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Nonlinear electronic transport in semiconductor systems with two types of carriers:
Application to GaAs

X. L. Lei*
Department of Physics, City College of New York, New York, New York 10031

and Department of Physics, University of Houston, Houston, Texas 77004

D. Y. Xing, M. Liu, and C. S. Ting
Department of Physics, University of Houston, Houston, Texas 77004

Joseph L. Birman
Department of Physics, City College of New York, New York, New York 10031

(Received 2 February 1987; revised manuscript received 10 July 1987)

The balance-equation approach for hot-electron transport previously developed is extended to
systems composed of two groups of carriers, each of different effective mass. This is the simplest
model for a real band structure of a rnultivalley semiconductor. The separation of the center-of-
mass (c.m. ) motion from the relative motion of the electrons is incomplete due to the possibility of
exchange of particle number between the two systems and thus is taken into account in the Liou-
ville equation for the density matrix. General expressions for the rates of change of the c.m. mo-
menta, electron system energies, and particle numbers are obtained. These equations in their clas-
sical forms are used for a model calculation for the high-field steady-state transport in GaAs and
the calculated results show reasonably good agreement with experiments.

I. INTRODUCTION

Since the early successful experimental observations of
high-field transport in n-type Ge (Ref. l) and the later
discovery of the Gunn effect in GaAs, widespread ex-
perimental and theoretical interest has been focused on
nonlinear transport in semiconductor materials for
several decades. Interest intensified recently with the de-
velopment of submicrometer semiconductor devices.
Theoretical approaches to the problem, in addition to
Monte Carlo simulations, and with a few exceptions,
have been based on solving the semiphenomenological
Boltzmann equation. Recently an alternative attempt
to solve this problem has been made by Lei and Ting
directly from the Liouville equation of motion for the
density matrix of the system, based on a separation of
the center-of-mass (c.m. ) motion from the relative
motion of the electrons. Concise balance equations are
obtained by calculating the density matrix of the system
to first order in the impurity and phonon scattering in-
teraction. These equations, written in terms of the elec-
tron density correlation function, can describe the
steady-state and transient transport beyond the
Boltzmann approach. This point has been clearly ex-
plained in Ref. 9. However, under a field strength
E &10 to 10 V/cm, it is generally believed ' that the
balance equations in their classical forms are valid for
hot-electron transport. We wish to emphasize that the
Lei-Ting balance equations are not equivalent to the
Boltzmann equation, but do not go beyond the level of a
semiclassical theory if only an electric field is applied,
and the involved density correlation functions are evalu-

ated in the random-phase approximation (RPA). These
equations, written in terms of an electron density corre-
lation function, give a uniform description without and
with a quantizing magnetic field. " For the latter case a
semiclassical treatment is invalid. Even in the absence
of a magnetic field, this theory has the capacity to go
beyond the semiclassical Boltzmann approach when the
density correlation functions are also calculated beyond
RPA.

The approach described in Ref. 8 is only for one type
of carrier with parabolic band. However, semiconduc-
tors like GaAs and Si usually have more complicated
band structures, and transitions between nonequivalent
valleys may play an important role at room temperature
or at high fields. The formulations presented in Ref. 8
are not applicable in that case. In this paper we try to
go one step further in considering the complexity of the
band structure by assuming that the system has two
different nonequivalent isotropic valleys with different
effective masses, i.e., a system composed of two types of
carriers. The method shall be applied to study the
steady-state transport in n-type GaAs. We shall limit
the applied electric field &10 V/cm for such a field
strength, the validity of the semiclassical balance equa-
tions is expected.

II. HAMILTONIAN

We can use this model to discuss the carrier transport
along the crystal axes in GaAs systems. In n-type GaAs
the center valley (l ) has the lowest energy and is nearly
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spherically symmetric with effective mass I 1
-0.067m 0

(mo is the free-electron mass). The next lowest ones are
four equivalent valleys at I. points. They are energeti-
cally at es ——0.27 eV (Ref. 12) above the I valley and
have elliptic symmetry with ( 111) (or ( 111), etc.) as
their syrnrnetric axes. If we consider carrier transport
along one of the crystal axes, any one of these valleys
gives the same contribution. For simplicity, we will
represent these valleys by spheres with effective mass
m2-0. 23mo. Neglecting the valleys of higher energy,
we have a system composed of two types of carriers.
The total number of these carriers N =N, +N2 is as-
sumed to be constant. However, the numbers of carrier
particles of systems 1 and 2, Nl and N2, are variable
since the carriers in systems 1 and 2 can exchange with
each other. We introduce the coordinate R for the
center of mass of the whole system, and R, and R2 for
systems 1 and 2:

