analytical

0.9558
0.9513

K
Numerical

0.9545+0.0028
0.9482+0.0038

results for the anharmonic expansions are in essentially
exact agreement. This verifies that each method pro-
vides an adequate account of the dynamical behavior for
the smoothed potential. A startling discrepancy never-
theless exists between the exact model and the results for
the truncated expansion. Whereas the latter exhibit only
a weak linear temperature dependence in both c and ~,
the results for the realistic potential exhibit a nonlinear
dependence on T and a much larger deviation from uni-
ty. These effects are far outside the statistical uncertain-
ties and must be regarded as firmly established by our
calculation.

The lower panels of Fig. 4 compare the exact models
with predictions for the truncated potentials of Cu and
Ag. In both cases, and for both c and ~, there is a re-
markable similarity between the calculated results and
those for Ar. The calculated isotope effects obtained
from the exact model for Cu and Ag agree well with the
measured values, shown as solid triangles. More global-
ly, all three exact calculations give an isotope effect near
the melting temperature (T ) of about 0.87, which is

typical of the values more generally observed for fcc lat-
tices. It seems apparent that the fcc lattice produces an
isotope effect that is decreased by anharmonicity from
the harmonic value" at low temperature to this fairly
reproducible value near T, much as suggested earlier
by Flynn.

Analogous comments describe the calculated conver-
sion coefficients. In each case the exact values decrease
from unity at T =0 to about 0.9 at T, and with func-
tional forms that have a remarkably similar dependence
on T/T . The corrections to rate theory these results
require are rather modest, and amount to about 10% at
melting. This confirms earlier theoretical esti-
mates ' "' ' for dynamical corrections to rate theory
in fcc systems. We note that some discrepancy exists be-
tween our LJ value of c near T and that given earlier
by Bennett. We believe that the differences are likely to
be statistical in origin, rather than arising from
differences of principle or from the different criteria em-
ployed for the critical trajectories. Numerical estimates
of dynamical corrections to rate theory for surface
diffusion reported by Voter and Doll' ' also amount to
about 10% in the range of temperatures experimentally
observed. Thus conventional rate theory as formulated
by Vineyard gives an excellent approximation to the true
jump rate for these systems with high barriers to atomic
migration. However, this situation is not general and
breakdown may occur for interstitial migration or even

for vacancy migration in softer materials with lower po-
tential barriers.

The precision with which our calculations distinguish
the consequences of different interatomic potentials
affords a unique opportunity to explore the physical pro-
cesses that determine the isotope effect and conversion
coefficient of realistically anharmonic crystals. For this
purpose the isotope effect is the main focus of attention.
In practice, the conversion coefficient itself cannot be
measured, and amounts at most to 10% changes of a
rate that varies exponentially with temperature by many
orders of magnitude over the experimentally accessible
range. In contrast, the isotope effect —mainly the mass
dependence of the conversion factor —is experimentally
accessible to 1% precision in favorable cases, given the
diffusion mechanism, and remains the only available
monitor of dynamical processes that take place during
the diffusion jump. Our discussion of the detailed dy-
namics is therefore restricted to the isotope-effect factor
K.

The results in Fig. 4 suggest that closed-shell repulsion
may be the critical ingredient in determining the ob-
served isotope effects. One may reason that the anhar-
monic expansions all give similar but incorrect isotope
effects, and that by construction they differ from the ex-
act results, which all give similar and correct behavior,
mainly by the omission of the hard-core forces. There-
fore our purpose in what follows is to investigate the ac-
tual role of atomic size in general, and core repulsion in
particular, in determining the isotope effect. To this end
two distinct series of calculations have been made. The
first involves the character of the trajectories and the
second an alternative simplified simulation of atomic
size.

