Continuum-model acoustic and electronic properties for a Fibonacci superlattice

A. H. MacDonald* and G. C. Aers

Division of Physics, National Research Council, Ottawa, Canada K1A 0R6

(Received 18 May 1987)

A continuum model is used to study the properties of acoustic phonons and of electrons in a semiconductor Fibonacci superlattice. Close contact is made with previous work based on discrete models by using a transfer-matrix approach. The mapping of transfer-matrix traces under the inflation transformation which defines the Fibonacci sequence has an invariant I, which has been identified as a key parameter in characterizing the Cantor-set spectra. We derive analytic expressions for the dependence of I on phonon frequency or electron energy and comment on the qualitative differences between discrete and continuum models. Transport properties are also discussed.

Interest in the spectral properties of one-dimensional (1D) quasiperiodic Schrödinger operators¹ has recently been reinvigorated by the discovery of quasicrystals.² In particular, Merlin et al.³ realized that semiconductor quasiperiodic Fibonacci superlattices, which are related to the model for quasicrystals proposed by Levine and Steinhardt,⁴ could be fabricated using molecular-beamepitaxy (MBE) techniques. These developments led many workers⁵⁻¹³ to reexamine the discrete Fibonacci chains which had been studied earlier by Kohmoto et al.¹⁴ and independently by Ostlund et al.¹⁵ In this paper we report on a study of Fibonacci superlattices using a continuum model which is known to provide an accurate description of either acoustic phonons or conduction electrons in a semiconductor superlattice. Unlike earlier studies, our work is directly relevant to MBE-fabricated Fibonacci superlattices.

We consider a set of points, $\{x_n\}$, along the MBE growth axis of a semiconducting film and separated by intervals of width d_A and d_B . All A intervals are filled with identical thin films, and all B intervals with a different set of identical films. The A intervals and B intervals occur in a Fibonacci sequence, which is defined by the following recursion relation: $S_1=B$, $S_2=A$; $S_j=S_{j-1}S_{j-2}$ for $j \ge 3$. For conduction electrons, the effective-mass approximation¹⁶ leads to the Schrödinger equation

$$\frac{-\hbar^2}{2m^*}\frac{d^2\Psi}{dx^2} + V(x)\Psi(x) = E\Psi(x) , \qquad (1)$$

where x is the coordinate along the growth direction and V(x) is the conduction-band minimum. V(x) is defined by the MBE growth prescription and may be taken, for the moment, to be some arbitrary function in the A and B intervals. Following Kohmoto¹⁷ we introduce a transfer matrix by defining an interval of width 2 ε , which we can subsequently set to zero, centered on each x_n where $V(x) = E_0$. then

$$\Psi(x) = \widehat{\psi}_n e^{ik(x-x_n)} + \widehat{\phi}_n e^{-ik(x-x_n)}, \quad |x-x_n| \le \epsilon$$
(2)

 $E - E_0 = \hbar^2 k^2 / 2m^*$, and ¹⁸

$$\begin{bmatrix} \widehat{\phi}_{n+1} \\ \widehat{\phi}_{n+1} \end{bmatrix} = \begin{bmatrix} u_n^* & -v_n^* \\ -v_n & u_n \end{bmatrix} \begin{bmatrix} \widehat{\phi}_n \\ \widehat{\phi}_n \end{bmatrix} \equiv \widehat{M}_n \begin{bmatrix} \widehat{\phi}_n \\ \widehat{\phi}_n \end{bmatrix} .$$
(3)

In Eq. (3) $u_n = 1/t_n$, $v_n = r_n/t_n$, and r_n and t_n are the reflection and transmission amplitudes through the barrier between x_n and x_{n+1} for a wave incident from the left. The form for Eq. (3) follows from time-reversal invariance and the conservation of probability $[|r_n|^2 + |t_n|^2 = 1]$ which implies that $\det(\hat{M}_n) = |u_n|^2 - |v_n|^2 = 1$. We have assumed that E_0 is chosen so that k is real].

