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Acoustic plasmons in Hg3 &AsF6 in the long-wavelength limit
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In mercury chain compounds such as Hg3 &AsF6, the Hg atoms form two mutually perpendicu-
lar arrays of parallel chains (the a and b chains). Mohan has recently studied the random-phase-
approximation coupled dynamic electronic response functions of a system in which the electrons
are restricted to move in channels of such a coupled array. Besides the usual kind of bulk
plasmonlike mode which propagates in the a-b plane, Mohan predicted a new acoustic plasmon in

which the charge fluctuations in the two arrays are out of phase with each other. We give a
simplified analysis in the long-wavelength limit (based on neglecting the eA'ects of the chain lattice
geometry) which allows a more transparent discussion of the properties of this acoustic plasmon.

Most quasi-one-dimensional conductors are composed
of a three-dimensional array of parallel chains, the elec-
trons being coupled through the intrachain and inter-
chain Coulomb interaction. There is a considerable
literature' on the full electronic response function of
such a model of parallel chains, the interchain coupling
being treated in the random-phase approximation
(RPA). The plasmon frequency of the coupled array in
the long-wavelength limit is given by
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Here p is the component of the plasmon wave vector p
along the direction of the chains, UF is the Fermi veloci-
ty, and top is the bulk plasmon frequency. (Strictly
speaking, as we discuss later, the coefficient of the
second term is dependent on the radius and spacing of
the chains. )

Recently, Mohan has given a model calculation of the
dynamic electronic response function of two coupled mu-
tually perpendicular arrays of chains, such as one finds
in the mercury chain compound Hg3 &AsF6. It is
known from x-ray and neutron scattering studies that
the Hg atoms form two arrays (the so-called a and b
chains) in which the Hg-Hg ion spacing is incommensu-
rate with the host AsF6 lattice. Extensive theoretical
and experimental studies have indicated that the impor-
tant electronic states associated with the Hg chains can
be approximated as one-dimensional (1D) plane-wave
states with the energy fi k /2m, where k is the wave
vector along the chain axis. If the hopping of electrons
is ignored between different chains, one has a simple
model for calculating the response function of the cou-
pled chains in terms of the response function of a single
chain, the interchain coupling being treated in the RPA.
This model is an obvious generalization of earlier studies
of a single array of parallel chains of finite radius. ' In
her thesis, Mohan derived the coupled equations of
motion for the electronic response functions 7„, Xb&,
and I',

& (where, for example, 7„ involves the correlation
function between the electronic density on two different

chains in the a array) and predicted that, in addition to a
plasmon analogous to (1), there was a new acoustic
plasmon in which charge Auctuations in the a and b ar-
rays are out of phase. However, the analysis given by
Mohan is fairly complicated and as a result the underly-
ing physics of the new acoustic plasmon is somewhat
hidden. In the present paper, we present a new set of
coupled equations of motion analogous to what one has
in any 3D lattice and then discuss the simple long-
wavelength limit in which we neglect all reciprocal-
lattice vectors associated with the lattice of chains.

We first briefly review the model used by Mohan (the
details of which are also discussed in Ref. 4). The densi-
ty fluctuation in a chain of the a array (along the x
direction) is

6p'( r, co ) = +6p R (x, to )w ( r t —R, ),
R

where r~ is the component of r in the yz plane and R, is
the 2D —Bravais-lattice vector of the a-chain lattice. The
electrons in a given chain are assumed to be in their
lowest transverse state. In the Gaussian approxima-
tion ' this chain leads to the form factor w(r~)
=(~ro) 'exp( —r~!ro), where ro is the eff'ective radius
of the cylindrical chain potential.

