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The van der Waals potential of a neutral atom moving near a surface has both real and imagi-
nary parts. The imaginary part corresponds to real excitations of the atom and of the surface. Be-
cause of this imaginary part, the van der Waals potential can give rise to inelastic processes in
atom-surface scattering, for example excitation of electron-hole pairs or surface plasmons. Using a
self-energy formulation of the complex van der Waals interaction we derive expressions for inelas-
tic scattering probabilities of atoms or ions reflected from surfaces. In the case of ion or electron
scattering from surfaces this reproduces a well-known result. We calculate the probabilities for in-
elastic scattering of neutral xenon atoms incident on metal surfaces at hyperthermal energies. A
comparison of our results with the recent experimental measurements of electron-hole pair excita-
tion for hyperthermal xenon scattering by Amirav and Cardillo shows that this long-range van der
Waals coupling is only a small contribution to the total electron-hole pair excitation probability,

which is mostly due to thermal excitation.

When an atom, molecule, or ion is scattered from a
surface there are a number of possible inelastic process-
es. For example, the probe particle may lose energy by
creating phonons, electron-hole pairs, surface plasmons,
or any other elementary excitation of the surface. A
fundamental understanding of these processes is neces-
sary since they are related to a number of important
phenomena such as the sticking of atoms to surfaces,
and the microscopic nature of friction. In particular the
relative importance of electron-hole pair excitation as
opposed to phonon creation has been the subject of
much theoretical interest in recent years.

The recent experiments of Amirav and Cardillo!?
have provided a way of directly measuring the electron-
hole pair contribution to the inelastic scattering, thus
providing an experimental test of the theories. The ex-
periments involve scattering a beam of hyperthermal xe-
non atoms (2-15 eV energy) from the surface of a Ge or
InP p-n junction. The p-n junction is reverse biased so
that electron-hole pairs excited in the depletion region of
the diode will produce a current transient. In this way
Amirav et al.? were able to estimate the product of the
electron-hole pair excitation probability and the collec-
tion efficiency as of the order of 10~ for xenon atoms of
about 9 eV energy. Furthermore, estimating the collec-
tion efficiency to within an order of magnitude, Amirav
and Cardillo proposed that the electron-hole pair excita-
tion probability was of the order of 0.2 per xenon atom
at 9 eV. This large probability for electron-hole pair
creation was interpreted in terms of thermal excitation
in a “hot spot” region where the kinetic energy of the
incoming atom causes a large local increase in tempera-
ture.

In this paper we shall discuss an alternative mecha-
nism for energy loss from an atom incident on a surface,
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namely losses due to long-range van der Waals—type
coupling. It is well known that the van der Waals ener-
gy of an atom at rest outside a surface is due to virtual
excitations of both the atom and the substrate. If the
atom is moving, however, the same mechanism can give
rise to real excitations, thus resulting in inelastic scatter-
ing. For a metallic substrate the excitations that can be
created are electron-hole pairs and, if there is sufficient
energy, surface plasmons. The surface plasmons created
will decay into electron-hole pairs because of damping.

In the following sections we shall first derive a general
self-energy expression for a particle outside a surface. In
the case of a neutral atom this expression gives the van
der Waals energy as its real part and the inelastic
scattering rate as its imaginary part. In the case of an
ion the real part of the corresponding expression gives
the image potential. We shall show below that the imag-
inary part of the self-energy for ion or electron scatter-
ing from surfaces reproduces a well-known result, due to
Evans and Mills,® for the inelastic scattering probabili-
ties. In a later section we shall derive an analogous for-
mula for the inelastic scattering of a neutral atom from a
surface. Finally we shall apply this result to the scatter-
ing of hyperthermal xenon atoms from jellium surfaces,
and compare our results with the experiments of Amirav
and Cardillo.!

GENERAL FORMULATION

In order to calculate dynamical processes such as
electron-hole pair excitation in atom-surface scattering it
is necessary to go beyond the Born-Oppenheimer ap-
proximation for the atomic motion. We do this pertur-
batively in our calculation, starting with a Born-
Oppenheimer wave function for the atomic motion and
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introducing the coupling to the surface as a perturba-
tion. The perturbation parameter is the Coulomb cou-
pling between the atom and the surface, which is essen-
tially of order 1/z> for a neutral atom distance z from
the surface, and of order 1/z for an ion.