There is obviously a great deal of freedom in how the transfer matrix is defined and we take advantage of this to simplify some of the subsequent calculations. For example, changing E_0 to E'_0 changes k to k' $(E - E'_0) = \hbar^2 k'^2 / 2m^*$, and u_n and v_n to u'_n and v'_n .

$$u'_{n} = (\alpha^{2} - \beta^{2})^{-1} [\alpha^{2} u_{n} - \beta^{2} u_{n}^{*} + \alpha \beta (v_{n} - v_{n}^{*})]$$
(4a)

and

$$v'_{n} = (\alpha^{2} - \beta^{2})^{-1} [\alpha^{2} v_{n} - \beta^{2} v_{n}^{*} + \alpha \beta (u_{n} - u_{n}^{*})], \quad (4b)$$

where $\alpha = \frac{1}{2} + k/2k'$ and $\beta = \frac{1}{2} - k/2k'$. Similarly, we can write

$$\Psi(x) = \psi_n \cos[k(x - x_n)] + \phi_n \sin[k(x - x_n)] \qquad (5a)$$

and define a transfer matrix so that

$$\begin{pmatrix} \phi_{n+1} \\ \phi_{n+1} \end{pmatrix} \equiv M_n \begin{pmatrix} \phi_n \\ \phi_n \end{pmatrix} .$$
 (5b)

In this case Eq. (3) can be used to show that¹⁹

$$M_n = \begin{bmatrix} \operatorname{Re}(u_n - v_n) & -\operatorname{Im}(u_n + v_n) \\ \operatorname{Im}(u_n - v_n) & \operatorname{Re}(u_n + v_n) \end{bmatrix} .$$
(6)

As we see below, however, the spectral properties depend only on transfer-matrix traces and these must be independent of the specific definition used.

The Fibonacci superlattice is completely characterized by the transmission and reflection coefficients for A and

B intervals and we define $u_X \equiv 1/t_X$ and $v_X \equiv r_X/t_X$ where *X* is *A* or *B*. From the definition of the Fibonacci sequences it follows that the transfer matrices obey the recursion relation

$$\hat{T}_{j} = \hat{T}_{j-2} \hat{T}_{j-1}, \quad j \ge 3$$
 (7)

where $\hat{T}_1 = \hat{M}_B$, $\hat{T}_2 = \hat{M}_A$ and

$$\hat{T}_{j} = \hat{M}_{F_{j}} \hat{M}_{F_{j}-1} \cdots \hat{M}_{1} \equiv \begin{bmatrix} w_{j}^{*} & -y_{j}^{*} \\ -y_{j} & w_{j} \end{bmatrix}$$
(8)

is the transfer matrix between from the beginning to the end of the *j*th generation of the Fibonacci sequence.²⁰ Writing $\hat{T}_{j-2} = \hat{T}_j \hat{T}_{j-1}^{-1}$ and noting that

$$\widehat{T}_{j}^{-1} = \begin{bmatrix} w_{j} & y_{j}^{*} \\ y_{j} & w_{j}^{*} \end{bmatrix}$$

implies that

$$w_{j+1} = w_j(w_{j-1} + w_{j-1}^*) - w_{j-2}$$
(9a)

and

$$y_{j+1} = y_j (w_{j-1} + w_{j-1}^*) - y_{j-2}$$
 (9b)