We have followed trajectories of the exact and trun-
cated systems from the same initial configurations,
through the critical condition at which a jump does or
does not occur, to identify the differences caused by the
hard core of the exact potential. In general the trajec-
tories of the two systems are remarkably alike. We find,
however, that large departures occur in a small,
temperature-dependent fraction of the trajectories. It
turns out that these differences invariably originate at a
point on the trajectory at which the diffusing atom un-
dergoes a vigorous collision with one of its neighbors,
such that the hard-core forces of the exact potential ex-
ert a significant effect and thus modify the subsequent
evolution of the system. Moreover, we find that it is
precisely this same subset of trajectories that have large
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changes of critical momentum, and that contribute the
overwhelming portion of the calculated change of iso-
tope effect. These results therefore establish beyond
doubt that the observed isotope effects are determined in
large part by infrequent, highly anharmonic processes
that lie completely beyond the scope of available analyti-
cal theories. This is the reason the observed behavior
has remained unexplained. From our present perspec-
tive we may observe that the repulsive core of the poten-
tial has a specific effect in deforming the center mani-
fold, and to an extent that is strongly mass dependent.
It is these changes that the isotope effect monitors.

Our conclusions are supported by the results of trajec-
tory calculations summarized in Fig. 5. The figure
shows, trajectory by trajectory, how the normalized frac-
tional deviation At." of the conversion coefficient from its
truncated-potential value depends on the dynamics of
the particles in the vicinity of the migrating atom. To
obtain this concise information we have made use of the
fact that motion along small principal radii of saddle-
surface curvature (i.e., large curvatures) corresponds to
relative moments localized at the migrating atom and its
neighbors. These geometrical features of the saddle sur-
face are described in an earlier report' and will not be
reviewed here. For the present purpose we merely em-
ploy the components of the motion along these specific
directions in configurational space to project out ener-
getic collisions that involve the jumping atom. In Fig. 5
the fractional change of conversion coefficient is shown
as a function of Q=g, s, /p, for the trajectory. Here E,

is the summed kinetic and potential energy owing to
motion and displacements of the initial state along direc-
tion i (the harmonic value was used for the potential),
and p, is the principal radius i of saddle-surface curva-

ture. Q is therefore a monitor of the behavior of ener-
getic relative motion between the migrating atom and its
neighbors. The behavior of time-reversed trajectories
from the same initial state is also indicated in Fig. 5.

It is strikingly evident in Fig. 5 that the great majority
of trajectories, and particularly those with Q small, have
b,c=0. Particularly for Q large, however, there is a
significant fraction of trajectories with Ac large and neg-
ative. This fraction decreases at lower temperatures, as
shown at top left in Fig. 5 and as indicated by the histo-
grams. The identifications of these changes with ener-
getic local collisions is further confirmed by the fact that
trajectories with initial velocities so directed as to in-
crease the initial displacements (solid points) invariably
have larger deviations than their time-reversed analog
(open circles) that have the same value of Q but in which
the velocity is directed to decrease the displacements.
The velocity reversal gives a longer time interval for the
energy to disperse before a collision. All these results
therefore point clearly to the way in which the changes
of c arise from local strong collisions during a potential
jump event.

With these results in mind we have performed addi-
tional calculations to identify the explicit effects of atom-
ic size. Rigid cores of radius o. ' were superposed on the
truncated expansion for the Lennard-Jones case in order
to tune the potential from the smooth form to a more
realistic form with a variable core size obtained by
changing o '. The results provide a convincing
confirmation of the core effect discussed above. As seen
in Fig. 6, both c and ~ near T remain close to their
truncated-potential values until 0. ' approaches 0.9~, with
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FICs. 5. Fractional change of c between the exact and trun-
cated potential results for each sampled configuration on SH,
shown as a function of Q =g, e;/p, (see text) at T =0.5T and
T= 1.0T (T =0.67m; see paper I). The faint lines indicate
the mean value of Q for the sample. The inset histograms
show the long, temperature-dependent tails of the distributions
that result from energetic hard-core collisions for these two
temperatures.

