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The energy dispersion for arbitrary momentum of a polaron in n dimensions is calculated by the
Rayleigh-Schrodinger perturbation theory and by a modified Brillouin-Wigner perturbation
theory. For the energy and eff'ective mass of the polaron ground state, both methods give results

that agree with the results of V. V. Paranjape and P. V. Panjat [Phys. Rev. 8 35, 2942 (1987)] to
linear order in the polaron coupling constant n. The self-energy shifts are progressively weakened

with increasing dimension. In particular, this weakening occurs for the structure in the energy
dispersion near the momentum value at which the polaron starts decaying via the emission of pho-
nons.

I. INTR&)DUCTIQN

The polaron problem has been studied actively for
several decades. Feynman derived, in an early paper, '

the ground-state energy and effective mass of the pola-
ron for arbitrary strength of the polar coupling. He
used a path-integral method and developed a variational
technique in which a trial function for the action was
utilized. The fact that the ground-state energy was ob-
tained with a variational technique means that it gave an
upper bound for the exact result and all methods giving
significantly higher energies can be rejected. Even today
there is no theory that works better over the ~hole
range of coupling constants. However, perturbation
theory can be used separately in the weak- and strong-
coupling limits and can in principle be pushed to arbi-
trary accuracy. In the weak-coupling expansion (expan-
sion in the coupling constant a) for the ground-state en-

ergy and effective mass the expansion coeScients de-
crease very quickly. The term linear in n actually gives
a good approximation to the exact result even in the in-
termediate coupling regime, i.e., for a up to about three.

In theories of the transport and optical properties of
polarons, it is necessary to know the complete dispersion
relation and not just the ground-state energy and
effective mass. Unfortunately, the perturbation expan-
sion does not work well for all states. In a region of
states near where the electron energy is greater than that
of the band bottom by an amount equal to the phonon
energy, the energy denominators become small or van-
ish, thus creating a problem. This problem is similar to
one in band theory. There, perturbation theory works
well away from the band-gap regions, but in those re-
gions it breaks down, again due to small or vanishing en-

ergy denominators, and degenerate perturbation theory
must be used.

Second-order perturbation theory (producing shifts
linear in a) gives an energy that is a nonmonotonic func-
tion of momentum. There is a dip in the energy disper-
sion at p„ the momentum at which the energy (the un-
perturbed energy) equals the phonon energy. At this
momentum the dispersion has a negative and diverging

derivative from the left. The dispersion itself, however,
is finite and continuous. Because of the diverging
derivative the dip and the nonmonotonicity prevail for
all values of a, however small, but the size of this un-

physical region around p, decreases with decreasing a.
Three requirements should be fulfilled for an accept-

able theory, viz. , the ground-state energy should be
given with good accuracy, the structure caused by the
resonant coupling to states with one phonon present
should occur at a value displaced above the bottom of
the shifted band by an amount equal to the phonon ener-

gy, and the slope of the dispersion should be non-
negative (or perhaps vanish) at this point. It has been
argued that the correct behavior for the dispersion in
the troublesome region is to have a bend-over and a van-
ishing derivative at the most critical point.

The Brillouin-Wigner (BW) perturbation theory,
known as the Tamm-Dancotf (TD) theory when applied
to the polaron problem, can be viewed as a degenerate
perturbation theory and gives a more accurate result io
the region where the nondegenerate perturbation theory
fails. However, it gives very poor results for the
ground-state energy. Besides, the structure in the
dispersion occurs at a value displaced by an amount
equal to the phonon energy above the unshifted band
bottom, and not above the shifted one, as it should. The
improved TD (ITD) theory of Whitfield and PufF' elimi-
nates the second problem, but still gives a poor result for
the ground-state energy. Larsen developed a variational
method based on a combination of the theory of Lee,
Low, and Pines (LLP) and the TD theory, which
fulfilled all three requirements.

