Spin-orbit coupling effects in CdGa₂Se₄:Co²⁺ single crystals

Chang-Dae Kim,* Tong-San Cho, Jae-Kuen Kim, and Wha-Tek Kim Department of Physics, Chonnam National University, Kwangju 505, Korea

Hong-Lee Park

Department of Physics, Yonsei University, Seoul 120, Korea (Received 9 February 1987; revised manuscript received 17 July 1987)

Single crystals of CdGa₂Se₄:Co²⁺ were grown by the chemical transport reaction method using iodine as a transporting medium. The optical absorption peaks observed at 4132, 4332, 5970, 6329, 12 903, and 13 793 cm⁻¹ at 292 K can be explained in terms of the electronic transitions of Co²⁺ ion in S_4 symmetry. The crystal-field parameter Dq and the Racah parameter B were found to be 413 and 455 cm⁻¹, respectively. Also the absorption spectrum of CdGa₂Se₄:Co²⁺ single crystals obtained at 77 K in the 700-800-nm region was analyzed using S_4 symmetry along with spin-orbit coupling effects.

CdGa₂Se₄ is a tetrahedrally coordinated semiconductor crystallizing in the defect chalcopyrite structure. Its space group is $S_4^2(I\overline{4})$. It is known as an orderedvacancy compound having one-quarter of the cation sites unoccupied.¹ The structure of $CdGa_2Se_4$ can be considered as a three-dimensional (3D) superstructure of zinc blende, i.e., doubling of the zinc-blende unit cell along the c axis results in the $CdGa_2Se_4$ structure. Much attention has been paid to CdGa₂Se₄ and its optical properties. Abdullaev et al.² reported the band-gap transitions in the fundamental absorption edge region. Optical absorption studies were done by Kshirsagar and Sinha.³ Photoconductivity,⁴ photoluminescence,⁵ and Raman scattering⁶⁻⁸ have been studied in CdGa₂Se₄. However, there exists no published results to date about the optical properties of $CdGa_2Se_4$ doped with transition metals.

In this Brief Report we are going to present results on the crystal growth of CdGa₂Se₄:Co²⁺ single crystals and its optical properties. In particular, the splittings of the highest energy level (⁴A and ⁴E) of the Co²⁺ ion in S₄ symmetry are analyzed in terms of the spin-orbit coupling effects in the CdGa₂Se₄ host.

Single crystals of CdGa₂Se₄:Co²⁺ were grown by the chemical transport reaction (CTR) method using iodine as a transporting medium. The charged ampoule was evacuated at $\sim 1 \times 10^{-6}$ mm Hg, and the sealed ampoule was placed into a two-zone furnace at temperatures 750 to 900 °C. The single crystals of CdGa₂Se₄:Co²⁺ grown had a lamella habit and an average size of $4 \times 3 \times 1.5$ mm³. The crystal structure determined by x-ray diffraction analysis is a chalcopyrite structure with lattice constants a = 5.762 Å, c = 10.833 Å, which are in good agreement with the results obtained by Kshirsagar et al.³ For optical measurements, the crystals of CdGa₂Se₄:Co²⁺ were washed with ethyl alcohol in order to remove the iodine that has been physisorbed on the surface of the crystals. The absorption spectra were ob-

tained with a VIS-NIR spectrophotometer (Shimadzu MPS-5000) in the 700-2500-nm range and a monochromator (Jarrel Ash, $f = \frac{1}{2}m$) in the 650-850-nm range. A cryogenic system (Air Products, CSA-202B) was used for low-temperature measurements.

The optical absorption spectrum of the Co-doped CdGa₂Se₄ single crystals at 292 K in the near-infrared region is shown in Fig. 1. We observed six absorption peaks with energies 4132, 4332, 5970, 6329, 12 903, and 13 793 cm⁻¹ in the absorption regions which correspond to the transitions ${}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}T_{1}({}^{4}F), {}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}T_{1}({}^{4}F), {}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}T_{1}({}^{4}F), {}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}T_{1}({}^{4}F)$ of the Co²⁺ ion in various semiconductors with T_{d} symmetry. The splitting of the energy levels of the Co²⁺ ion due to the reduction from T_{d} to S_{4} symmetry can be predicted by group theoretical calculations. The energy levels of ${}^{4}T_{2}({}^{4}F), {}^{4}T_{1}({}^{4}F)$, and ${}^{4}T_{1}({}^{4}P)$ of Co²⁺ in T_{d} symmetry are, respectively, split into two levels as reducing to a lower symmetry of

FIG. 1. Absorption spectrum of the CdGa₂Se₄:Co²⁺ single crystals measured at 292 K in the 700-2500-nm region.

