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Tight-binding electrons on open chains: Density distribution and correlations
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The ground state of the tight-binding electrons on finite open chains is studied for arbitrary
band filling. Analytic expressions for the distribution of electron density and the density-density
correlation functions within the system are found and discussed as a function of chain size. Par-
ticular attention is paid to the study of boundary effects.

I. INTRODUCTION II. CALCULATIONS AND RESULTS

In this work we study in detail the T =0 K ground
state of the electronic Hamiltonian in the form

The Hamiltonian (4) is diagonalized by introducing
new Fermion operators d1 defined as

1/2

c, = g sin(q, i )dt (4)N+1

where c; (c, ) creates (destroys) an electron on a site i of
a regular lattice with z projection of its spin equal to o. ,
(i,j ) denotes a pair of nearest neighbors, and n, =c,
c; is the number operator at site i.

The density of electrons in the state
~
P) is described

by the band-filling factor r =g r„:
~ = g(p gn, g)

The transformation (4) corresponds to "standing" nor-
mal modes of the finite system and the OBC read now

ca+i. I
o& =o

co 0) =0,
giving the quantization condition

q, = l, 1(l &N .N+1
gN, N, (2)

With (4) and (5) we obtain the transformed Hamiltonian

where N denotes the number of lattice sites in the sys-
tem. Here we limit ourselves to the nonmagnetic case
N, =N, . The Hamiltonian (1) serves as a "free"
term in considering electronic systems with 0 =H+ V,
where V is the electron-electron interaction.

For the case of periodic boundary conditions (1) is ex-
haustively treated in most of the textbooks. ' The case
of open boundary conditions (OBC) has been less stud-
ied. The purpose of this work is to derive and study the
properties of the ground state of (1) of finite chains of
length N with OBC, i.e., the Hamiltonian

N —1

H=g(c, c;+, +c;+, c, ).
i =1

The Hamiltonian (3) appears in the study of renormal-
ization for fermion systems and in the calculations
for quantum spin chains. It serves also as a starting
point for the analysis of properties of electronic aggre-
gates.

In the following we will determine the ground-state
wave function of Eq. (3) for arbitrary r and N and study
the distribution of density and the density-density corre-
lation functions. Special attention will be devoted to the
influence of the boundary efT'ects.

N
H= 2+ (c osq )tdtd,

1=1
(7)

1=-N —N, +1

with (Po
~
tto) =1, where N, = (Po

~ g, , n, tto). The
ground-state energy Eo ' —(Po

~

H
~
Po) is obtained

from

N —N, +l
Eo =2+ g cos

o- 1=1 N+1

~(N, +- 1 ) trN,

2(N + 1) 2(N + 1)

2(N+ 1)

and it gives the ground-state energy per site
e(» —E(» yNeo

The ground-state wave function
i

ttto) of Eq. (7) corre-
sponds to the consecutive filling of allowed wave vectors
q1 and is equal to
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(x) 2+r

(N
cos

2(N +1) 2(N +1)
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~N + 1 ) ~lNet7-
sincos N+1 N+1

7TI
N sin
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«2(N+1)
of the density weTo obtain the exPe '

( ~ l
„

l qo) and ob-culate eth matrix elements p, =- o n,
tain

nsit -density correlatio n function in

lg ) ~ dob
l f ) we calculate g,J o n, n,0

gIJ~ =&IJP-~+PI ~PJ~
N,

N+1

(N + 1)(i j)v—r N,
' —jN i —j)~eo

sin
2(N + 1) 2(A +

(i —j)~
2(N +1)

'2N +1)(i+j )rr N, +jN i +j)~
sin

2(N + 1) 2(N +
(i +j )vr

2(N +1)
(12)

ion invariance is os,t we ob-Since in q.
1 ~ de ends on i, an g;serve that p; explicit y depen

P
The general expressions of Eqs.

simplify in the limit .V~ ~.
sinre'"~ = —2y

0

(13)

PI~
(oo)

Sln2f 7Tl

2r /Tl
(14)

4(~e, -)= —— (16)

) (oc) (oo) (~)g(~) g oc
IJO IJ I CT

r (i —j) cos~r (i +j)sin~r

~r. i —~
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sin —(i —j)
2

(i —j)
cos—(i +j)

2

(I+j)

2 Eo{N) "4

N

1.2-
r =1.0

III. DISCUSSION oe-
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nsity p; calculated from Eq. (11)
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as a unction of coordinate i

i = at the beginning of the chain) for
diferent chain lengths X =20, 32, 72,, and 200.

FIG. 4. Local electronic density for dp

the electronic denensity for a whole chain with N =48 for
different band fillings. The period of the oscillations de-
pends on the band fillin an

F —— , which can be seen from Eq.e period is erik = 1 lr
14) too. The 1ast follows from the relation between the

Fermi vector k and the dr F an t e density in one dimension
kF ——(ir j2)r. In factk — . act we are dealing here with Friedel-

)

type density oscillations which are induced b h fi

e chain and its boundaries. The relative de-
crease of density at the boundar, i.e. t

filling.
p i = is a decreasing function of b do an

The densit -d ny- e sity correlation function g f
=1 2

n g'&'j~ or l 1

j =, , . . . , 32 for a —,'-filled band for N =20, 32, 72,
and 200 is presented in Fiig. 5. A characteristic feature
is a drastic decrease of g," at a first neighbor ("correla-

of the sa
tion hole, see Ref. 8), followed by very w k 11ea osci ations

e same period as for the densit . Th
ese osci ations again decreases when moving to-

onl y visible for large N. For N (50 the boundar
r ise ectis

dominate and no such d
t e oundary effects

no suc ecrease can be seen. Similar re-
sults are obtained for r ~ 1 and i ~ 1. The
(3) can be dia

e Hamiltonian

lations of a r
e iagonalized in any dimension b tu exact calcu-

o appropriate expectation values
evident.

ues are no onger
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FIG. 3. Local elelectronic density p; for a 4-filled band cal-
culated from Eq. (11) as a

' '
e i

( —16(i & 16
as a function of coordinate i

(i &16; i =0 at the center of the chain) for
chain lengths X =20, 32,, 72, and 200.

o e c ain) for difterent

FIG. 5. Densit -d'
y- ensity correlation function g;~ for a —'-

filled band, calculated from E . (12) a
i =1 at the beginning of the chain) for

i erent chain lengths N =20, 32 72 d 200.
value

, an 200. Note that the
a ue of g, 2 is of the order of 10 and is not zero
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