Inspired by the recent interest in lower-dimensional
system, Peeters et al. derived the result for the polaron
ground-state energy in n dimensions using fourth-order
perturbation theory within a path-integral formulation.
It was found that the perturbation expansion converged
faster with increasing dimension. Very recently Paran-
jape and Panat rederived the result to linear order in u,
using an alternative method, the so-called dispersion
method. They furthermore calculated the polaron
effective mass. It was found that the size of the polaron
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effects on both the ground-state energy and the effective
mass decreased with increasing dimension.

We here rederive the results in Ref. 8 by an alterna-
tive method, which we believe to be more familiar to
most readers. The result is obtained from the expansion
for the exchange and correlation energy for the electron
gas in the presence of the coupling to optical phonons by
taking the extreme low-density limit in which just one
electron is present. The result can also be regarded as
the extreme low-density limit of the quasiparticle energy
in Rayleigh-Schrodinger (RS) perturbation theory. In
this limit both energies coincide. This derivation is
presented in Sec. II. The results obtained are linear in a
and are identical to those obtained in Ref. 8.

As the polaron effects are weakened with increasing
dimension it might be possible to use perturbation
theory to obtain accurate results for the energy disper-
sion at arbitrary momentum. In particular, by studying
the energy dispersion at higher dimensions one may
hope to get more feeling for how the three-dimensional
(3D) dispersion should behave for excitation energies
near the phonon energy. The prediction of a vanishing
slope, discussed above, is arguable. In our opinion, one
can predict only a bend-over and that the derivative
should be non-negative.

The question of whether the slope vanishes or not is of
physical interest. In a recent paper Hellman and Harris
gave a plausible explanation to the puzzling periodic
structures observed' in the I-V characteristic of GaAs-
Al Ga& As tunnel junctions. They suggested that the
periodic structures are caused by the vanishing slope in
the polaron energy dispersion. The electrons tunnel
through the junction and are initially accelerated, but
because of the bend-over in the energy dispersion they
are subsequently decelerated. A macroscopic number of
electrons are collected at a certain distance from the
junction. As they each have an energy close to the pho-
non energy, they will eventually, one by one, drop to the
bottom of the band via the emission of a phonon. The
acceleration-deceleration process starts over again and
the result is that the electrons are bunched in space in a
periodic way. This bunching causes the periodic struc-
tures in the I-V characteristic. In these experiments the
polarons are quasi-one-dimensional but similar effects
could appear for 3D polarons if the energy dispersion
had a vanishing slope.

We calculate the energy dispersion for arbitrary
momentum and find that the size of the polaron effects is
reduced with increasing dimension for all momenta.
Also, the structure near p, is weakened. In two dimen-
sions both the energy and its derivative diverge at p„' in

three dimensions only the derivative diverges, while for
higher dimensions neither the energy nor the derivative
does so. As a complement to this derivation we also use
a modified Brillouin-Wigner (MBW) approach which
fulfills the three requirements for the 3D case stated ear-
lier. It can be regarded as a simplified version of
Larsen's method, but it is not a variational method.
This approach is described in Sec. III, where, in addi-
tion, the numerical results for the energy dispersion ob-
tained from the two methods are compared. In the 2D

case the result from MBW gives three solutions for
momentum larger than a certain u-dependent value. In
this region a more detailed investigation is needed and
we examine the spectral function and its maxima. Final-
ly in Sec. IV we give a brief summary and draw some
conclusions.

II. THE ENERGY DISPERSION TO ORDER a
FOR A POI.ARON IN n DIMENSIONS

We define the n-dimensional polaron in the same was
as was done in Refs. 7 and 8. The basic interaction is
assumed to be the ordinary 3D Coulomb interaction
e /r, but the electrons are restricted to move in an n-
dimensional space. The realizable cases have, of course,
n (3. For n & 3, in our treatment, the electrons move in
an n-dimensional space inside the 3D polar semiconduc-
tor and the coupling is to the bulk phonons. To take an
example, in the 2D case our treatment corresponds to
polarons at an interface well inside the bulk of the semi-
conductor. This is different from the situations treated
in the early works on surface polarons by Sak" and
Evans and Mills. ' There the polarons were trapped on
the surface of a semi-infinite ionic insulator or polar
semiconductor and the coupling to surface phonons also
entered the problem.