The Fibonacci-sequence spectrum can be studied by applying periodic boundary conditions after j generations and examining the limit in which j gets large. The Bloch condition requires that

$$x_j \equiv \frac{1}{2} \operatorname{tr} \hat{T}_j = \operatorname{Re}(w_j) = \cos(Kd_j) , \qquad (10)$$

where K is the Bloch wave vector and $d_j = F_{j-1}d_A + F_{j-2}d_B$ is the total length after j generations. From Eq. (9a) it follows that, as pointed out by Kohmoto,¹⁷ the trace map is identical to that of the discrete models

$$x_{j+1} = 2x_j x_{j-1} - x_{j-2} , \qquad (11)$$

and this implies that as j gets large the spectrum approaches a Cantor set. Thus the discrete and continuum cases are distinguished only by the starting conditions for the map and, in particular, by the invariant quantity^{5,14}

$$I \equiv x_{j+1}^2 + x_j^2 + x_{j-1}^2 - 2x_{j+1}x_jx_{j-1} - 1 .$$
 (12)

The fractal dimension of the spectral set becomes smaller and the range of scaling indices shifts to lower values as I becomes larger. Noting that $x_1 = \operatorname{Re}(u_B)$, $x_2 = \operatorname{Re}(u_A)$, and $x_3 = \operatorname{Re}(u_B u_A + v_B v_A^*)$, it can be shown that

$$I = [\operatorname{Re}(v_{B}v_{A}^{*}) - \operatorname{Im}(u_{B})\operatorname{Im}(u_{A})]^{2} - [|v_{B}|^{2} - \operatorname{Im}^{2}(u_{B})][|v_{A}|^{2} - \operatorname{Im}^{2}(u_{A})]. \quad (13)$$

In the continuum model, I has a nontrivial dependence on electron energy which provides a useful characterization of the spectrum as we illustrate below.

The most general case we consider is one where each interval has subintervals of material 1 of width d_{1l} and d_{1r} on the left and right and a central subinterval of material 2 with width d_2 . Then, choosing E_0 at the

conduction-band minimum of material 1, V_1 , an elementary calculation, yields

$$u_{X} = e^{-ik_{1}d_{1,X}} \left[\cos(k_{2}d_{2,X}) -i\sin(k_{2}d_{2,X}) \left[\frac{k_{1}}{2k_{2}} + \frac{k_{2}}{2k_{1}} \right] \right],$$
(14a)
$$v_{X} = i \left[\frac{k_{2}}{2k_{1}} - \frac{k_{1}}{2k_{2}} \right] e^{-ik_{1}(d_{1r,X} - d_{1l,X})} \sin(k_{2}d_{2,X}),$$

(14b)

where $d_{1,X} = d_{1r,X} + d_{1l,X}$, $E = \hbar^2 k_1^2 / 2m^* + V_1 = \hbar^2 k_2^2 / 2m^* + V_2$, and X = A or B. For GaAs-Ga_{1-x}Al_xAs systems we take $m^* = 0.068m_0$, where m_0 is the electron mass and $|V_2 - V_1| = 134$ meV, corresponding to $x \simeq 0.2$. A situation similar to that of the discrete model with on-site energies alternating in a Fibonacci sequence (the diagonal model) may be realized by choosing the

FIG. 1. Integration density of states, N(E), trace-map invariant, I(E), and transmission coefficient, T(E), for a 12 generation continuum Fibonacci superlattice. Each interval has a barrier region of width 20 Å, and well widths of 120 and 80 Å are alternated in a Fibonacci sequences. N(E) is in units of states per interval. For the corresponding discrete model $I = [(E_A - E_B)/2t]^2$ where the site energy for the narrow well, E_b , is larger and t is the hopping integral. Here I decreases with increasing E.

