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Backscattering of light near the optical Anderson transition
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We propose that the optical Anderson transition can be observed by studying the coherent
backscattering peak near the IoAe-Regel limit l=X. We carry out a scaling theory for the line
shape of the backscattered peak above and below the transition. The line shape of the peak ex-
hibits a marked change as the disorder increases, being difIerent below and above the transition.

The phenomenon of weak localization' has recently
been applied to photons. For electrons, weak localiza-
tion leads to quantum interference which reduces the con-
ductivity even in the weak-disorder limit. For classical
waves, it leads to a narrow backscattering peak (BSP)
with a width of order k/I, where k is the wavelength of the
scattered wave and 1 is the elastic transport mean free
path. This phenomenon was first observed for polys-
tyrene spheres suspended randomly in water and later ob-
served ' for random solids which also show backscattered
speckle analogous to the universal conductivity fluctua-
tions. ' " After an ensemble average is performed, ' the
backscattered intensity reveals the same narrow BSP that
is observed for random fluids. Thus, weak-localization
effects are general phenomena that occur even for classi-
cal waves as a BSP. The theory for the line shape was
first given' using a diff'usion approach, but taking into ac-
count the optical time-reversal trajectories, which leads'
to

BSP above and below the Anderson transition is directly
related to the behavior of the optical diffusion constant.
Thus, instead of measuring the diffusion constant, we sug-
gest that the BSP includes all the information needed
about the transition.

The optical Anderson transition occurs when the Ioffe-
Regel condition is reached

l=X . (2)

The scaling theory of the Anderson transition states
that the diffusion constant tends continuously to zero as
the disorder is increased. Near the Anderson transition,
the diff usion constant is scale dependent D =D (L,g),
where g is the correlation length above the transition
and the localization length below it. '- For L (g, the
diffusion constant is identical- ' on both sides of the
transition, and given by

D =Do(l/L), L & g,
where D p is the diffusion constant without the interference
effects, —,

' Cl. The crossover in the length dependence of D
from weak disorder to strong disorder has recently been
studied. For L & g, D is no longer symmetric on both
sides of the transition. Here, for L & g, D is given by

where Q(r, r ) is the random-walk probability ' in an
absorbing plane (which we define later) and F(z,z') is
defined by Eq. (1) in Ref. 12. For general boundary con-
ditions, the theory' predicts a line shape which crosses
over from a 1/q behavior at small angles to 1/q behavior
at larger angles. Exact calculations, which take into ac-
count all the ladder diagrams and the maximally crossed
diagrams, ' ' have verified this general line shape and
confirmed the results obtained by the "diffusion" ap-
proach. ' Recently, a precise measurement' of the line
shape of the backscattered peak has revealed the crossover
from the 1/q dependence to the 1/q dependence. More-
over, the generalized theory ' ' which also includes polar-
ization effects was found' to be in excellent agreement
with the precise measurements of the BSP. The theory of
the backscattered peak was recently extended to finite
slabs' and to two-dimensional systems. '

In this Rapid Communication, we extended the theory
of the backscattering of light to strong-disorder systems
near the optical Anderson transition. We develop a scal-
ing theory for the backscattered peak both above and
below the transition, finding that the line shape of the
peak is modified near the transition. Our theory of the
line shape of the BSP may serve as a new tool to probe the
features of the optical Anderson transition, which is the
experimental goal in this new field. The line shape of the

Dol/g above the transition

0 below the transition . (4)

This general scaling behavior of D can be converted
into a generalized diffusion constant D(q, co). As will be
shown below, for the theory of the BSP we need
D (q, to 0), which is given by

Dp, q)I
D(q co 0) = Dnlq, g

' & q ( l (5)

Dol/(, q & (
above the transition. Below the transition, we find the
same behavior for q & g '. However, for q & g ', we
find that D =0. As seen from Eq. (1), the backscattering
intensity is essentially the two-dimensional Fourier trans-
form of the random-walk probability

Q( r')r=P(r —r') —P(r —r' )

where r' is the starting point of the photon random walk
and r'* is the image of r' in the mirror plane. ' ' P(r) is

f fI=Io„)I)Idzdz'd RF(z, z')Q(r, r') [1+cosq (r r')], —
(1)
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image as a solution as introduced by Akkermans, Wolf, and Maynard' is still valid. The solution of the present diffusion
equation is of course different and is given exactly by

n(R, z, t) =(6nDoz' t ) fexp[R +(z —a) /6DIIr' t ] —exp[R +(z+a) /6Dor' t ]j (9)