We derive the self-energy shift for the polaron from
the expression for the interaction energy E;„, in a system
of electrons and optical phonons. ' In the absence of
phonons this energy is just the exchange and correlation
energy. In the presence of phonons it is slightly
modified, and can be expressed as

(2. 1)

As it stands, Eq. (2.1) is valid for n dimensions if the
summation over q is performed in the n-dimensional
space. In the expression, which is taken from Eq. (2.25)
in Ref. 13, the last term in the integrand comes from the
subtraction of the energy contribution from the interac-
tion of each electron with itself. The dielectric function
eo was introduced to make the physics clearer and to
give faster-converging integrals.

The dielectric function for the electrons, Ez(q, ~), is
given by

Av„(q)
e~(q, co) =1— X (q, co), (2.2)

where k, v„(q), X (q, co), and eL (co) are the coupling con-
stant, the Fourier transform of e /r in n dimensions, the
electron polarizability, and the lattice dielectric function,
respectively.

The lattice dielectric function can be expressed as
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COL Ep —6
eL (co)=e
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1

6) +COL —l 7j
(2.3)

where coL is the frequency of the longitudinal-optical phonon. The constants e[] and e are the static and high-
frequency dielectric constants, respectively.

The dielectric function eo z(q, co) is defined as

A,v„(q) 1
[eo,Dq ~)—1 ]= e A'fl „' co co—(k, q)+ii)

1

co+ co(kq) —i i)
(2.4)

where Q denotes the volume of the n-dimensional system, nz the occupation number for state (k, o ), and

co(k, q)=(e„+,—e„)/A'= [(k+q)' —(k)'], (2.5)

i.e., fico(k, q) is the change in kinetic energy for an electron in going from state k to state k+q.
The extreme low-density limit of Eq. (2.1), taken in such a way that only a single electron in state p is left in the

system, is

0 P — 4iri eL(co)A'0 co co(p, q—)+ir) co+co(p, q) i r)—
A,v„(q) 1

e„AA co —co(p, q)+ir)
1

co+co(p, q) —ii)
(2.6)

and after integration over the coupling constant it reduces to

&„(p)=E;„,= ——g' v„(q) J . [eL '(co) —e„']
2rri co —co p, q +ig

1

co+co(p, q) iq— (2.7)

& dk, dco= —I g' j [Go(p+q, ep/iri+co)+Go(p —q, e /fi co)]-
0 A, —~ 4iri e~ (co)e~~(q co)Q

A.v„(q)
e„Q co —co(k, q)+ir)

1

co+co(k, q) ii)— (2.&)

Alternatively, the polaron self-energy can be obtained as the low-density limit of the electron self-energy in the cou-
pled electron-phonon system. Before the limit is taken this energy can be expressed as

6E,„,
&„(p)=

6n

Integration over the coupling constant gives

1 Go(p+q, e&/A+~)+Go(p+q, e /fi co)—
&„(p)= ——g' v„(q)

0, " — 4~i eL (co )e(q, co)

1 1

e„co co(p, q)+i r—)
1

co+ co(p, q) iq— (2.9)

We have also changed q to —q in the last Green's function. This is allowed because the factor multiplying the
Green's function is symmetric with respect to this interchange.

The expression in Eq. (2.9) is useful as it stands for the polaron problem in case there actually are a macroscopic
number of electrons present in the band. We are here interested in the energy shifts when only one electron, the elec-
tron in state p, is present in the system and therefore we need the extreme low-density limit of the expression. In tak-
ing this limit, the dielectric function e(q, co) in the first term becomes unity and the sum of the two Green s functions
is reduced to the same expression as that within the set of large parentheses. Thus Eq. (2.7) is obtained again.

