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Phonons in broken-symmetry structures
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A parabolic model of structure deformation is proposed. This model can be realized with a
specific pressure distribution over the boundaries of a film. The parabolic deformation, if
achieved, causes the appearance of optical phonons only. It is shown that the population of opti-
cal phonons rapidly decreases with decreasing film thickness.

I. INTRODUCTION

There has been increasing interest in phonon physics
over the past few years. Different types of broken sym-
metry as well as their influence on relevant physical
characteristics have been the object of intensive theoreti-
cal' as well as experimental investigations. ' In or-
der to contribute to these above-mentioned efforts we
shall propose a model of structure deformation and dis-
cuss the expected effects on phonon characteristics.

We shall analyze phonons in the simple-cubic struc-
ture with broken symmetry along the z axis. The
translation symmetry is conserved in planes orthogonal
to the z axis. In order to simplify calculations we as-
sume that the torsion coefficients C ~, a&/3,
a,P=( yx, z) are equal to zero. Under the above as-
sumptions the vibrational Hamiltonian of the system can
be written in the form
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displacements, p~=M„U~ are momenta, A, is the vector
connecting the nearest neighbors in a simple-cubic lat-
tice, and CP(A, ) are the strain coefficients. The break-
ing of symmetry is taken into account by taking M and
C to be dependent upon the lattice point vector n. The
explicit form of the functions M„and C„will be chosen
later.

II. DISPLACEMENT EQUATIONS

Using the equations of motion

t Pip t
—[p t, H ], t A' U t

——[ U t, H ],
and taking pt(t)=pt(0)e ' ' and Ut ——Ut(0)e
where co is the frequency, it is easy to obtain the follow-
ing equation defining atom displacements in a structure
with the Hamiltonian (1):

co Ut —— g Ct (A, )(2Ut —Ut q
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In this formula M„are the masses of atoms, U~ are their
Taking into account that the translation symmetry is
broken only along the z axis, one can write
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where N is the number of atoms along the o.'direction. After substitution
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where a is the lattice constant and accounting for (4), Eq. (3) reduces to the following set of equations:

Uf+]+Uf ]Qf Uf —0, f=1,2i3, . . . , N —1

U] Qo U]] =0 f =0

Ug i Qfv U]v=0, f =N .

The functions Q figuring in (6)—(8) are given by

(6)

(8)
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Mfcu2 4Df—[sin2(k a/2)+sin (k~c]/2)]

Cf f+1+Cff 1

Moro 4DO—[sin (k„a/2)+sin (k~a/2)]
Caa

0, 1

M&cg 4Dg —[sin (k a /2) +si n(k a/2)]
CN, N —1

(9)
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It is obvious that in defining the form of the functions Qf different types of broken symmetry can be taken into ac-
count.

III. CONTINUAL APPROXIMATION AND A PARABOLIC MODEL OF DEFORMATION

In Eqs. (6)—(8) we shall go from the discrete variable f to a continual variable z using the following prescription:

f~z, N~L,
Uf ~U(z), U, ~U(a), UO~U(0), Ug, ~U(L —c]), Ug~U(L),

Mf ~M(z), Cf f+]+Cf f ] ~2C(z), Co, ~C(0), Cg~ ] ~C(L) )

Df ~D (z), Uf+] + Uf ] ~U(z +a)+ U(z —c])=2U(z)+a p d U(z)
dz2

(12)

sin
"

+sin = —'a (k +k )=
4 x p 4

(13)

In accordance with Eqs. (12) and (13), the difference
equations (6)—(8) become

where L is the thickness of the crystal in the z direction.
Since transitions (12) are a good approximation only in
the long-wave range, we should also show that

The last simplifying condition, which can only be
reached artificially, will be discussed later. We shall for-
mulate a parabolic model of deformation under the
above assumptions. We shall show that the function
M /C (z) has the maximal value for z =L /2, i.e.,
maxM/C(z) =M/C(L/2) —=M/C and that it decreases
symmetrically when z tends to the boundaries of the
crystal, i.e.,

2
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k U(z)=0,
C(z)

(14)
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C(z) C 2
(18)

U(a) —2 1 —co
p M(0) a k U(0)=0,

C(0)

The values of the strain constant, due to the symmetry
assumed, have to be equal at both boundaries, i.e.,

