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Aharonov-Bohm effect in the hopping conductivity of a small ring
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By a direct numerical simulation of variable-range-hopping conduction we study the magneto-
conductance oscillation in a strongly disordered small ring as a function of the magnetic flux
through its aperture. We find well-defined Aharonov-Bohm oscillations with flux periodicity
p p=h/e and &0/2 in the hopping conductance provided the ring is small and the temperature low.
In the large-ring limit and for higher temperature we find that only the &0/2 oscillations survive,
which is consistent with the recent experimental finding of Poyarkov et al.

There has been a lot of recent interest ' in the
Aharonov-Bohm-type interference phenomena in small
condensed matter systems such as metal rings of mesos-
copic dimensions. Most of the current work has been on
metallic systems where electron motion is diffusive
(with the system size being much larger than the elastic
mean free path). Some very recent publications deal
with interference effects in semiconductor microstructures
where electron motion is ballistic. The subject of this pa-
per is to discuss the Aharonov-Bohm effect in a still
different transport regime, namely conduction in a strong-
ly disordered system where the electronic transport is via
the hopping process.

In an earlier paper, Nguyen, Spivak, and Shklovskii
considered theoretically the issue of Aharonov-Bohm os-
cillations in the hopping conductivity of a strongly disor-
dered system. Based on strictly zero-temperature simula-
tions of a simplified model Nguyen et al. claimed that
there is a phase transition in the period of oscillation from
the flux period h/e (Aharonov-Bohm) to h/2e (Sharvin
and Sharvin) as a function of the degree of compensation
x of the system. For x & x, =5% they found pure
Aharonov-Bohm oscillation (h/e period) whereas for
x & 5% the period was found to be h/2e in their numerical
study. The value of x„ the critical disorder, was found to
be independent of the system size in their simulation at
T=O. We emphasize that the tight-binding Anderson
model simulation of Ref. 9 is necessarily restricted to
T 0 where, in principle, no hopping conduction can take
place.

We have carried out a numerical simulation of the
finite-temperature hopping conductivity in a ring geom-
etry which we believe to be more appropriate for studying
the Aharonov-Bohm effect than the grid geometry used in
Ref. 9. In contrast to the simulation of Ref. 9 where only
the overlap integral between perfect lead terminals was
calculated within a simple tight-binding Anderson model
on a square lattice, we carry out an actual variable-
range-hopping (VRH) transport calculation using the
critical path percolation model of Ambegaokar, Halperin,
and Langer. ' This model has recently been used success-
fully" to study fluctuations in the low-temperature hop-
ping conduction in narrow silicon metal-oxide-
semiconductor field-effect transistors. ' Our results in the

ring geometry disagree with the results (in the grid
geometry) of Nguyen et al. in one important aspect —we
find that at T=0 the value x, of the critical disorder de-
pends on the system size and goes to zero for infinitely
large rings. At higher temperatures our hopping transport
simulation indicates that x, is always zero. Thus, our re-
sults indicate that there is no phase transition, and only
the h/2e flux-periodic oscillations survive at finite temper-
atures (or, for larger rings at T =0) in the presence of any
finite disorder (xAO). We believe that our finite-tem-
perature results are valid for other geometries with
equivalent topology. Our results are consistent with the
very recent experimental findings of Poyarkov et al. ' and
may explain why they observe only the h/2e period oscil-
lations in the magnetoresistance of disordered oxidized
PbTe films and no h/e period. We have also done an
analysis of the temperature dependence of the ensemble-
averaged conductivity of the system, and find that, in
agreement with the experimental results, Mott's variable
range hopping law is obeyed (we may add that the
simplified model of Ref. 9 is inadequate for studying the
temperature dependence of conductivity and, in this sense,
is a rather poor model since conduction by hopping can
take place only at nonzero temperatures. ) We point out,
however, that any comparison between our theoretical
simulation and the experimental work of Ref. 13 could be
somewhat inappropriate because of the difference in the
two geometries.

Our model consists of a ring (connecting the perfect
source and sink current leads) along which electron trans-
port takes place via the variable range hopping mecha-
nism. Each arm of the ring is assumed to be one dimen-
sional (i.e., single channel) for simplicity. Transport takes
place via hopping of an electron through localized states
distributed along the ring. The effect of the magnetic field
is incorporated by assuming that the electronic wave func-
tion along one arm of the ring has an additional phase fac-
tor e' ' compared with that in the other arm where p is
the flux through the aperture of the ring and po =h/e. We
assume that the magnetic field does not penetrate the ring
itself (i.e., the ring is taken to be ultrathin) which allows
us to neglect Zeeman effect or other such direct effects of
the magnetic field itself on the hopping process. '

The numerical simulation of the variable range hopping
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is carried out in the standard fashion" by using the
Miller-Abrahams resistive network model. Instead of ob-
taining an exact numerical solution of the resistive net-
work we follow the percolation model suggested by Am-
begaokar, Halperin, and Langer ' and calculate the resis-
tance of the network by using the critical resistance tech-
nique. We have also carried out an analysis similar to
that of Nguyen et al. by using an Anderson model to cal-
culate the overlap integral between the source and the
sink for our ring geometry. We do not find any phase
transition around x =x, = 0.05 (where the flux periodici-
ty changes from h/e to h/2e) for large rings. For smaller
rings, we find, in contrast to the results of Ref. 9, a sys-
tematic dependence of x, on ring size, and x, tends to van-
ish for large rings indicating that only the h/2e oscilla-
tions exist. These results (at T=0) based on the Ander-
son model are consistent with our more rigorous finite-
temperature variable-range-hopping calculations de-
scribed below.