Equation (2.7) can be rewritten as

2 EOE' A —oo 4&l CO —COL + l 7/

co co(p, q )+—i i) co+co(p, q) ir)— (2.10)
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The frequency integrand contains four terms, of which
two have their poles on the same side of the real axis.
For these terms the contour in the complex co plane can
be closed in the opposite half plane and the correspond-
ing contributions vanish. We are left with the integral

index angles, which yields the result

X 2)(n —3)/2 (n —l )/2f d&„= dx—1 r n —1

2

(2.16)

f dc' —1

—~ 4vri (co —coL +ig)[co+co(p, q) —i2)]

—1+
(co+coI i —ir)[ co—co(p, q) +ig]

(2.1 1)

where the variable x is the cosine of the angle between p
and q.

The Fourier transform of e /r becomes, in n dimen-
sions,

which we close in the upper half plane and arrive at

1

co(p, q)+coL ig— (2.12)

2

U„(q)= f dr r" ' fdII„
0 f'

I (2' )"e
2

2~(n + 1 j/2 n —1

(2.17)
The expression for the polaron self-energy shift is thus
reduced to

Inserting Eqs. (2.16) and (2.17) into Eq. (2.14) gives

COL Eo—E 1
X„(p)= — —g' U„(q)

2 eoe„Q "
co(p, q)+coL —l ri

(2.13)

&„(p)=— L 60 6 e2

2 60E 7T

1 ( 1 2)(n —3)/2

f dq dx
o —l (e + —e )/))I+cue ig—

The next step towards producing numerical results is to
transform the summation over q into an integral. The
result is

(2.18)

Let us now introduce some suitable units. Let all wave
numbers be expressed in units of p„where p, is

2 eoe„o (2~)" p, =(2mcoL /fi)' (2.19)

dO„f 1

co(p q)+col. i vl

(2.14)

where the solid angle is given by

dQ„=sin" (8„))d8„)sin" (8„2)d&„2 d(9) .

(2.15)

i.e., the wave number at which the unperturbed energy
equals the phonon energy. To make the notation clearer
we use capital letters to denote transformed wave num-
bers, i.e. , P =p/p, and Q =q/p, .

This transforms Eq. (2.18) into

( 1 2)(n —3)/2
X„(P)=—a))icoL —f dg f dx

2rr o —l Q2+ 2Qpx + 1 iri—
(2.20)

As the only angular dependence in the integrand in-
volves the angle between q and p, we choose this angle
to be the angle with highest index. The lowest-index an-
gle is restricted to values between 0 and 2m. , while the
rest of the angles vary between 0 and ~. This expression
was also used in Ref. 8. We integrate out all higher-

(2.21)

Integration over Q gives the following final result:

where the polaron coupling constant a is defined as

p eo e2

a=
2AcoL E06

(n —3)/2
min(1, )/p) (1—x )" . p+(p —l) 1 (1+Q )

n L
~

o [1 (xp)2]l/2 p (p2 l)l/2 g 2QP
(2.22)

Before presenting numerical results for general P let us study some limits. The polaron ground-state energy is given
by

r lZ —1

2
E„(0)= aficoL dx(1 —x —) " ' = —al)icoL

0 2 nr—
2

(2.23)

The polaron eff'ective mass is obtained from the derivative of Eq. (2.22) for vanishing wave number according to
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1 1 dX(p)

P=0

1=m '
1 —— dx(1 —x )'" ' x

2 0

—1 ~Fr=m 1 —a
4n

I n —1

2

nr—
2

(2.24)

These results are in agreement with Ref. 8.
It is furthermore found from inspection of Eq. (2.22) that

ReX„(1)=ReX„,(0)= aficoL-~7r
r n —2

2
=(ah'coL ) X„'(0) .

2(n —2)
(2.25)

In 3D the integral in Eq. (2.22) can be performed analytically and the result is

X3(P)= aficgz 8(—1 —P)—sin '(P) +0(p —1 ) + ln
1 vr i P +(P 1)'—
P 2P 2P p (p' 1)'" (2.26)

In 2D the expression for the real part can be identified
as complete elliptical integrals of the first kind both for
P&1 and for P& 1. The same result as ours for P~1
was obtained in Ref. 14. However, in that reference was
found, in contradiction to our findings, a vanishing shift
for P& 1. In the 4D case the real part can be identified
as an incomplete elliptical integral of the second kind for
P) 1.

