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and a the variational parameter for energy minimiza-
tion. Here the usual boundary condition is employed. '"
The exciton binding energy in a semiconductor quantum
dot is obtained from the energy difference between the
exciton state and a state with a free electron-hole pair.
It should be noted that the Coulomb energy of a free
electron-hole pair in a quantum dot is not zero, because
of the three-dimensional confinement, whereas it is zero
in the cases of bulk crystal, quantum-well, and
quantum-wire structures. Figure 1 shows the depen-
dence of the exciton binding energy on the quantum-dot
radius normalized by the exciton Bohr radius a& in bulk
crystals. It is important to note that the rather small ex-
citon binding energy implies the ionization of excitonic
states at room temperature. In fact, for semiconductor
(CdS) quantum dots with radii in the range shown in
Fig. 1, the excitonic state may be ionized to the
free —electron-hole-pair state at room temperature.

fIfo =m/4aI (.a), (2)

with a =2aR/~ and

The radiative recombination lifetime ~R of excitons in
a quantum dot can be estimated from the oscillator
strength f of the excitonic transition. ' For a free
electron-hole pair in a semiconductor (CdS) quantum
dot, the oscillator strength fo is estimated to be 8.14 us-

ing the relevant parameters, ' and the corresponding ra-
diative lifetime ~R is 440 ps. These values are indepen-
dent of quantum-dot size. When the excitonic effect,
namely the electron-hole correlation, is included, the os-
cillator strength f is enhanced since it is proportional to
the probability of finding an electron and a hole at the
same position. The enhancement factor of the oscillator
strength due to the excitonic effect is given by

I(x)= f dk IS, (k~) —[S,-((k+2)m)+sgn(k —2)S, (
i
k —2

~

m. )]/2]
o (k 2+x 2)2

where S,- is the sine integral function. This enhancement
factor and the corresponding radiative recombination
lifetime are given in Fig. 2 as a function of the normal-
ized radius of the quantum dot. The oscillator strength
increases with increasing quantum-dot size. This is
based on the assumption that the excitation is coherent
throughout a quantum dot. On the contrary, the nor-
malized oscillator strength per volume of 4~a~/3 in-
creases when the quantum-dot size is reduced as shown
in Fig. 1. This is a consequence of the quantum
confinement effect on the spatial correlation between an
electron and a hole. For a CdS quantum dot with 100 A

radius, the radiative recombination time is estimated to
be 20 ps. This value is of the same order as the time
constants of the fast-decay component reported so far in
transient grating measurements.

The excitonic optical nonlinearity in semiconductor
quantum dots can be enhanced due to the large oscilla-
tor strength of the exciton and the discrete energy levels,
which lead to an easily attainable state filling. The
third-order excitonic optical nonlinearity 7 ' corre-
sponding to optical mixing between two incident light
beams with frequencies co, and co& is calculated as' '

(3) —2ip N 1 1
X ( —2cd i + cop,

' rd i, cd i, —
cog ) = + .

['iii(ado 2'�&+ cd~)+ fiy ~][i/i(cd' rd
&

) +A—'y ~~] i'(coo c)d+ihys i fi(cd' ohio )+Ry

(4)

where p denotes the dipole moment of the excitonic
transition, cdo the transition frequency, yi(y) the trans-
verse (longitudinal) relaxation constant, and X is the
number density of quantum dots. Actually the size of
the semiconductor microcrystallites is not uniform but
rather is describable by a distribution. Here the distri-
bution function derived theoretically by Lifshitz and
Slezov' is assumed for the radius of quantum dots. The
dependence of y~ and

y~~
on the size of the quantum dots

is also included as follows:

R~ Vi p V~(+ Xo &

where ~z is the radiative recombination lifetime. Ay„
represents the dephasing arising from scattering and/or
trapping by defect states or surface states and is taken to

be 3.29 meV, corresponding to a dephasing time of 200
fs. The calculated frequency dispersions of 7'" and
g' ' for the degenerate case, i.e., co, =co&, are shown in

Fig. 3. The out-of-phase behavior between 7' ' and 7' ' '

for both real and imaginary parts explains the experi-
mental results very well. The absolute value of 7' ' for
CdS quantum dots is estimated to be about 3.8& 10
esu for a number density N of 10' cm and for the
Lifshitz-Slezov distribution of quantum-dot radius with

0
an average of 100 A. This value is also in good agree-
ment with the experimental value at room temperature. '

In this calculation the oscillator strength of the free
electron-hole pair is employed in consideration of the
aforementioned possibility that the excitonic state is ion-
ized at room temperature. At low temperatures the ex-
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ing and the luminescence measurements. Dependence of
the radiative recombination lifetime on the quantum-dot
size is predicted for the first time and is expected to play
a key role in clarifying the mechanism of the fast decay.
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