2
R=—g r„+g rz; ——(N, /N)R, +(Nz/N)Rz,

and rnomenta P, and P2 for systems 1 and 2:

Here

Hc. m. E = —NeE. R, (9)

1V1+—P1 2zv 2V2 (10)

are the center-of-mass part of the Hamiltonian. Particle
numbers gl and gz can be expressed in the second
quantization representation of the relative carrier sys-
tems 1 and 2 as

1 2

g c Ig&c Ig~ s Nz = ~ c zko.

czar~

k, o. k, a

where c;z (c,l, ) are creation (annihilation) operators of
wave vector k for the ith (i = 1,2) type of carriers relative
to their respective center of mass. The summation over
k is actually limited in the vicinity of I" (k, =0) point
(for type-1 carrier, or system 1) or those of all kL points
(for type-2 carriers, or system 2). H„and Hz, are the
relative parts of the Hamiltonian for the first and the
second carrier systems, including their ("intravalley")
Coulomb interaction:

1 2

PI= QP& pz Qpz (2) le ~ ~1k lko lko
k, o.

Here r„, p„(rz, , pz; ) are coordinates and momenta of
the ith particle in system 1 (2), which satisfy the well-
known commutation relation [r &, , ppj ]= i5,.~ 5 p,
[r zpz,

.]=i5, 5Jp We . also introduce the velocities v,
and v2 for the centers of mass of the systems 1 and 2:

+ z ~ Vcig PC lk+q a.C lk q o. Clk a C lka
k, k', q
a, a

H2e = ~ C2kC2ktTC2ko
k, o

(12)

P, =iV, v„P2 ——N2v2 . (3)

The relative coordinates and mornenta for the carrier
systems 1 and 2 are defined as

I
rl; = rl; —Rl, r2 r2 R2

Pli Pli ~ I vl& P2i P2i I2v2

(4)

According to definitions (1) and (2), [N&R &, P,p]
=iN, 5 &. Therefore it is consistent to consider R, , P,
as canonical variables of the center of mass satisfying

2

+—g v, (q)cz &+ cz & q czj, cz&, (13)
k, k', q
o', o'

in which v, (q)=e /eoq is the Coulomb potential. For
convenience we choose the band bottom of the I valley
as the common zero for both systems, so that
e,z

——k /2m „and c,zz ——(k —kI ) /2m z+ eg . In Eq. (1)
H„, , H 1, ~h, H2 „,and H2 ~h are electron-impurity and
electron-phonon couplings for type-1 and type-2 carriers,
respectively:

[R, , P,p]=i5 p, (6)

and Nl, the particle number of system 1, as a variable of
the relative electron system 1, which commutes with
c.m. variables. It is easily seen that to the order of
O(1/N) the relative electron variables r'„and p,

'
obey

the canonical commutation relation

(7)

Therefore, most of the discussions in Ref. 8 can still ap-
ply in the present case. In terms of these new variables
the total Hamiltonian of the system in the presence of a
uniform electric field E can be written as follows:

iq. (R
&

—R )H„;= gu, (q)e ' '
p,

q, a

iq. (R& —R )
Hz, ; ——g uz(q)e ' '

pz
q, a

H „ph ——g M( qA, )(b q+zb qz )e 'p, q,
q, A,

Hz, h
——QMz(q, A)(b z+b,t q)e 'pz

q, A,

in which

Plq= ~ C l, k+qa. C1 ka
k, o

(14)

(16)

(18)

H =H, E+H, ~+Hl, +H2, +H h+HI,
HI 12 +H le-i +H2e-i + le-ph +H2e-ph

(8)

and

P2q —~ C2 k+qo. C2 ko
k n

(19)
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are density operators for type-1 and type-2 carriers,
u~(q) and M~(q, A, ) are intravalley electron-impurity po-
tentials and electron-phonon matrix elements for system
j (j= 1,2), and b qz (bqz ) are creation (annihilation)
operators for phonons with wave vector q and frequency
0„&. The phonon part of the Hamiltonian is

H, h
= X &q2b q2.bq2. . (20)

q, A.