The numerical results for the real part of the self-
energy shifts are shown in Fig. 1 for various n values. It
cannot be obtained for a strictly one-dimensional system
since for that case U„(q) diverges for all q values. In 2D
both the shift and its derivative diverge for p =p„but
are finite and nondivergent everywhere else. In 3D the
shift is finite and continuous at p, but its derivative is
discontinuous at that point and the derivative from the
left diverges. For four and higher dimensions both the
shift and its derivative are continuous everywhere and
the structure around p, becomes progressively weaker
with increasing dimension. Also to be noted is that the
shift no longer has its minimum at p„but rather at a
higher p value, and that this p value increases with di-
mension. From Fig. 1 one further finds that, in accor-
dance with Refs. 7 and 8, the energy shift and effective
mass for p=0 decrease with increasing dimension. The
smaller the curvature which the curves have at p =0, the
smaller are the effective-mass enhancements. We return
to these results for the energy dispersion in the next sec-
tion, where they are compared to the results from a
modified Brillouin-Wigner method.

III. ENERGY DISPERSION
FOR THE POLARON FROM A MODIFIED

BRILLOUIN-WIGNER APPROACH

In the Brillouin-Wigner (BW) perturbation theory the
Dyson's equation is solved for the electron Green's func-

tion and the result is

G„(p, co) = 1

co —[e&+X„'(p,~)]/g
(3.1)

C)

30

10
20

CV
I

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

FIG. 1. The interaction-induced energy shifts (the real part)
in units of aficoL, as a function of wave number, for a series of
dimensions. The results are from the Rayleigh-Schrodinger
perturbation theory and the numbers labeling the curves are
the corresponding dimensions.
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It can be further simplified to

Y =[ReX„(P/&I —Y )/&I —Y E—„(0)]/fico&, (3.9)

pol MBw

a a=1——+6+ 3a 6 12

m
Larsen

a=1- =1——+6+a/2 6 72

where Y =y /AcoL . This expression involves the self-
energy in RS, given in Eq. (2.22).

The 3D results for the energy dispersion from MBW
(solid curves) are compared in Fig. 3 to those from RS
(dotted curves) for the a values 0.25, 0.5, 1, and 2. As a
reference the unperturbed dispersion is shown as the
dashed curve. One notes the unphysical dip in the RS
result at p =p, . The MBW dispersion bends over and
has a vanishing slope at the energy AcoL above the band
bottom. For higher energies MBW and RS give identi-
cal results. The dispersion near the bottom of the band
is given by the effective mass. m/m* has the following
a expansions in the different approaches:

C)
C)

tD

~~ o
o~o

LQ~o
,
UJ

u3
CV

C)

C)
O
O

C4
C)

RS

RS4

m
Feynman

a a—1 —+
6 360

= 1 ——+0.022 63'
6

(3.10) 0.0 0.4 0.80.2 1.20.6

FIG. 3. The polaron energy dispersion in 3D in units of
Ace& for the coupling constants 0.25, 0.5, l, and 2. The dotted
curves represent the Rayleigh-Schrodinger results and the solid
curves the modified Brillouin-Wigner results. The dashed
curve is the unperturbed electron dispersion.

The fourth-order Rayleigh-Schrodinger (RS4) result was
obtained in Ref. 16. As can be seen, all results agree to
linear order in a.

The 4D results are shown in Fig. 4 for the same set of
a values. The notation is the same as in Fig. 3. The un-
physical nonmonotonicity in the dispersion from RS also
occurs here, but only for high a values. The MBW
dispersion bends over at AcoL above the band bottom, as
it should, but it should be noted that this bend-over is
much weaker here than in the 3D case and the slope
does not vanish. This leads one to suspect that maybe
the vanishing slope in 3D should not be there. In BW,
ITD, Larsen's method and MBW it is there because of
the diverging derivative of the RS self-energy at p, . If
one used a higher-order self-energy insertion the vanish-
ing slope might disappear.