Within linear response, we have

6p"(r, co) = g fdr'X„(r, r';co) V„(r',co),
m =a, b

= —i f "dt e' "+' + '( [6p "(r, t ), 6p™(r',0)] ) .
0

Within the RPA, we have

6p"(r, co) = fdr'X„„(r,r', co) V,"„,(r', co),

(4)

where the self-consistent field acting on the electrons in
a chain of the nth array is

where Vo (r', co) describes the external potential acting
on electrons in the m array and

X„(r,r', co)
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X,„(r,r';tv) =0,
X„(r,r;cv)=gw(r, —R, )w(r, —R, )XR R (x —x tv)

R

Xqt, (r, r';tv)=gw(r~ —Rt, )w(r~ —R~)Xa R (y —y';co) .
Rb

(7)

Here XR R (x —x') is the same for all a chains and we
a a

&,"„(r',cv)

= Vo(r', cv)+ g fdr"u„(r' —r")5p (r",cv) . (6)
m =a, b

Here v„ is the (Coulomb) interaction between electrons
on chains in the n and m arrays. In the above treat-
ment, the intrachain Coulomb interactions are also being
treated in the RPA (although this is not necessary).

We make crucial use of the properties of the electron
response functions 7 „ in the absence of all Coulomb
interactions. Only electrons in a given chain are corre-
lated and thus

5p"(p) = QX„(p, —q) &, (q) (9)

and

shall simply use 7 to denote the noninteracting response
function for a strictly 1D electron gas. In (7), we em-
phasize that r~ is a vector in the plane perpendicular to
the chain in question.

Substituting (6) into (5) gives a closed set of equations
which can be most conveniently solved by using Fourier
transforms (we leave the frequency dependence on cv im-
plicit):

X „(p, —q)—:fdre'u'f dr'e 'q'X „(r,r') . (8)

We note that the localization of the electrons into chains
comes in automatically through the form factors
w(r~ —R, &) in (7). In contrast with the analysis of Ref.
5, we proceed with a straightforward calculation identi-
cal to the usual one for the RPA electronic response
function for electrons moving in a 3D periodic arrays of
ions. We obtain

5p'(p)=+X, .(p, —q)+5q~+G &;(q)+X (p )/3(p, ) g [v..(p+CJ, )P(p, +G. )X. (p+G. , —q)&0 (q)
q, G

+v., (p+G. )/3(p, +G. )X, (p+G„—q)&o (q)] . (10)

Here p~ is the component of p in the yz plane and CJ, is a 2D reciprocal-lattice vector of the R, lattice. /3(p~) is the
Fourier transform of w(r~) and, in our Gaussian approximation, this is given by P(p~)=exp( —p~rol4). ICey results
used in deriving (10) are that

and
X,, (p, —q) =0 unless q =p+ G,

X., (p, —p —G. )=/3(p, )X (p )/3(p&+G, ) . (12)

It is the condition (11) which is the source of the restricted sums over G, in (10).
A result identical to (10) can be derived for 5p (p, cv), with a and b labels interchanged as well as p ~p . In addi-

tion, p~ is now the component in the xz plane and expressions analogous to (11) and (12) also hold for Xt&.
Combining (9) and (10), and making use of the fact that (A, is the area of the unit cell of the chain lattice)

4~e
v..(q)=vga(q)=v, t, (q)=, =v(q),

A, q
we obtain

X.„(p, —q) =X'..(p, —q)+5, ,+o 5.„+X'(p„)g/3(p, )v(p+G. )/3(p, +G. )[X,„(p+G„—q)+X„„(p+G„—q)]
G G

(13)

(14)

X„(p,—p —G, )
X„(p,—p —G, )=

1 —~ (p)X'(p„)
(15)

and

and a similar equation for X&„(p,—q), with o and b la-
bels interchanged and p ~py We remark that if the
interarray coupling v, & is omitted in (10), (14) can be
solved to give the results for a single array '

X — (x',y"+&. )=XR R (x',y'),

XR R x (x'+X„,y )=XR R (x',y ),
XR z z ( ',y")=XR R ( ',y"),

a a' b a a' b

(17)

where the form-factored Coulomb potential is

u(p)—=g ~/3(pi+G, )
~

v(p+G, ) .
G

(16)

X,(x,x') =X,(x —x'),
a' a a aX,(y,y') =X „.(y —y') .
b' b b b

By a direct consideration of the symmetry of the cou-
pled arrays, one may show that

Here X&, Y, , and Z, are lattice translation vectors of the
appropriate array along the x, y, and z axis, respectively.
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Fourier transforming (17) and (18) leads to

X„(p,—q)=0 unless q=p+G, ,

X»(p, —q)=0 unless q=p+Gb,
X,b (p, —q) =0 unless q =p+ G, +Gb .