The reflectance is then given by R =F(t =0) —F(t = IXI),
where

F(t) =„n(R,z, t)d Rdz,

which leads to the expected result R=l. The problem
arises when we calculate the kernel Q(F, F') in Eq. (1)
where we need the exit probability p(R) fn(R, z, t)dt
from a given plane z zo. If one were to assume (in-
correctly) that all photons exit the system once they arrive
agalll at z =a, then P(R) =fn(r, zo=a, l)dt would
diverge logarithmically. This assumption is correct only
when D is time independent. Near the optical transition
where (8) is valid, large photon trajectories which corre-
spond to large times are characterized by a diffusion con-
stant which continuously decreases. Thus, the photon will
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FIG. 2. The curves in (a) and (b) which are denoted by A
correspond to the line shapes of the BSP of Io(q) as a function
of 8. (a) I(q) as a function of 8 above the transition with curves
8, C, and D correspond to diH'erent values of the correlation
length g; ( 101, 100l, 10001. (b) I(q) as a function of 8 below
the transition with curves B, C, and D corresponding to diA'erent
values of the localization length g; g 10I, 100l, 1000l.

exit the material at a plane zo closer to the boundary.
This plane depends on the time spent in the material and
the correct exit plane is given by z =zII(t) where
zo(t) =a(t/r) ' . The exit probability is now P(R)
=fn{R,zo(t), t)dt and isPnite without the artificial loga-
rithmic divergence. We have calculated the three con-
tributions of I(q) in Eq. (7) in the time-domain approach
by using (8) and in the q domain by using Eq. (5) and (6)
and have obtained identical results. In the q domain ap-
proach each mode q has a different diffusion constant and
the exit plane zo will be q dependent (analogous to the
time-domain approach). Thus, in Eq. (6), P(R,z) must
be obtained from

P(R, z) „exp[iq ( R+z)]n(q, co=0)d q,
where we use z =Iqa instead of z =a which applies for a
constant D. This removes the artificial logarithmic singu-
larity as discussed above. We see that the boundary does
not lead to new conceptual difficulties in the scaling theory
for the optical Anderson transition. We still obtain a
coherent backscattered peak even below the transition
once the localization length satisfies g»1. The anoma-
lously diffusive trajectories lead to constructive interfer-
ence and to a BSP. However, the line shape of the BSP is
modified in this region as compared to the weak-disorder
limit I ))A, .

We now analyze the difference in the line shape for the
BSP near the optical Anderson transition. In Figs.
1(a)-1(c),we plot the three contributions to the BSP and
compare them to the BSP III(q) which is obtained if we
use the weak-scattering approximation D Dp instead of
(5) or (g). Figure 1(a) corresponds to II(q) which results
from small loops and therefore its half-width is much wid-
er than Io(q). In Fig. 1(b), we plot I2(q) which corre-
sponds to the anomalous behavior of D(q, to) in the region

' & q & I '. I2(q) is rounder for small angles in con-
trast with the triangular shape of III(q). I2(q) becomes
broader as g becomes smaller. For large angles, I2(q)
crosses III(q) and eventually falls more rapidly due to the
small values of the diffusion constant D-Doql. In Fig.
1(c), we plot I3(q) which is seen to be very narrow with a
half-width of order A,/g. Thus, as ( becomes larger, I3(q)
becomes very narrow. In Figs. 2(a) and 2(b), we plot the
total BSP I(q) as a function of 8 [q (2n/X)8] both
above and below the transition. For (~ IXI, both line
shapes of I(q) above and below the transition coincide
and show a much broader line shape than expected from
the weak-disorder limit given by Io(q). In particular, we
find that for g & 100l, the line shapes of the BSP below
and above the transition become very similar with a
rounded (nontriangular) shape on both sides of the transi-
tion. The asymptotic behavior of I(q) is dominated by
the contribution of II(q) which falls off as 1/q . Conse-
quently, we find that the best fit to our calculated values
of I(q) is given by I(q) —1/q ' —'. As g becomes short-
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er, the contribution of I3(q) becomes more important.
This leads to an asymmetry in the line shape of the BSP
below and above transition. For example, as seen from
Figs. 2(a) and 2(b), for g 10I the shape of the BSP
below the transition is Uery rounded, whereas above the
transition it is almost triangular. Far below the transition
for extremely strong disorder, as g becomes of the order of
interparticle distances, we expect a totally fiat curve with

no BSP. We hope that the above predictions will enable
the experimentalist to locate the onset of the optical An-
derson transition which is the next goal in this new and
rapidly growing Iield.
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