width of the barriers $(Ga_{1-x}Al_xAs regions)$ to be the same in A and B intervals but allowing the well widths (GaAs regions) to vary. Letting $d_{1r,A} = d_{1r,B} = 0$, $d_{2,A} = d_{2,B} = d_2$, and inserting Eqs. (14) into Eq. (13) yields

$$I_{D} = \sin^{2}[(d_{A} - d_{B})k_{1})] \left[\frac{\kappa_{2}}{2k_{1}} + \frac{k_{1}}{2\kappa_{2}}\right]^{2} \sinh^{2}(\kappa_{2}d_{2}) ,$$
(15)

where we have assumed that $V_1 < E < V_2$ and let $k_2 = i\kappa_2$. [For wide high barriers $(\kappa_2 d_2 >> 1, \kappa_2 / k_1 >> 1)$ Eq. (15) can be shown to reduce to the corresponding expression for the discrete diagonal Fibonacci chain.] In Fig. 1 we show the spectrum resulting after 12 generations of the Fibonacci superlattice and I(E) for barrier widths of 20 Å, $d_{1,A} = 120$ Å, and $d_{1,B} = 80$ Å. In Fig. 2 the spectrum after 12 generations and I(E) are shown for $d_2 = 100$ Å, $d_{1,A} = 24$ Å, and $d_{1,B} = 16$ Å. Letting $\kappa_1 = ik_1$ Eq. (15) becomes

$$I_{\rm OD} = \sinh^2 [(d_A - d_B)\kappa_1] \left[\frac{\kappa_1}{2k_2} + \frac{k_2}{2\kappa_1} \right]^2 \sin^2 (k_2 d_2)$$
(16)

which can be shown to reduce to the expression given by Kohmoto and Banavar⁵ for the off-diagonal discrete Fibonacci chain model in the appropriate limit.

The developments discussed above apply equally well for acoustic phonons in the continuum limit with the replacement $2m^*[E-V(x)]/\hbar^2 \rightarrow \omega^2/c^2(x)$, where c(x) is the local sound velocity. Thus for acoustic phonons, k_1 and k_2 in Eqs. (14) are given by $k_1 = \omega/c_1$ and $k_2 = \omega/c_2$, and are always real.²¹ In Fig. 3 we show the phonon spectrum and $I(\hbar\omega)$ for $d_{2,A} = 0$, $d_{1,A} = 60$ Å, $d_{2,B} = 40$ Å, and $d_{1,B} = 0$, where $c_1 = 4.72 \times 10^5$ cm s⁻¹ (GaAs) and $c_2 = 5.62 \times 10^5$ cm s⁻¹ (AlAs). In this case Eqs. (14) and (13) give

$$I = \left[\frac{k_2}{2k_1} - \frac{k_1}{2k_2}\right]^2 \sin^2(k_1 d_{1,A}) \sin^2(k_2 d_{2,B}) .$$
(17)

Note that $I(\hbar\omega)$ vanishes like ω^4 as ω goes to zero, as in the discrete model.⁵

In closing, we comment on the transport properties of the continuum Fibonacci superlattice. The transmission coefficient for a j-generation Fibonacci superlattice is given by

$$T_{i} = |w_{i}|^{-2} \tag{18}$$

FIG. 2. As in Fig. 1 but for a Fibonacci superlattice with intervals of common well width (100 Å) and different barrier widths (24 and 16 Å).

FIG. 3. As in Fig. 2 but for acoustic phonons $(E = \hbar \omega)$ and A intervals composed of GaAs $(d_A = 60 \text{ Å})$ and B intervals composed of AlAs $(d_B = 40 \text{ Å})$. I(E) vanishes whenever there is a resonance in either A intervals $[\sin(k_1d_{1,A})=0]$ or B intervals $[\sin(k_2d_{2,A})=0]$.

with w_j given by Eq. (9a). For electrons the conductance is related to T_j by the Landauer formula,²² $G_j = (e^2/h)T_j/(1-T_j)$. For discrete models it has been conjectured^{12,13} that for energies in the spectrum G_j decays as a power of d_j with a range of exponents, in accordance with expectations based on the nature of the spectrum. These conjectures can be firmly established in specific cases where the trace map is cyclic.²³ We do not believe that cyclic maps occur for the continuum model and numerical results for the dependence of transmission coefficients on length are similar to those for discrete models.¹³ The dependence of the transmission coefficients on energy has been shown in the bottom panels of Figs. 1-3. The self-similar nature of the spec-