In Eq. (8) H, 2 stands for the Coulomb interaction be-
tween different types of carriers (intervalley Coulomb in-
teI'actloI1):

i =[H, m T+H1, +H2, +HI, P] .
. Bp

at
(24)

To obtain an appropriate initial condition we imagine
turning off all the electron-impurity, electron-phonon,
and intersystem electron-electron Coulomb interactions,
as well as the electric field, at time t, . Then the two car-
rier systems, decoupled from each other, will approach
their respective thermal equilibrium states with tempera-
tures T„and T„and chemical potentials p, and p2,
which of course depend on the time t. The initial condi-
tion for the density matrix p is therefore chosen to be

iq (Rl —R2)'P1~2, .
q

(21) p I t= — =po=
~ph

1 — / 1 —( „—JN)1 „

Finally, H,' h and H, 'h are intervalley electron-phonon
interactions:

—(H2e P2N2 )/T2
e

Z2
(25)

H, '
zh

——g M12(q, k)(bq&+b q2 )e
q, A,

ik(R[ —R2)
X g e C lk+q~e2kcx

k, a
(22)

The expressions for the statistical average of the rates of
change of the particle number, the center-of-mass
momentum, and the relative electron energy of each type
of carrier can be calculated to the lowest order of the in-
teraction at time t as

'-ph=XM21(q ~)(bq2. +b q2. )e
' '

q, k
(dlV', ldt ) =N(u„u2), (26)

ik. (R~ —Ri )
X Xe e2k (23)

k, a

with M12(q, k. ) =M21(q, A. ) being matrix elements for in-
tervalley electron-phonon scattering. Intervalley
electron-impurity scattering is neglected.

Using Hamiltonian (8), the time derivative of center-
of-mass momenta P, and P2, the relative electron ener-
gies H„and H2„and the phonon energy H„h, can be
obtained from the relation 0= i [O,—H] (0 stands for
an arbitrary operator). The results are given in Appen-
dix A.

III. BALANCE EQUATIONS FOR FORCES, ENERGIES,
AND PARTICLE NUMBERS

The derivation of balance equations requires calcula-
tion of the statistical average of the time derivatives of
the related quantities with respect to the appropriate
density matrix of the system. This density matrix can be
obtained by closely following the derivation in Ref. 8:
i.e., treating the center of masses classically and treating
HI perturbatively to the lowest order. The coordinates
and velocities of the center of masses enter the density
matrix only through their time-dependent statistical
averages. It should be noted, however, that there is an
important difference in the present case of two types of
carriers with different effective masses from that dis-
cussed in Ref. 8. The separation of center of masses
from the relative degrees of freedom is incomplete in the
sense that H, T includes relative electron variable N,
which does not commute with the interaction associated
with particle exchange between these two systems.
Therefore the Liouville equation for the statistical densi-

ty matrix p of the relative electron-phonon system takes
the form

(PI„)=N, eE+FI(UI )+F~"(V, , U2)+F»(v, —u, ),
(27)

(P2„)=N2eE +F2(u2)+F '(v1, u2) —F12(v, —v2),

(28)

—(H„)=v, F, (u, )+ WI(u, )+ W~ (u, , v2)

+ WI2(u, —v2),
—(H2, ) =v2F2(v2)+(v1 —v2)F12(v1 —u2)

(29)

—&12(V1 —V2 )+ W2(U2 )+ Wp (U2 ~ V1 )

(30)

J =N]eU&+Nzeu2, (31)

the average drift velocity of the total system should be

u =(N, v, +N2V2)l(N, +N2) . (32)

The expression for N, F, and 8 functions in Eqs.
(26)—(30) are given in Appendix B. They include elec-
tron temperatures Tl, and T2„as well as the chemical
potentials p, and p2, as parameters. Since after turning
off the interaction the two carrier systems cannot ex-
change particles and energy with each other, nor with
phonons, the particle numbers and the internal energies
of the two systems at time t can be calculated by means
of the initial density matrix relevant to time t. Whence
we have

Here N, and N2 are the average particle numbers of car-
rier systems 1 and 2, U, and v2 are the average velocities
of the c.m. particle 1 and c.m. particle 2; i.e., the aver-
age drift velocities of the type-1 and type-2 carriers. The
total current J is due to both types of carriers:
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and

1

N, = g f((E,k
—P))IT„),

k, o

2

Nz =N N—, = g f ((ezk pz—) ITz, ),
k, o

1

E1 y elkf {(elk Pl )IT1
k, o.