Consider an atom moving in the half-space z >0, and
assume the surface to occupy z <0. Neglecting any cou-
pling between the atom and the surface we can write
many-body wave functions for the combined system as
products of wave functions for the atom and the surface
separately. The atom will have a Born-Oppenheimer
wave function of the form

|a) =@ (R, (r,1,, . ..

where R is the nuclear coordinate, and ry, etc., are the
electronic coordinates. Similarly we let |3) denote the
electronic state of the substrate, but we assume the nu-
clei in the solid are static. If we now introduce the
Coulomb coupling ¥ between the atom and the surface,
then the transition rate between product state | @) and
state | @’B’) is simply given by Fermi’s golden rule:

Copap=27|{aB| P |a'B)|*8leg+epg—es—eg) . (2)

;R), (1

Here ¢, is the energy of state |a), etc. We assume
atomic units %=1 throughout. The perturbation ¥ is
the Coulomb operator coupling the atom and the sur-
face:

5, (0P, (1)
= [ [arrar P 3

where §,(r),p,(r) are the charge-density operators for
the atom and the surface, respectively, i.e.,

pu(n)=Z8(r—R)= 3 8lr—r,), (4)

Im[g(q,w)

:=271de27’” f:)mdz fi)w

and Z is the charge on the nucleus.

The scattering rate given by Eq. (2) can be related to
the imaginary part of a self-energy which gives the van
der Waals energy for an atom (or image potential for an
ion) as its real part. This follows simply from the
definition

|€aB|V]|a'B)|?
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where 8 is a positive infinitesimal. The real part of this
expression gives the change in energy of the state |af)
due to the perturbation ¥, and this just gives the van der
Waals energy for an atom outside a surface* (or the im-
age potential for an ion). The imaginary part of the
self-energy =5 gives the total transition rate

—2 Im( UB)_ 2 FGBUB (6)

',B

Clearly the real part of Eq. (5) corresponds to virtual ex-
citations of both the atom and the surface while the
imaginary part is due to real excitations. We can thus
use the same quantity to calculate both the van der
Waals energy and the inelastic scattering rate. In addi-
tion this allows us to use methods which have been
developed to treat the van der Waals problem in our cal-
culations of inelastic scattering.

Before we go on to apply Eq. (5) in our calculations, it
is convenient to first rewrite it in terms of a surface
dielectric function. When this is done the states |B’) of
the substrate do not enter the equations explicitly and all
the properties of the substrate enter only through this
surface dielectric function. The surface dielectric func-
tion is defined by*>

dz' explgz +qz' —iq-r)Im[X(r,z,",0)] , ()

where the density response function of the substrate is given by

Im[X(r)—r1),2,2",0)]= 3, (B|p,(x) | BB | p,(
<

for o >0. Here r=(r“,z). We assume translational in-
variance of the substrate in the x-y plane. The real part
of the dielectric function g(q,w) can be found by
Kramers-Kronig analysis. The dielectric function
g (g,w) simply gives the linear response of the surface to
a periodic external field of the form

exp=0, expliq-T,+9z —iwt)
for z <0, resulting in an induced field,

¢1nd_

for z>0. The surface dielectric function g(gq,w

g(q,w)¢, expliqry—gz —iwt)

) has

r')|B)mdleg—eg—w) (8)

been used in many studies of dynamical effects at sur-
faces (e.g., Refs. 5 and 6). Substituting this definition
into our expression for the self-energy we obtain the fol-
lowing general result:

_ w do g 27T|(a‘pq,a>|2
Za= zf f 27)? q ey—g,tw—ib
xIm[g(gq,®)] )
with
Pq= f der f dz exp(—gz +iq-r))p,(r) . (10)
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The subscript 8 has been dropped in Eq. (9), since the
substrate is assumed to be in its ground state initially.
Equation (9) gives our general result for the self-energy.
It is applicable to a neutral atom or an ion near a sur-
face, and includes both the wave functions for the elec-
tronic state and nuclear motion of the atom explicitly.
The real part of Eq. (9) agrees with previous calculations
of the static van der Waals interaction, while the imagi-
nary part gives the inelastic scattering probabilities. In
the following sections we shall apply Eq. (9) to a number
of different atom or ion interactions with the surface.

ATOM MOVING PARALLEL TO A SURFACE

For a static atom located a distance z, outside a sur-
face the self-energy of Eq. (9) is purely real and gives the

|

d’q 2m
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van der Waals energy. In fact, in this case Eq. (9)
reduces to a general expression for the van der Waals en-
ergy that we have derived previously,® using a similar
self-energy approach. Let us consider an atom moving
parallel to a surface at distance z, and with velocity v.
The Born-Oppenheimer wave function for the atomic
motion is

| 20,V ) = explik -1)8(z —zo)y(ry, . . . ,1y) ,
where k;=Mv. Since the atom is neutral the atomic
charge density operator p,(r) is a dipole operator to

leading order and we thus find the self-energy from Eq.
(9):

2
q°Im[g(g,0)] (11

In o
2z, v)=— 23 ;ﬁ fo d?w f

which is precisely the result derived in Ref. 6. Here f,,
is the dipole oscillator strength for a transition from
atomic state O to n, with frequency w,o. In the low-
velocity limit the van der Waals potential given by Eq.
(11) has an asymptotic —C;/z} behavior, in agreement
with the standard results.* In addition, Eq. (11) has the
advantage that it gives a well-behaved result for all
atom-surface separations z,. The standard asymptotic
series approach to the van der Waals potential diverges
at small separations. The origin of the divergence can
be traced to a small-g expansion of the surface dielectric
function g(q,w); here we do not make any such small-g
expansion. The spatial dispersion of the dielectric func-
tion g(q,w) limits the surface response at short wave-
lengths, and is sufficient to keep the van der Waals po-
tential finite. We have shown in Ref. 6 how Eq. (11)
gives a van der Waals energy which becomes saturated
from its —C;/z® asymptotic form when the atom is
close to the surface, giving a reduction in physisorbtion
well depths compared to the unsaturated van der Waals
calculation.

