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Continuum-model acoustic and electronic properties for a Fibonacci superlattice
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A continuum model is used to study the properties of acoustic phonons and of electrons in a
semiconductor Fibonacci superlattice. Close contact is made with previous work based on discrete
models by using a transfer-matrix approach. The mapping of transfer-matrix traces under the
inflation transformation which defines the Fibonacci sequence has an invariant I, which has been
identified as a key parameter in characterizing the Cantor-set spectra. We derive analytic expres-
sions for the dependence of I on phonon frequency or electron energy and comment on the quali-
tative differences between discrete and continuum models. Transport properties are also discussed.

Interest in the spectral properties of one-dimensional
(1D) quasiperiodic Schrodinger operators' has recently
been reinvigorated by the discovery of quasicrystals. In
particular, Merlin et al. realized that semiconductor
quasiperiodic Fibonacci superlattices, which are related
to the model for quasicrystals proposed by Levine and
Steinhardt, could be fabricated using molecular-beam-
epitaxy (MBE) techniques. These developments led
many workers ' to reexamine the discrete Fibonacci
chains which had been studied earlier by Kohmoto
et al. ' and independently by Ostlund et al. ' In this
paper we report on a study of Fibonacci superlattices us-
ing a continuum model which is known to provide an
accurate description of either acoustic phonons or con-
duction electrons in a semiconductor superlattice. Un-
like earlier studies, our work is directly relevant to
MBE-fabricated Fibonacci superlattices.

We consider a set of points, Ix„), along the MBE
growth axis of a semiconducting film and separated by
intervals of width d~ and dz. All 3 intervals are filled
with identical thin films, and all B intervals with a
different set of identical films. The 3 intervals and B in-
tervals occur in a Fibonacci sequence, which is defined
by the following recursion relation: S] ——B, S2 ——3;
Sj Sj &Sj 2 for j )3. For conduction electrons, the
effective-mass approximation' leads to the Schrodinger
equation

E —Eo=A' k /2m, and'

—U n

—U n

(3)

u„'=(a f3 ) '[a u„——p u„*+ap(v„—v„*)] (4a)

and

v„' =(a —p ) '[a v„—p v„*+ap(u„—u„*)], (4b)

where a= —,'+k/2k' and p= —,
' —k/2k'. Similarly, we

can write

'It(x) =it „cos[k(x —x„)]+tt„sin[k(x —x„)] (5a)

In Eq. (3) u„=1/t„, v„=r„/t„, and r„and t„are the
reAection and transmission amplitudes through the bar-
rier between x„and x„+i for a wave incident from the
left. The form for Eq. (3) follows from time-reversal in-
variance and the conservation of probability [ ~

r„~
+

~
t„~ = 1 which implies that det(M„) = u„~

—
~
v„~ = 1. We have assumed that Eo is

chosen so that k is real].
There is obviously a great deal of freedom in how the

transfer matrix is defined and we take advantage of this
to simplify some of the subsequent calculations. For ex-
ample, changing Eo to Eo changes k to k ' (E Eo-
=irt k /2m*), and u„and v„ to u„' and v„'.

—A' d'4
+ V(x)iIt(x) =E'It(x),

2m dx
(1) and define a transfer matrix so that

n+1
where x is the coordinate along the growth direction and
V(x) is the conduction-band minimum. V(x) is defined
by the MBE growth prescription and may be taken, for
the moment, to be some arbitrary function in the 3 and
B intervals. Following Kohmoto' we introduce a
transfer matrix by defining an interval of width 2c.,
which we can subsequently set to zero, centered on each
x„where V(x) =Eo. then

%(x)=f„e " +P„e ", ~x —x„~ &e

(2)

(5b)

In this case Eq. (3) can be used to show that'

Re(u„—v„) —Im(u„+ v„)
Im( u„—v„) Re( u„+v„)

As we see below, however, the spectral properties de-
pend only on transfer-matrix traces and these must be
independent of the specific definition used.

The Fibonacci superlattice is completely characterized
by the transmission and reAection coefficients for 2 and
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B intervals and we define ux —=I /tz and vz =—rz It&
where X is A or 8. From the definition of the Fibonacci
sequences it follows that the transfer matrices obey the
recursion relation

conduction-band minimum of material 1, V&, an elemen-
tary calculation, yields

—ikld) ~ux =e ' ' cos(kzdz x )

TJ=TJ 2TJ 1 j)3
where T, =M~, 1'z=4„and

T =MFMF )
. . M) ——

j j —y

—yJ
k2

VX

lk,
i »—n(kzdz, X) 2k

+

k)
t 1rX ll X

2k

(14a)

implies that

w)+( —tv)(w~ ]+wj ) ) w~

and

(9a)

is the transfer matrix between from the beginning to the
end of the jth generation of the Fibonacci sequence.
Writing T z

——T f', ', and noting that

LUJ.

(14b)

where d ) ~ ——d )„~+d)( ~, E =A k ) /2m *+V) ——A k 2 I
2m '+ V2, and X= A or a. For Cars-aa, „Al.as sys-
tems we take m *=0.068m o, where m o is the electron
mass and

l
Vz —V, = 134 meV, corresponding to

x =0.2. A situation similar to that of the discrete model
with on-site energies alternating in a Fibonacci sequence
(the diagonal model) may be realized by choosing the

&i+&=&i(~J &+~7 ~—) (9b)
2.0—

The Fibonacci-sequence spectrum can be studied by
applying periodic boundary conditions after j genera-
tions and examining the limit in which j gets large. The
Bloch condition requires that

x—:—,
' trT, =Re(tv, )= cos(Ed, ),

where K is the Bloch wave vector and dj Fj &d q
+Fj 2dz is the total length after j generations. From
Eq. (9a) it follows that, as pointed out by Kohmoto, '

the trace map is identical to that of the discrete models

Xj+)2XjXj]Xj

1.5--

1.0—
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and this implies that as j gets large the spectrum ap-
proaches a Cantor set. Thus the discrete and continuum
cases are distinguished only by the starting conditions
for the map and, in particular, by the invariant quanti-