Another difference compared to the 3D case is that
here the MBW and RS are not identical for energies
above AcoL. Actually, all the curves, solid, dotted, and
dashed, have two points in common. One is the band
bottom. The second point is for the wave number at
which the RS self-energy is the same as at the band bot-
tom. In Fig. 4 this point is outside the plot.

In 2D we found (see Fig. 1) that the RS gave stronger
shifts near p, than in 3D and one would expect the
MBW energy dispersion in 2D to show pronounced
structures. This is also found. The 2D dispersions are
shown in Fig. 5. The dispersions bend over and the en-
ergy approaches AcoL as p~ oo. For p larger than a cer-

C)
CV

3
1~ C)

UJ
I

CL

, LU

LA

C)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 4. The same as Fig. 3 but now for 4D. The letters a,
b, c, and d denote the coupling constants 0.25, 0.5, 1, and 2, re-
spectively.
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/p,
2.0

o0
1.00 1.01 1.25 1.50 1.75

E-E(o) /w~
2.00 2.25

FICi. 5. The same as Fig. 4 but now for 2D. The notation is
unchanged. The additional open circles indicate the positions
of the peaks in the continuum part of the spectral function for
the coupling constant 0.25.

FIG. 6. The continuum part of the spectral function of 2D
polarons for four diff''erent wave numbers. The wave numbers
are indicated above each corresponding curve. The plot is ex-
panded in the energy region between 1.0 and 1.01, and to avoid
confusion the curves are dotted in that region.

tain a-dependent value, Eq. (3.6) has three solutions.
For energies above Scar, however, the imaginary parts of
the self-energies are nonzero. This is the case in all di-
mensions, not only in 2D. It means that the polaron is
no longer a stable excitation of the system. It decays via
emission of longitudinal-optical phonons. If this decay
is weak enough the polaron is still a useful concept. The
spectral function gives information about how well
defined an excitation is. We have, in Fig. 5, comple-
mented the curve for +=0.25 with the peak positions in
the corresponding spectral function. We can see that
the peak positions, at least for small n values, agree
quite well with the solutions to Eq. (3.6). The spectral
function consists of a 6 function in the branch below
RcuL and a double-peak structure for energies above AcoL.
The part above R~L is given for a set of p values in Fig.
6. For large p values it consists of two well-resolved
peaks. The peak at highest energy corresponds to the
excitation one would expect to find. Its dispersion ap-
proaches that for an unperturbed electron as p ~~.
The other peak is very narrow and close to the energy
%col . In order to resolve the narrow peaks we have ex-
panded the plot for energies just above AcuL. The curves
are dashed in the expanded part of the plot. With in-
creasing p the narrow peak becomes even narrower
which indicates that this excitation becomes more well
defined. However, the integrated area under the peak
decreases.

IV. SUMMARY AND CONCLUSION
We have studied the energy dispersion for polarons in

n dimensions, as obtained from the Rayleigh-
Schrodinger perturbation theory and from a modified
Brillouin-Wigner perturbation theory. We found that
the structure in the dispersion, caused by the resonant
coupling to states with one phonon present, decreased
with increasing dimension.

It has been argued that the dispersion should have a
bend-over and a vanishing slope at the point above the
band bottom equal to the phonon energy. The con-
clusion that the slope actually vanishes, at the point
where the resonant coupling to states with a phonon
present sets in, has. been arrived at by using Brillouin-
Wigner perturbation theory or related theories. The re-
sults for dimensions higher than three lead us to ques-
tion this conclusion. For higher dimensions these
theories produce a bend-over which is, however, not
strong enough to give a vanishing slope. The vanishing
slope obtained in 3D is caused by the diverging momen-
tum derivative of the self-energy insertion used. Using a
higher-order self-energy insertion may also give a non-
vanishing slope in 3D.

In 2D we found, for momentum larger than a certain
coupling-constant-dependent value, three excitations
with the same momentum. This result was obtained by
the modified Brillouin-Wigner method and also verified
from the study of the spectral function.
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