2

Ez X ezkf ((ezk Pz)/Tze )

(33)

(34)

(35)

(36)

can be obtained uniquely for given lattice temperature T,
electric field E as a function of t, and for given initial
values of Ni, v&, v2, T„,and T2, .

In the steady state the time derivatives of all the vari-
ables N„v„v2, T„, and Tz, vanish. The equations
(dA'& Idt ) =0, (P, ) =0, {Pz ) =0, (H„)=0, and
(Hz, ) =0, together with relations (33) and (34) form a
complete set of equations to determine the steady-state
values of N, , v „v2, T„,and T2, at given T and E.

IV. NUMERICAL RESULTS FOR GaAs

dNi
=&dk, Idt) .

dt

dv}
mN, =(P, ),

dt

dvp
mz(N N, ) = (Pz„—),

(37)

(38)

(39)

dT„dNic, ' +x, =(H„),
dt ' dt

c, ' —x, =(H„),dT2, dNi

dt dt

(40)

(41)

in which C& ——(BE& IBT&,)z, Cz ——(BEz/BTz, )z,
A& ——(BEz/BN&)r, and Az ——(BEz/BNz)r are to be

determined by the relations (33)—(36).
Now we have a set of five differential equations for five

variables: X&, vi, vz, T„, and Tz„and two parameters
p, and tzz, supplemented by the two relations (33) and
(34) valid at any time t The time-depe. ndent solution

k, o

in which f((E—p)IT)=1/[exp[(E —p)/T]+1] is the
Fermi function.

In Eqs. (27) and (28) F,z(v, —vz) is the force exerted
on the center-of-mass particle 1, resulting from interval-
ley Coulomb interaction. It has nonzero value only
when two center of masses move at different velocities.
This is in agreement with the fact that there is no
momentum exchange during the process of Coulomb in-
teraction. However, the energy-loss rate of the relative
system 1 due to intervalley Coulomb interaction could
be nonzero even when v, =v2, unless T„=T2,. This
means that if the electron temperatures of the two rela-
tive carrier systems are different there may be an energy
exchange between them due to intervalley Coulomb in-
teraction. When v&

——v2, it is easily seen from the ex-
pression of W, z(u, —vz) that energy always transfers
from the system with higher temperature to that with
lower temperature, in agreement with the conventional
heat transfer idea. However, this conclusion might not
be valid when u, &vz.

It is straightforward to generalize the theoretical ap-
proach to transient hot-electron transport to the system
with two types of carriers. If the memory effect on the
drift velocity and electron temperature is neglected, the
evolution equations for the average particle number,
forces, and energies can be obtained:

We have performed numerical calculation for GaAs to
obtain high-field steady-state transport for electric fields
less than 50 kV/cm at lattice temperatures T=150, 200,
300, and 350 K, using the I -valley plus four L-valleys
model discussed in the preceding sections. At electron
temperatures higher than these T's, a nondegenerate
distribution is assumed for the Fermi function in all the
equations. As most other authors did in these kinds of
studies, intravalley Coulomb interactions between car-
riers are considered only in a constant screening approx-
imation, and intervalley (between I and L valleys)
Coulomb interaction effects are neglected for simplicity.

For I valley (system 1) we include (1) acoustic-phonon
deformation potential scattering with

AE &q
~M, (q, A, , )

~ 2 Vdv,
(42)

and (2) polar-optic-phonon scattering with

e AA„
~
M, (q, lz)

~
(43)

2 t/&oq
~ a'

Here the GaAs mass density d=5.36 g/cm, acoustic-
phonon deformation potential E, =7.0 eV, longitudinal
sound velocity v, =5.24 &( 10 cm/sec, static dielectric
constant ~ = 12.9, high-frequency dielectric constant

= 10.9, and longitudinal-optic-phonon energy
QLo =35.4 meV.
Four equivalent L valleys comprise system 2. For

them we consider (1) acoustic-phonon intravalley scatter-
ing with matrix element having the same form as (42)
but with E, =9.2 eV, and (2) optical-phonon deforma-
tion potential intravalley scattering with

AD

2VdQ L
(44)

LL
(45)

with DL,L =1.0)& 10 eV/cm and A+LL, =29.0 meV.
For intervalley electron-phonon scattering between I

valley and any one of the four L valleys, the matrix ele-
ment is taken as

Here optic-phonon energy AQL ——34.3 meV, optical-
phonon deformation potential D =3.0& 10 eV/cm. Be-
sides there are intervalley electron-optical phonon
scattering, having



36LEI, XING, LIU, TING, AND BIRMAN

GaAs T=3ooK

LO

GaAs T:3ooK

1O

Oh

E, (kvlcm )
50

E( k&Ic I) SO

FIG. 1. Steady-state drift velocity U vs evs electric field E for
T=300 K. The solid curve is the calculated result,

b Ref. 13, andthe error bars are experimental data compiled y e .
the upper and lower as e curd h d ves are experimental data from
Refs. 14 and 15, respectively.