The conductivity in the presence of the magnetic flux
goes as rr —~&~+Aze ' '~, where A~ (Az) is the am-
plitude from the upper (lower) arm of the ring. For the
calculation of

~ A;
~

(i =1,2), we use the standard
Miller-Abrahams resistive network model and the per-
colation technique as stated above. The percolation model
does not give us the sign of A; which is important for in-
terference effects. We obtain the sign by noting that at
T=O,

sin(A;) Ii =1,2=sin[rr;(EJ —p)] ~i =1,2,
where E~ is the energy of the random impurities. In our
calculation we make the reasonable assumption that this
sign is unaltered at low but finite temperatures.

We show our simulation results based on the percola-
tion model in Figs. 1-3. In Fig. 1 we show the ensemble
averaged magnetoconductance as a function of the flux
through the ring aperture at a fixed low temperature
kaT=0.001 (energy units are such" that the localized
electron levels are distributed randomly around the chem-
ical potential in an energy window between ~1 with x
defining the fraction of these states below the chemical
potential). The ensemble averaging has been done by
averaging over about 1000 different rings. In Fig. 1(a) we
show our results for a very small ring with the length of
each arm of the ring being L =200 (200 impurities along
each arm of the ring). One can clearly see that for small
x =0.002 the period of oscillation is h/e whereas for the
larger value of x =0.1 the period of oscillation is h/2e.
Thus, our results for a small ring are consistent with that
of Ref. 9. However, in Fig. 1(b) we show our results for a
larger ring with L =2000 where one has to go to much
smaller values of compensation (x =0.0002) before h/e
oscillations show up. Thus, in contrast to the results of
Nguyen et al. we find a systematic dependence of the
critical disorder x„on the system size L and, in fact, for
large L, x, vanishes. We show this in Fig. 2 where we plot
our calculated value of x, against L which shows that for
large rings only the h/2e Sharvin-Sharvin-type oscilla-
tions can be seen in the hopping conductivity.

We believe that for finite-temperature hopping trans-
port po/2 is the only allowed period for the following
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FIG. 1. 1no. as a function of the magnetic Aux at T 0.001
for rings with lengths L =200 (a) and 2000 (b). Results for two
different values of disorder x are shown so that both pp (low x)
and pp/2 (high x) oscillations can be seen. Note that one needs
much lower x in (b) to see pp oscillations.
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FIG. 2. The critical value of the disorder x, (above which the
pp oscillations do not exist) as a function of the system size L

reason. As we increase the temperature slightly so that
VRH hopping is still the dominant transport mechanism,
we expect that the sign of the conductivity amplitude
remains the same as that of the weak link in the hopping
path. It then follows that different rings in the ensemble
give randomly different signs. Consequently, the ensem-
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ble averaged logarithmic conductivity ([na) has only a
Pp/2 period, the po period being averaged out. Thus, the
curves with period Po in Fig. 1 disappear at higher temper-
atures.

Finally, in Fig. 3 we plot our ensemble-average value of
[na (where a is the conductivity) against the temperature
(at a fixed magnetic field) to show that one is indeed in
the Mott's variable-range-hopping region. Since we have
assumed the transport along each arm of the ring to be
one dimensional (no interchannel hopping being allowed),

(T/T ) —1/2

we find that (a)—e ' whereas in the experimen-
tal results of Poyarkov et al. ,

' the variable-range-hopping
exponent is the two-dimensional value of 3 rather than 2

since their hopping process is along two-dimensional grids.
But, as we have shown in a different context, two-
dimensional simulations allowing interchannel hopping
gives" the expected exponent —,

' .
One of the puzzling issues raised by our simulation and

the experimental results' is the basic question of the ex-
istence of long-range phase coherence in the hopping con-
duction. Hopping transport is an inherently inelastic pro-
cess since it involves absorption and emission of phonons
in allowing the strongly localized electrons to make transi-
tions. Existence of well-defined quantum-interference os-
cillations (h/e or h/2e) implies that somehow quantum-
phase memory is not completely destroyed in spite of these
phonon assisted transitions. ' Experimental results '

clearly show that phase coherence is not destroyed com-
pletely in the hopping process. One possibility is that—E/I,
phase memory is destroyed exponentially as e ' where
L; is some "typical" inelastic scattering length and, even
in a variable-range-hopping process, phase coherence is
not completely destroyed unless L »L;. We can, for ex-
ample, take L/L; = n, where n is the number of hops the
electron typically makes in traversing the distance be-
tween the source and the sink. In our simulation (even for
the larger rings) we have taken care to keep n & 3, which
ensures that substantial phase memory is maintained
throughout the hopping process leading to the possibility
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FIG. 3. The magnitude of lna. as a function of T ' . The
straight line plot implies that the Mott s variable-range-hopping
exponent is —, .

of quantum-interference eA'ects. One explanation ' for
this is that the destruction of the phase memory of the
electrons depends on the energy changes in the hopping
process. In the VRH problem, the energy changes involve
long-wavelength acoustic phonons, and, are, therefore,
very small causing only small deviations in the phase.
This is consistent with the recent theoretical finding in
Ref. 15. There are also strong experimental indications'
that phase memory is not completely destroyed in hopping
process assisted by long wavelength low-energy acoustic
phonons. More experimental and theoretical investigation
is needed to clarify this point.
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