(19)

As expected, X,b(p, —q) is completely symmetric in the
dependence on the properties of the two arrays. In
deriving (19), we made use of the fact that both G, and

Gb vectors share the same z components and thus the z
component of G, +Gb is the z component of some vec-
tor G,'. One may verify that the RPA equations of
motion such as in (14) are consistent with (19).

The coupled equations given by (14) and their
equivalent for Xb „are very complicated because of the
effects of the periodic arrays of chains (this is the origin
of the sums over reciprocal-lattice vectors G, and Gb)
In Mohan's work, a general solution of a similar set of
coupled equations is discussed in terms of form-factored
potentials such as (16). In contrast, we discuss the solu-
tion of (14) starting right from the beginning with the
neglect of local-field corrections, that is, we only keep
G, =0 and Gb ——0 in the summations. This corresponds
to the limit pd &&1, where d is the lattice spacing and,
for consistency, we set /3(pi)=1 since rp «d. In this
long-wavelength limit, the coupled equations in (14)
reduce to

X,„(p, —p) =X'(p„)5.„
+X (p„)u(p)[X. „(p, —p)+Xb „(p,—p)],

(20)
X„„(p,—p ) =X (p» )5b „

+X (p»)v(p)[Xb „(p, —p)+X, „(p, —p)] .

Solving these, we see that the poles of all the response
functions are given by the zeros of the dielectric function

electron chain modes co, (p) =uFp„and cub(p) =uFp» are
coupled and renormalized, the new modes being given
by the zeros of e(p, cu). The co, b modes play the role of
particle-hole excitations in the well-known analysis of
E(p, cu) in a 3D electron gas. The significance of the two
renormalized modes ru+(p) can be most easily under-
stood from the graphical plot of 1 —E(p, co) versus ro

shown in Fig. 1. Assuming that p„and p are both finite
and that p &p, one sees that

vFp, &rv (p) &vFp» «ru+(p) . (24)

=cupsin 0+ vFp sin 0[1——,'sin (2') )],
2 2

ru (p) =2uF
pxpy

px +py

= —,'uFp sin Osin (2tt ), (26)

where p = (p, 8, tt ) gives the wave vector is spherical
coordinates. If we ignore the effect of the chain lattice
geometry and the finite radius of the chains in the
dispersion relations given in Ref. 5, they reduce to (25)
and (26) in the long-wavelength limit. The sin 8 factor
emphasizes that both modes only involve the component
of p in the a b(or x-y) -plane. The absence of the cu (p)
mode when either p or p is zero indicates that this

A direct analysis of (23) shows that only the co+(p) mode
exists if (a) either p„or p =0 or (b) p„=p». This makes
sense since in both cases, there is only a single frequency
associated with the noninteracting single chains.

In the long-wavelength limit, the zeros of e(p, cu) are
easily obtained and we find (for p Sp» )

2 2 2 2
2 Px+Py 2 2 2 2 PxPy

ru+( p)- rug z +uF(p~+p» ) —2vF z z
p px +py

lime(p, ru)=1 —v(p)[X (p, cu)+X (p», cu)] .
p~o

(21)

This elegantly simple result is the basis of the rest of our
analysis. It could have been written down almost
without calculation since it just says that the usual 3D
Lindhard function is "contracted down" by the restric-
tion of motion to the x and y directions.