FIG. 6. Conversion coe%cient and isotope-eA'ect factor at
fixed temperature T = T and density p=p when the anhar-
monic expansion is augmented by a hard-core interatomic
repulsion of varying diameter o' (in units of cr, a being the
usual Lennard-Jones diameter). Points (A) are results for the
ordinary Lennard-Jones potential at o.'„,=1.02.
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whence, from the derivatives in Fig. 6,

V- =0.46+0.03C)C

av
and

(32)

V =0.6+0. 1
BV

(34)

near T . These results show that the fractional changes
of c and ~ have the same order of magnitude as the
volume changes that cause them at the equilibrium den-
sity near melting. Accordingly, the pressures required to
produce measurable isotope-effect changes are not readi-
ly achieved. Nevertheless, the calculated temperature
and volume dependences of the isotope effect are predic-
tions of the theory that remain for experiment to ex-
plore.

cr the Lennard-Jones radius, at which point marked
reductions both of c and ~ begin. For this temperature
the appropriate hard-core radius of the model is 1.02o. ,
obtained by extrapolating Verlet's liquid-state data.
When o. ' is increased to 1.02o. , the values c =0.90 and
~=0.89 are obtained from our hard-core calculations.
Thus the superposition of an appropriate atomic size on
the smooth potential brings the properties back into ex-
cellent agreement with the exact results of Fig. 4. The
insensitivity of these phenomena to all except the core
forces and size is once more clearly emphasized. It is
worth noting in this connection that for o.'=1.06o. the
saddle point itself is occluded by rigid-core overlap. The
seriousness of this core radius constraint on saddle-
surface dynamics has not been given sufficient attention
in prior research.

If the jump characteristics depend so strongly on the
core radius then there must exist a complementary sensi-
tivity to the crystal density and hence pressure. We
have carried through the relevant calculations to confirm
that this is the case. Because the compressibility of
solids is small, however, the resulting effects on c and ~
turn out significant but not large in size. A simple esti-
mate comes from the hard-core model and the results in
Fig. 6. We may write

For Ar we have pursued these questions one step fur-
ther by means of explicit calculations of c and ~ for the
exact model system. Table III compares the results for
three lattice spacings with the estimates from the hard-
core calculations. The exact and hard-core results for
the changes of c and K agree to within their statistical
uncertainties. Thus Table III provides a final
confirmation that these properties are largely determined
by the dynamics of hard-core collisions.

IV. SUMMARY

We have shown in this paper that molecular dynamics
may be used to incorporate exact dynamical behavior
into an investigation of vacancy jump processes in solids.
This permits a complete and accurate evaluation of the
atomic jump rate within the SM-ART treatment. To the
extent that long-term correlations appear negligible we
obtain an exact prediction of the classical jump rate. In
conjunction with the calculations of saddle-plane proper-
ties by De Lorenzi et al. ' described in the preceding
paper our results offer, for the first time, jump rate pre-
dictions for solids with 1% accuracy directly from the
atomic masses and interatomic potential. For the fcc va-
cancy diffusion discussed here, the many-body rate
theory of Vineyard is itself an excellent first approxima-
tion; it overestimates the jump rate by only 10% at the
melting temperature and the error falls to zero as T~O.

We have used the available computational precision to
study the dependence of conversion coefficient and
isotope-effect factors for these systems on the details of
their interatomic potentials. The isotope effects calculat-
ed for the realistic potentials agree very well with experi-
mental results for fcc metals near the melting tempera-
ture, and the calculations give very similar values of ~
from one system to the next, just as is observed. It has
been possible to demonstrate unambiguously that the
values of c and ~ are mainly determined by the core
repulsive forces, through infrequent hard-core collisions
undergone by the migrating atom during the jump
events. This accounts for the remarkable similarities
among the conversion coefficients and isotope-effect fac-
tors of different model fcc solids when shown in reduced
form as a function of T/T . The calculations predict a
nonlinear decrease of ~ from its harmonic value at T =0,
and also a significant volume dependence of ~, both
deriving from these hard-core effects.