5, 14
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I Xj + ] +Xj +Xj ] 2Xj + ]X 'Xj ) 1
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The fractal dimension of the spectral set becomes small-
er and the range of scaling indices shifts to lower val-
ues as I becomes larger. Noting that x, =Re(uzi), xz
=Re(u„), and x3 ——Re(uzu„+vzv„*), it can be shown
that

I=[Re(v~v„* ) —Im(uzi )Im(u „)]
-60.0

I
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—[ l vzi l

—Im'(u~)][
l

v~
l

—Im'(u„)] . (13)

In the continuum model, I has a nontrivial dependence
on electron energy which provides a useful characteriza-
tion of the spectrum as we illustrate below.

The most general case we consider is one where each
interval has subintervals of material 1 of width d]& and
d„on the left and right and a central subinterval of ma-
terial 2 with width d 2. Then, choosing Eo at the

FIG. l. Integration density of states, N(E), trace-map in-
variant, I(E), and transmission coefficient, T(E), for a 12 gen-
eration continuum Fibonacci superlattice. Each interval has a
barrier region of width 20 A, and well widths of 120 and 80 A
are alternated in a Fibonacci sequences. N(E) is in units of
states per interval. For the corresponding discrete model
I=[(E„E~)/2t]' where the site energy —for the narrow well,
Eb, is larger and t is the hopping integral. Here I decreases
with increasing E.
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width of the barriers (Gat Al As regions) to be the
same in 3 and B intervals but allowing the well widths
(GaAs regions) to vary. Letting d, „„=d,„s=0,
d2 ~ ——dz s ——dz, and inserting Eqs. (14) into Eq. (13)
yields

k,
ID = sin [(d„—ds)k, )]

2k, 2~2
stnh (ir2dp )

(15)

k2
IoD ——sinh [(d~ —d~ )Ir t ] +

2k 2 2~,

2

sin'(kzd2 )

where we have assumed that V& &E.& V2 and let
k2 ia——

2 [F. or wide high barriers (ic2dz »1, az/ki »1)
Eq. (15) can be shown to reduce to the corresponding ex-
pression for the discrete diagonal Fibonacci chain. ] In
Fig. 1 we show the spectrum resulting after 12 genera-
tions of the Fibonacci superlattice and I(E) for barrier
widths of 20 A, d, ~ = 120 A, and d, ~ =80 A. In Fig. 2
the spectrum after 12 generations and I(E) are shown
for d2 ——100 A, d, „=24 A, and di ~ ——16 A. Letting
Ir, =iki Eq. (15) becomes

k2

2k,

2

sin (k, d, „)sin (kzd2 s ) . (17)
2k2

Note that I(Ace) vanishes like cu as co goes to zero, as in
the discrete model.

In closing, we comment on the transport properties of
the continuum Fibonacci superlattice. The transmission
coefficient for a j-generation Fibonacci superlattice is
given by

which can be shown to reduce to the expression given by
Kohmoto and Banavar for the off-diagonal discrete Fi-
bonacci chain model in the appropriate limit.

The developments discussed above apply equally well
for acoustic phonons in the continuum limit with the re-
placement 2m '[F. —V(x)]/A' ~co /c (x), where c (x) is
the local sound velocity. Thus for acoustic phonons, k,
and k 2 in Eqs. (14) are given by k, =co /c, and
k2 ——~/c2, and are always real. ' In Fig. 3 we show the
phonon spectrum and I(A'co) for d2 „——0, d, „=60 A,
d2 ~ ——40 A, and d, ~ ——0, where c] =4.72~10 cms
(GaAs) and cz ——5.62X 10 cm s ' (A1As). In this case
Eqs. (14) and (13) give

(16)
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FICr. 2. As in Fig. 1 but for a Fibonacci superlattice with
0

intervals of common well width (100 A) and diferent barrier
widths (24 and 16 A).
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FIG. 3. As in Fig. 2 but for acoustic phonons (E=Am) and
intervals composed of GaAs (d„=60 A) and B intervals

composed of AIAs (d& ——40 A). I(E) vanishes whenever there
is a resonance in either A intervals [sin(k, d, „)=0]or B in-
tervals [ sin(k2dz „)=0].
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with w given by Eq. (9a). For electrons the conduc-
tance is related to T by the Landauer formula,
G~ =(e Ih)TJ l(1 —T ). For discrete models it has been
conjectured' ' that for energies in the spectrum G de-
cays as a power of d with a range of exponents, in ac-
cordance with expectations based on the nature of the
spectrum. These conjectures can be firmly established in
specific cases where the trace map is cyclic. We do not
believe that cyclic maps occur for the continuum model
and numerical results for the dependence of transmission
coefficients on length are similar to those for discrete
models. ' The dependence of the transmission
coefficients on energy has been shown in the bottom
panels of Figs. 1 —3. The self-similar nature of the spec-

tral set shows up more clearly than in plots of the in-
tegrated density of states. In Fig. 2 note that T(E)
tends to have larger values in the higher subband where
I(E) is smaller. In Fig. 3 we see that T(E)=1 at the
energy where I(E) goes to zero. This is associated with
a resonance in material 2[ sin(kzd2s ) =0] and is the ana-
log for quasiperiodic systems of the property discussed
by Tong' for random systems. As is apparent in Fig. 3
the scaling index of the spectrum goes to 1 when I(E)
goes to zero.
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