FIG. 3. The calculated results for the fraction of carriers in
I valley, Xl/1V (dashed curve), and the electron temperatures
normalized to the lattice temperature for I and L valleys, are
shown as functions of the electric field E at T=300 K (solid
curves).

2= fiDL ~"'q' '
'

=
2Vdn, „' (46) V. SUMMARY

meV.with Dl 1- ——=1 1X10 eV/cm and AAL„——20.8 me
The calculated resu s od lt f the steady-state drift veloci y

lessE . (32), as a function of electric field essy q.
h 50 kV/cm are shown in Figs. 1 an, gt an

showing reason-with compiled experimental data, s
and ex eriments.bl ood agreement between theory pa y goo

The present results are also in concordrdance with Monte
d Boltzmann equation calcula-Carlo simulations an a o

tion using relaxation time approximation.
In Fig. 3 we p o e c1 t th alculated values of the fraction

ll X /% and the electron tempera-of carriers in I va ey
Tfor F1 d to the lattice temperature T, /T for

and L valleys as functions of the electric e
T=300 K.

W h demonstrated that the balance-equation ap-e ave em
r of massroach based on the separation of the center opro ac ase on

from the relative motion of electrons can ebe extended to
s i.e. s stems com-mu ltivalley semiconductor systems, i.e., sy

d of two or more groups of carriers: each haspose o wo
mbers of thedi erent e ec

'
ff ff tive mass and the particle num e

different groups can exchange with eac ot er. e
f f the center of mass, and the energy

and particle number balance equations for each subsys-

teractions between carriers in different valleys. e
o d good for numerical calculationequations o taine are goo

in a uniformfor steady-state and transient transport in a uni orm
fi ld W have carried out numerica com-

50utation for CsaAs steady-state transport at field E &putation or a s s
kV/cm with the simplest I -L model withouithout including

ll Coulomb interaction. Reasonably goodinterva ey ou
or better re-agreemen wit th experiments is obtained. or e

suits for GaAs at higher field a more realistic mo e in-
lle s and the nonparabolicity of the I valley

ch to this caseis desirable. To adapt the present approach to t is case
is a subject for future study.
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APPENDIX A

The time derivatives of center-of-masass momentum and
relative electron energy of the carrie y

' r s stem 1 are as fol-
lows:
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P, = —i [P, , H]
iq. (R I

—R ) iq RI=ili, eE i—g u, (q)q e ' '
plq —1 QM1(q ~)qxe (bq&+b —q&)plq

q, a q, A,

iq. R& ik (R&—R&)+i g M 21(q, A, )(b q&+b qZ)e
' g kxczk+qaclka

q, X k, o

iq R& ik. (R~ —R2)—i g Mlz(q, k. )(b 2 +b qz)e
' g e «+q )c lk+q c2ko'

q, A, k, o

iq (R& —R2)—1 g &, (q)q e plq p2, —q
q

H „=—i [H„,H]
1 a)

l g u 1(q)e ' ' g (Elk+q elk)c lk+q C 1k

q, a k, cr

iq RI
i g —Ml(q, k)e (bqz +b qz ) g (Elk+q —&lk)c lk+qac lka

q, A, k, o

iq Rz ik (Rz —R, )

+1 g Mzl (q, ~ )( bqg +b qz )e g e e lkc zk+qa lko'

q, k k, o.

iq R& ik (R& Rp)
i g Mlz(q, p)(bqz +b && )e ' p e 8lk+qc lk+qaczka

q, k k, a

iq (RI —R2)—1 g l, (q)e ' g (Elk+q lk lk+qa lkoP2, —q
k, o

The expressions for pz, and Hz, can be obtained from (Al) and (A2) by exchanging the indices 1~2.
The time derivative of the energy of the phonon system is

H „= i[H „,H—]
iq R iq. R~=i Q M, (q, k)Qqze '(bqz bqz )plq+—t Q Mz(q, k)Qq&e (bqz, bqz)pzq-

q, A, q, A,

iq R) ik (R) —R2)+i QM12(q, k, )Qqze '(bq& —b qz ) g e ' c lk+qaczka
q, A, k, a.