TABLE III. Comparison between predicted [Eqs. (33) and (34)] and computed values for c and K for the model of Ar at three

different densities and at fixed temperature T = T

a/0

1.6403
1.5771
1.5489

0.00
—0.05
—0.10

P/Po

1.00
1.05
1.10

C

Predicted

0.890+0.010
0.872+0.010

C

Computed

0.905+0.005
0.885+0.010
0.874+0.015

K
Predicted

0.865+0.016
0.830+0.016

K
Computed

0.891+0.006
0.871+0.015
0.848+0.018
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coefficients d, k of the potential V at Po are

u ik
——2hik d 1i k

Uu =('9 +ei+Ea)heal d«1

w;k ——(i) —E;+Ek )h;I, d „k,2

h;k =[i) +c., +e„+2(e,Ek)' ]

X[i) +e;+Ek —2(e;ek )'~ ]

(A6)

(A7)

(A8)

(A9)

APPENDIX

i j,k =1 i j,k, r =1
(Al)

The truncation leaves an anharmonic model potential
which contains some of the anharmonic properties of in-
terest in diff'usion problems, including a curved saddle
surface and some anharmonic characteristics of CM,
CS+, and CS, but which can still be treated analytical-
ly. The coefficients that appear in Eq. (Al) can be deter-
mined for a given interatomic potential, as in Refs. 10
and 11 for the Lennard-Jones potential, and the analyti-
cal results then used to identify the eff'ects of higher
anharmonic terms.

Here we employ the power series truncated after
terms of third order in the q, so that V, contains only
coefficients of the kind

Our aim here is to introduce a useful model potential
that we can use both for explicit analytical calculations
and for testing the numerical procedures described in
Sec. II B. In particular, we are interested in explicit ex-
pression for the center manifold (CM) and the center
stable and unstable manifolds (CS+ and CS ) for this
system, as well as their mass dependences. For this pur-
pose we use a number of results found in earlier
work' ' to which reference should be made for details.

The chosen potential is obtained from a general poten-
tial at a single saddle point Po, such as that in Eq. (10),
when the term contribution V, is expressed in a power-
series expansion in the displacements from Po:

N N

d;,kq;q, qk+ —,', g e„k,q;q, qkq, +

The critical momentum that displaces the initial tra-
jec ory ( qi qx 0 p2 px) on SH onto CM+
or CM is

P,+=+nf+g . (A 10)

N

q,'=q, +5Q;, Q, = g a, q, ,
j =1

N

p,'=p, +5P, , P, = g a,,p, ,
j =1

E,'=E, +6E, , E, = —2C., O.. .

d&j
'k =

d&j
'k + ~D&jk

N

D~k = g (a„;d„ik +a„~d;„k +a„yd~„)

(A 1 1)

(A12)

(A13)

(A14)

This result can be used in Eq. (19) and the integration on
SH carried out either analytically or numerically to yield
the result for the conversion coefficient to first order in T
given in Ref. 11.

When the mass M1 of the jumping atom is changed,
the system with changed mass has new orthonormal
eigenvectors that are rotated with respect to the old
ones. Moreover, the two systems possess two distinct
CM, CS+, and CS . For small changes in mass,
M

&
~M, ( 1+25), the linear variation with 5 of the

quantities that enter the equations for CS+ and CS can
be evaluated by first-order perturbation theory. The cal-
culation proceeds by first expressing the new coordi-
nates, momenta, eigenvalues, eigenvectors, and third-
order coefficients (identified here by primes) in terms of
the old ones. 12

a'V
Bq;Bq Bq

(A2) Here

Then Eqs. (15) and (14) for CM, CS+, and CS can be
developed as power-series expansions in the q, :" and

5=d in(M, )'
2M1

(A15)

N Nf=— X "Jq qk+ — g UkPPk+ ~ ~ ~ (A3)
i, k =2 i, k =2
N

X u'kqpk+ ' ' '

i, k =2

2'gqk +pk
F+ —— d&, iqi g dtik

k=2 4 I +Ek

(A4)