The response function for a noninteracting degenerate
1D Fermi gas in the long-wavelength limit (q much less
than the Fermi momentum) is given by

3
t~

I

VFg
X (q, ru) =N(cF ) z

Q7 —UF q
(22) 0

2
COp

e(p, ro) = 1—
p

2 2
px py

CO —UFpx CO —VFpy
2 2 2 2 2 2

(23)

where cued
——4~ne /m with n—:N, / A, L. For a given

value of p, we see that the highly degenerate free-

Here the 1D electronic density of states is N(eF)=2/
~RUF and the Fermi velocity is UF ——N, R~/2Lm, where
N, /L is the number of electrons per unit chain length.
Using (22) in (21), we obtain

FIG. 1. A schematic plot of the electronic dielectric func-
tion of coupled arrays [as given by Eq. (23)] vs frequency. This
shows how the charge fluctuations of two 1D noninteracting
Fermi gases (vFp, vFp~) are coupled and renormalized to be-
come the interarray plasmons co+(p).
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mode is intrinsically an interarray plasmon mode. In the
special case p =p, one can show that only the m+
mode exists, with a dispersion relation given by (25) with
/=45' (the absence of the acoustic plasmon for p =p
was not noted in Ref. 5).

Using the equations in (20), one can easily verify that
the ratio of charge fluctuations in the two arrays is

0 2 2 2 2
5p'(p, n~) & (px ~v) px ai vFp—y

5p (p, co) X (py, ~) py co —vFp„

Inserting (25) in (27), one finds that the bulklike plasmon
co+ involves a relative oscillation of the two arrays given
by

6p'( p, co+ )

6p (p, a~+)

2
px

2
Py

(28)

It is only in the special case p =p that the two arrays
oscillate perfectly in phase. In contrast, using (26) in
(27) gives 5p'(p, co )= —5p"(p, co ). That is, the long-
wavelength acoustic plasmon co always involves charge
fluctuations in the two arrays which are completely out
of phase. This means that in this limit, the co mode
will have vanishingly small weight in the dynamic struc-
ture factor since no net density fluctuation is involved.
A more detailed analysis shows that the acoustic
plasmon does involve a net density fluctuation at larger
wave vectors.

The preceding analysis of the interarray plasmons
co+(p) has been based on Eq. (20). We feel this continu-
um approximation brings out the essential physics.
However, Mohan's analysis shows that the coefficients of
the p terms in (25) and (26) do have corrections which
depend on the form factors 13(pi) as well as the lattice
structure of the chains. The kind of modification can be
illustrated in the much simpler case of a single array. '"
As described by (15), the dependence on ro and d is com-
pletely contained in the form-factored Coulomb poten-
tial in (16). In the limit d &&rn, pd «1, one finds

u(p) =e 4n a+ln +y —I+O(p')
p 2p

(29)

where 3, =ma =d &3/2 and y=0. 577 is Euler's con-
stant. The resulting intra-array plasmon dispersion rela-
tion is given by

2

co (p)=cop +vFp . 1+e N(cF) ln
p

a +y —I
2f' o

(30)
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instead of (1). For Hg3 sAsF6, e N(sF) is of order uni-
ty. Similar modifications to (25) and (26) are expected,
of the kind discussed in Ref. 5.

To the extent that we work in the long-wavelength
limit described by Eq. (23), there is no Landau damping
of the acoustic plasmon co (p). Formally this can be
seen from the fact that the only imaginary contributions
to (23) occur at the free-particle chain modes at vFp„
and UFp . As is clear from Fig. 1, neither is degenerate
with the acoustic plasmon. In a more realistic model,
one expects that the co mode will be strongly damped
in the region around /=45' (p =p~).

Experimental observation of the new acoustic plasmon
co would confirm the basic correctness of the simple
model for the response functions of the coupled chains
introduced by Mohan. We might note that in the some-
what analogous theoretical problem of coupled-layer
plasmons' in semiconductor superlat tices, Raman
scattering has been used successfully. " For p —10
cm ', the acoustic plasmon in (26) has an energy of the
order of 10 meV. However, we recall that the acoustic
plasmon co is only weakly coupled into the density fluc-
tuation spectrum in the long-wavelength limit. It is not
clear what sort of experimental probe is appropriate.
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