(A1)

iq. R2 ik (R2 —Ri )+i Q Mzl(q, A, )Qql, e (b &
—b qz ) g e ' c zk+q c lk

q, k k, o.

Finally, the rates of change of the particle number operators are given by

dlV', /dt = —d1V'2/dt = i(H,' 1,
H—, '„) . —

(A3)

(A4)

APPENDIX B

q q, A.

Fz(uz)=n; g ~
uz(q)

~
q„IIlz '(q, coz)+2+

~
Mz(q, A)

~

q„IIlz '(q, cuz+Q z) n
q q, A. T

CO2+ Qqg

T2.

The frictional forces and energy-loss rates for carrier systems 1 and 2 due to intravalley interaction are

F, (ul)=n; g i
ul(q)

i
q~IIz"(q, cu, )+2+

i
M, (q, A)

i
q„II&"(q,~u, +Aqua) n n—

T T1
(81)

(82)

Wl ( u, ) =2 + ~
M, (q, A )

~

0 1„II&"(q, cu, +0 2 ) n
~i++ a—n

Tle
(83)

~2(uz)=2+
~
Mz(q, i, )

~

0 2112 '(q, cuz+0 2„) n
q, k.

~2++qX—n
2e

(84)

with co& —=q v, , and ~2=—q„v2.
The force experienced by the center of mass, and the energy-loss rate of carrier system 1 due to intervalley

Coulomb interaction are
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F]2(vl v2)= 2 I
&, (q)

I
'q. I

oo 7T Tle

M —CO l2

2e
II&''(q, co)II]z ](q, co —co]z), (85)

~]2(v] —vz)= y ~
~, (q)

~

' J
oo Tl 2e

II2"(q, ~»2"(q, ~—~]2), (86)

with

12=&1—&z=q (vl —v2) (87)

In Eqs. (Bl)—(86) II]z"(q,co) and II]z ](q, cv) are the imaginary parts of the electron density-density correlation func-
tions for carrier systems 1 and 2 at temperatures Tl, and T2„respectively. Under random-phase approximation the
density-density correlation functions can be written as (j=1,2)

(J)()]r(q,cv)(j)

1 —v, (q )~]"( q, cv )
(88)

in which

f((E k+ —
]Lc )/T, ) —f((e k

—]]c )/T, )
m'J](q, cv) =2 g +Cjk+q ~jk+~ ~

(89)

are the density-density correlation functions of the carrier systems in the absence of intraband Coulomb interaction.
The frictional force experienced by the center of mass of the carrier system 1 due to intervalley electron-phonon in-

teraction is

+p (v
1 v2) =4r] & l ~]z(q ~)

l

'( —k]. )[f(k]k/T] ) f k(kz+q/Tz)l
k, q, A,

Ilk
T le

4k+,
T2

&«2k+ q
—E1k+ &qk)

ln
kk+q—n

2e

4]k

Tle
6(Ezk+q —E,k

—Qqk) (810)

k]k e]k P] (zk E2k Pz
2Elk=~lk+ ~mlv l+kxvl
2

E2k —z2k+ —,
' I2v z + k~ v2

(811)

(812)

The expression for F~ '(vz, v, ) can be obtained from Eq. (810) by exchanging all the indices 1~2.
The energy-loss rate of the carrier system 1 due to intervalley electron-phonon interaction is

~,"(v] vz)=4~ & lM]z(q ~) l'&]klf(k]k/T]. ) —f(kk+q/Tz, )j
k, q, k

X n
k]k

T le

kk+q
2e

5«zk+q —E ]k+ &qk)

0 ~+ n
4zk+q—n

T2 Tle
5(E2k+ q E]k —Qqk )— (813)

The expression for W' (vz, v, ) can be obtained from Eq. (813) by exchanging all the indices 1~2.
Finally, the rate of change of the particle number of the carrier system 1 is due to intervalley electron-phonon cou-

pling:

k, q, A,

q~
n

T
Ilk—n
T le

kzk+q
&(Ezk+q —E]k+ &qk)

ze
J

42k+,

2e Tle
&«zk q

—E]k —&qk) (814)
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