&&q, +~f+g+ (A5)

where the coefficients u;k, U;k, and w;k, fixed by the ei-
genvalues E; (note that Ei ———i) ) and the third-order

2E,Ja,) ——(a', a', )
E, —E.J l

(i&j) and a, , =a'& a'& . (A16)

u, k
——u, k +SU;k,

Uik —Ua +&Vik

Wik wik +~~ik
where

(A17)

(A18)

(A 19)

From the above results, after a long but simple calcu-
lation, one can obtain all the coefficients that enter in the
expression of the CS+ and CS
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U, k
——u, k A, k

—2
4~1 ~k

2D );k

tk —4~ &k

8';k ——U;k —C; V;k +2m; U;kCZ;;,

and with

(A20)

(A22)

q, =q, +5Q;,

p,. =p, +6P, —5b... b, , = g (a', .a', )p, .
j=1

(A28)

where tildes are used to denote the component of P. By
means of Eqs. (Al 1), (A12), and (A27) we obtain the new
state P in terms of the old coordinates and momenta, to
the lowest order in 5:

4t,k t,'k —8E, e k ( ct, , + uk k )
A,-k ———

4CI Ck

tk =1 +~ +~k2

2
tik I +11+~i +ii + k +kk

(A23)

(A24)

(A25)

The critical perpendicular momentum p,
'

along the new
unstable mode q &

can thus be written by analogy
with Eq. (A10), for any configuration
(q', ,q2, . . . , q~;p', ,p ~, . . . , pi'v ) of the new system, as

f I I I Ip. =+'9 qi+F+(q& q2 . qiv'p2 piv ) . (A26)

Equation (A26) can now be used to calculate the conver-
sion coeKcient c' for the system with the diQ'erent mass
by means of the equivalent of Eq. (19) for this new sys-
tem.

In order to apply these results in the difterence
method required to compute the isotope effect we need
to specialize the result of Eq. (A26) by explicitly intro-
ducing the correspondence between the state
P:—(O, qz, . . . , qiv;O, p2, . . . ,piv) of the system with all
masses equal, and the equiprobable state
P:—(q ', , q z, . . . , qi„;p ', ,p z, . . . , pi'v ) of the system with
the mass of the jumping atom changed. %e note here
that the point P does not lie on the new saddle surface
SH', but rather on the old SH. However, it is still possi-
ble by means of Eq. (A26) to find its critical momentum
(note that one cannot now disregard terms involving the
q', coordinate). The correspondence given in the text in
Cartesian coordinates can be expressed in the normal
coordinate of the new system as

On applying the above relation to Eq (A2. 6) and by re-
peated use of Eqs. (All) —(A19) we finally obtain the ex-
pression for the corresponding critical momentum:

p, =p, —53 +58, (A30)

with

1V"=p ~»+2 X ("kp ~k+Uk~;pk)+ g ~;kq;~k
i, k =2 i, k =2

(A31)

2nqk+S k&=+&g, P+ g d»—k z g,
4r] +Zk

N

z q 2 ( Uikqiqk +uikqi Qk +uik 8'qk )
i, k =2

( Vikpipk +U~kplPk +UikP;pk )
i, k =2

+ g ( ~'kq'pk +~'kq Pk +~ kR pk)'''
i, k =2

By substituting Eq. (A27) into Eq. (A26) the critical
momentum along the new unstable mode p,

' can now be
evaluated for every I' in terms of the old coordinates and
momenta. For our difference calculation we are interest-
ed, instead, in the component of the new critical momen-
tum along the old unstable mode q~ that is given to first
order in the mass change by the equation

(A29)

qi =q;
X

p =p —~~,' ~l= g (ai.a'i)p, '
*

j=1

(A27)
Term 2 comes from the correspondence of state points
used in the diA'erence method while term B comes from
the changes of center stable or unstable manifold intro-
duced by the mass change.
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