36 9283

 S_4 . Six absorption lines in Fig. 2 are assigned to the allowed transitions from the ground state ${}^{4}B$ to the upper states of the Co^{2+} ion in S_4 symmetry. These predictions are in good agreement with the results of the optical absorption spectrum measured in the Co-doped $CdGa_2Se_4$ (see Figs. 1 and 2). As T_d symmetry is reduced to S_4 symmetry, the spacing of the low-symmetry splitting of the ${}^{4}T_{2}({}^{4}F)$ energy level is ~200 cm⁻¹, which is similar to that of ~ 220 cm⁻¹ obtained in a YAG:Co²⁺ single crystal (YAG represents yttrium aluminum garnet).⁹ Thus the observed absorption lines are well assigned to the electronic transitions between the split energy levels of the Co^{2+} ion due to the reduction from T_d to S4 symmetry. The crystal field parameter Dq and the Racah parameter B, obtained from Fig. 1, are 413 and 455 cm⁻¹, respectively. The Dq value in the Co-doped CdGa₂Se₄ shows a good agreement with $Dq = 460 \text{ cm}^{-1}$ for tetrahedral Co²⁺ in the YAG:Co single crystal,⁹ but shows considerable differences as compared with Dq = 830 cm⁻¹ for tetrahedral Co³⁺, Dq = 920 cm⁻¹ for octahedral Co²⁺, and Dq = 1600 cm^{-1} for octahedral Co³⁺ in the YAG:Co single crystal.9 Thus we can conclude that cobalt atoms in the CdGa₂Se₄:Co single crystal occupy the tetrahedral sites of the $CdGa_2Se_4$ host lattice as Co^{2+} ions, then the reduction in symmetry is attributed to the cobalt atoms added to the CdGa₂Se₄ host.

To identify the fine structure in the transition region centered at 13000 cm⁻¹, the optical absorption spectrum of CdGa₂Se₄:Co²⁺ single crystals was investigated at low temperatures. At 77 K we observed fourteen absorption peaks in the 12 500 to 14 200 cm⁻¹ region as shown in Fig. 3. If we consider S_4 symmetry neglecting spin-orbit coupling, only two absorption lines are expected in these regions. Thus the observed results suggest that there exists the spin-orbit coupling effects of Co²⁺ in S_4 symmetry of CdGa₂Se₄. When the spin-orbit coupling effects are treated, using group theory, the ground state ⁴B is split into two levels, and the first excited states are split into two levels for the ⁴A state, four lev-

FIG. 2. Energy-level diagram for Co^{2+} due to the reduction in symmetry of the site from T_d to S_4 symmetry.

FIG. 3. Absorption spectrum of the $CdGa_2Se_4:Co^{2+}$ single crystal measured at 77 K in the 650 to 850-nm region.

els for ⁴E state. Thus the lowering of symmetry from T_d to S_4 along with spin-orbit coupling effects can be exhibited as twelve absorption lines due to the transitions of the Co²⁺ ion from the ground state ⁴B (doublet) to the upper states (doublet and quartet). The observed absorption spectrum of Fig. 3 is just what one would predict on the basis of the combined operation of S_4 symmetry and spin-orbit coupling. From the energy values of the optical absorption peaks of the CdGa₂Se₄:Co²⁺ single crystals, the energy levels of the Co²⁺ ion in S_4 symmetry

FIG. 4. Energy-level diagram for Co^{2+} in S_4 symmetry with spin-orbit coupling predicted on the basis of group theory (the transition numbers correspond to the numbers of the optical absorption peaks in Fig. 3).

along with spin-orbit coupling effects can be plotted on the basis of group theory as shown in Fig. 4. The spinorbit splitting of the ground state ⁴B obtained from Fig. 4 is the order of 35 cm⁻¹, which is a reasonable value compared with that of about 30 cm⁻¹ in the YAG:Co²⁺ crystal.⁹ However, the optical absorption peaks at 12 269 (peak 0 of Fig. 3) and 13 913 cm⁻¹ (peak 00 of Fig. 3) cannot be explained by the spin-orbit coupling effects. It is considered that the unassigned transitions may relate to the defect levels which originate from the incorporation of cobalt atoms to the CdGa₂Se₄.

In summary, the optical absorption of the

CdGa₂Se₄:Co²⁺ single crystals grown by the CTR method was investigated. The six absorption peaks observed at 292 K in the near-infrared region are attributed to the electronic transitions of Co²⁺ between the localized energy levels. At 77 K, the observed absorption spectrum of the CdGa₂Se₄:Co²⁺ single crystals in the 12 500 to 14 200 cm⁻¹ region was assigned in terms of S_4 symmetry along with spin-orbit coupling effects.

The present studies were supported in part by the Basic Science Research Institute Program, Ministry of Education, 1987.

- *Present address: Department of Physics, Mokpo National University, Mokpo 580, Republic of Korea.
- ¹H. Hahn, G. Frank, W. Klingler, A. D. Storger, and G. Storger, Z. Anorg. Allg. Chem. **279**, 241 (1955).
- ²G. B. Abdullaev, V. G. Agaev, V. B. Antonov, R. Kh. Nani, and E. Yu. Salaev, Sov. Phys. Semicond. 5(11), 1854 (1973).
- ³S. T. Kshirsagar and A. P. B. Sinha, J. Mater. Sci. 12, 2441 (1977).
- ⁴J. A. Beun, R. Nitsche, and M. Lichtensteiger, Physica 27, 448 (1961).
- ⁵G. B. Abdullaev, V. G. Agaev, V. B. Antonov, R. Kh. Nani, and E. Yu. Salaev, Fiz. Tekh. Poluprovodn. 7(6), 1051 (1973) [Sov. Phys. Semicond. 7(6), 717 (1973)].
- ⁶C. Razzetti, P. P. Lottici, and R. Bacewicz, J. Phys. C 15, 5657 (1982).
- ⁷A. Parisini and P. P. Lottici, Phys. Status Solidi B 129, 539 (1985).
- ⁸A. Mackinnon, J. Phys. C 12, L655 (1979).
- ⁹D. L. Wood and J. P. Remeika, J. Chem. Phys. **46(9)**, 3595 (1967).