- *Present and permanent address: Physics Department, Indiana University, Bloomington, IN 47401.
- ¹See Berry Simon, Adv. Appl. Math. **3**, 463 (1982), and references therein.
- ²D. Schectman, I. Bloch, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. **53**, 1951 (1984).
- ³R. Merlin, K. Bajema, Roy Clarke, F.-Y. Juang, and P. K. Battacharva, Phys. Rev. Lett. **55**, 1768 (1985).
- ⁴D. Levine and P. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984).
- ⁵M. Kohmoto and J. R. Banavar, Phys. Rev. B 34, 563 (1986).
- ⁶J. P. Lu, T. Odagaki, and J. L. Birman, Phys. Rev. B **33**, 4809 (1986).
- ⁷F. Nori and J. P. Rodriquez, Phys. Rev. B 34, 2207 (1986).
- ⁸T. Odagaki and L. Friedman, Solid State Commun. **57**, 915 (1986).
- ⁹K. Machida and M. Fujita, Phys. Rev. B 34, 7367 (1986).
- ¹⁰A. Mookerjee and V. A. Singh, Phys. Rev. B 34, 7433 (1986).
- ¹¹J. M. Luck and D. Petretis, J. Stat. Phys. **42**, 289 (1986).
- ¹²M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35, 1020 (1987).
- ¹³T. Schneider, A. Politi, and D. Wurtz (unpublished).
- ¹⁴M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett. 50, 1870 (1983); M. Kohmoto and Y. Oono, Phys. Lett. 102A, 145 (1984); L. P. Kadanoff and C. Tang, Proc. Natl. Acad. Sci. USA 81, 1276 (1984).

tral set shows up more clearly than in plots of the integrated density of states. In Fig. 2 note that T(E)tends to have larger values in the higher subband where I(E) is smaller. In Fig. 3 we see that T(E)=1 at the energy where I(E) goes to zero. This is associated with a resonance in material $2[\sin(k_2d_{2B})=0]$ and is the analog for quasiperiodic systems of the property discussed by Tong¹⁸ for random systems. As is apparent in Fig. 3 the scaling index of the spectrum goes to 1 when I(E)goes to zero.

The authors acknowledge useful conversations with M. Kohmoto, R. Merlin, and B. Y. Tong.

- ¹⁵S. Ostlund, R. Pandit, D. Rand, H. J. Schellnhuber, and E. Siggia, Phys. Rev. Lett. **50**, 1873 (1983).
- ¹⁶For a recent review of the effective-mass approximation applied to multilayer semiconductor systems, see G. Bastard and J. A. Brum, IEEE J. Quantum Electron QE-22, 1625 (1986). Note that we are, to avoid inessential complications, ignoring the dependence of effective mass on position. Our work can easily be extended.
- ¹⁷M. Kohmoto, Phys. Rev. B 34, 5043 (1986).
- ¹⁸See, for example, B. Y. Tong, Phys. Rev. A 1, 52 (1970); Phys. Rev. 175, 710 (1968).
- ¹⁹This is more explicit version of Eq. (2.11) in Ref. 17.
- ${}^{20}{F_j}$ are the Fibonacci numbers, $F_0=0$, $F_1=1$, F_j = $F_{j-1}+F_{j-2}$. After j generations there are F_j intervals in the Fibonacci sequence and $M_k=M_A$ or M_B according to the Fibonacci sequence. The quantities w_j and y_j are defined in terms of T_j by Eq. (8).
- ²¹We assume that, for the semiconductor superlattices of interest here, we can take the difference in local sound velocities to be due entirely to differences in the local mass density.
- ²²R. Landauer, Philos. Mag. 21, 863 (1970), D. C. Langreth and E. Abrahams, Phys. Rev. B 24, 2978 (1981).
- ²³B. Sutherland and M. Kohmoto (unpublished).