C(0)=C(L)=C+C',

U(L —(z) —2 1 —cc] + ci k U(L) =() .
C(L) C(L)

(16)

where the correction C' depends upon the physical con-
ditions on the boundary surfaces. The constant g will
be defined from the condition

D(z)=C(z) . (17)

For further analysis it is necessary to define the func-
tions M(z)/C(z) and D (z)/C(z), i.e., to choose a model
of deformation. We shall assume that all the atoms are
identical, i.e. , M(z)=M =const. It will also be shown
that

C(0)
M

C(L)
M L
C g 4

2M
C+C' (20)

This condition is chosen in accordance with Eqs. (10)
and (11), from where it follows that the ratio M/C is
doubled at the boundaries with respect to its bulk values.

From Eq. (20) it follows that
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FIG. 1. Dependence of force constant ratio y on dimensionless wave vector x for various values of relative thickness e.
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It is clear from (21) that the parabolic dependence (18) is
valid only if

Eq. (23) becomes the Hermite-Weber equation

(26)

C'I &C (22)

d U(z) Mco kq qco' L+ —k —g z-
dz2 C.
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U(z) =0,

z H (O, L), (23)

It is obvious that condition (22) can be satisfied
artificially, let us say, by applying a very high pressure at
the boundaries. The condition D(z)=C(z) requires a
pressure distribution along the z direction which would
achieve such an equality. It is clear that a practical real-
ization of the mentioned pressure distribution is not a
simple problem"' and the question remains: is it possi-
ble in general. We shall assume that both conditions
(17) and (22) are realized in some way and will continue
with our calculations.

Substituting (18) into (14)—(16), we obtain the follow-
ing set of equations:

2 2d U
Az

Mm —k~ —g~ U=0 .
Ca ~ (27)

In order to avoid enormously high boundary displace-
ments, we shall use the usual condition for an equation
of the type (27), i.e.,

M —k =2n+1, n =0, 1,2, . . .
Ca

(28)

1/2

co„=(2n +1)—a CC' —C
L M C'+C

1/2

1
qa C C'+C Ca k

L'M C' —C M
(29)

from where we find the phonon frequencies in the con-
sidered structures:

U(a) —2 1 —co, +a k U(0)=0,C'+ C

U(L —a) —2 1 —co, +a k U(L)=0 .C'+C

(24)

(25)

Taking approximately that +L/2A, ~+~ we obtain the
following formula for the displacements:

—22

U„(g)=,~~, ~~, H„(g)=( —I )"e ~ e

After substitution (30)
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' 1/2
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Since the boundary equations (24) and (25) have to be
satisfied, the parameters figuring in (29) are not indepen-
dent. Their dependence will be analyzed here only for
the ground-state frequency, i.e., for n =0, when formulas
(29) and (30) have the form

1/2 (I')
mlncoo ——

M
minF, (x), i =1,2, 3,4 (34)

Condition (33) was analyzed numerically for @=10
10, 10, and 10 '. The results of these calculations
are given in Fig. 1. The minimal values of the frequen-
cies coo are given by the formula

1/2

and

v r I s —1 /4 —[z ( L /2 j ] /2A.
Uo~z~ =m e

(31)

(32)

where

minFt(x) =1.319 521, minF2(x) =1.323 567,

minF3 (x)= l.365 537, minF4(x) = 1.937 693 .
(35)

After substitution (32), Eqs. (24) and (25) reduce into a
unique relation, connecting the characteristic parameters
of this theory (we show that C' & 0):

1+x F (x)
1+y

C'
x =ak, y=

C

= —,
' exp[( 1 —e)F (x )],

a
(33)

F(x)=e r+1
1/2 1/2

+ x+@
—1

x+1

In accordance with
~

C'
~

&C and C'&0 the minimal
value of y is equal to one.

IV. SUMMARY

From the formula of (35), the following two important
conclusions can be drawn.

(a) Only optical phonons can appear in the structure
considered.

(b) The minimal energy of the optical phonons in-
creases with decreasing thickness of the film and, conse-
quently, the population of phonons decreases rapidly.

The above conclusions could be of certain importance
in the synthesis of high-temperature superconductors, if
applied to the metallic structures, since the small pho-
non population enhances the stability of the supercon-
ductive energy gap. '
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