The self-energy given in Eq. (11) has zero imaginary
part unless |v,| >2Mw,, This implies that for low
atomic velocities there is no friction for an atom moving
parallel to a surface. This is in agreement with the ob-
servations of Schaich and Harris’ and of Sols, Flores,
and Garcia.® To obtain a nonzero friction coefficient it
is necessary to take the calculation to higher orders of
perturbation theory in the atom-surface coupling ¥. The
reason for this is that the leading-order theory requires a
dipolar atomic transition, this must necessarily leave the
atom in an excited state, and hence by energy conserva-
tion a high beam energy is necessary. This difficulty can
only be surmounted if more than one transition takes
place, which requires a higher order of perturbation
theory. Because van der Waals forces are intrinsically
weak, such high-order processes have an extremely low

27} q a)+w,,0—q-v”+q2/2M—i8

’

cross section, giving only very small electron-hole pair
excitation probabilities. Since these higher-order terms
are small, we shall only discuss the leading-order pro-
cesses in this paper. This means that we shall have to
restrict our attention to high-energy atomic beams for
which there is sufficient energy to excite real atomic
transitions.

ION SCATTERED FROM A SURFACE

Let us now apply the general result of Eq. (9) to the
problem of an ion scattered from a surface. In this case
we can compare our self-energy approach with previous
work on inelastic electron or ion scattering from sur-
faces. In fact we shall show that for ion or electron
scattering our approach reproduces the well-known re-
sults of Evans and Mills.?

For the case of an atom or ion scattered from a sur-
face the appropriate Born-Oppenheimer wave function is
given by

| k) =V2sin(k,z) exp(ik R )¥o(r}, Ty, . . ., 1y),  (12)

where k=(k,k,) and R=(R,z). Here we are assuming
that the particle moves in zero potential for z >0 and
encounters a perfectly reflecting wall at z=0. We are
neglecting the effect of the van der Waals or image po-

tential on the nuclear motion, since this is consistent
with our treatment of the particle-surface coupling to

lowest order in perturbation theory. If the probe parti-
cle is an ion the atomic density operator p,(r) is a
monopole, and we do not have to have dipolar transi-
tions as in the neutral atom case. Substituting this wave
function and density operator into the general self-
energy expression of Eq. (9) we can calculate the inelas-
tic scattering rate. Dividing by the incident flux of par-
ticles k,/(MV2)=v,/(V2) we can convert this to a
scattering probability. We obtain the following result
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for the probability of scattering from initial state k to
final state k':

-9

2
Pkk)=—2 2 | -
q +(kz_-kz)

7 qu|

2
2+ (k, + k)2 ‘ mlg (g.0)]

(13)

where the parallel momentum transfer ¢ =k;—k;, and
the energy loss is w=k2/2M —k'?/2M. Equation (13)
applies equally to ions or electrons scattered from sur-
faces. The result is well known in the theory of inelastic
scattering of electrons,»® where it is used in analyzing
electron energy-loss spectra (EELS) of surfaces>!'®!!
(usually the second term in the large parentheses is
neglected since it is much smaller than the first for small
energy losses). It is a useful check of our theory that it
should reproduce this standard result. In the following
section we shall generalize this result to the case of a
neutral atom scattered from a surface.

NEUTRAL ATOM SCATTERED FROM A SURFACE

For a neutral atom scattered from a surface it is
straightforward to extend the theory we have derived for
ion scattering in the previous section. The only
difference is that the probe particle no longer has a
monopole contribution to the charge-density operator
and we must take a dipole term as the leading contribu-
tion. Since we must have dipole transitions, we have to
consider transitions from nuclear motion state k to k'
and from electronic state O to n. Evaluating the self-
energy of Eq. (9), taking the imaginary part, and divid-
ing by the incident flux we obtain the following result
for the inelastic scattering probability:

-9

Po,,(k,k')=@%i ; ~
q +(kz_kz)

Wpo T V)

2
9
g2+ (k,+k.)?
XIm[g(q,0)], (14)

where the energy loss is
0=k2/2M —k"?/2M —w,, - (15)

fao is the dipole oscillator strength for transition from
electronic state 0 to n. Equation (16) constitutes our
basic result. The formula is essentially a generalization
of the well-known ion(electron)-surface scattering result
of Eq. (13) to the case of a neutral atom.

A consequence of Eq. (14) is that there is no inelastic
scattering if the initial kinetic energy k2/2M is less than
the atomic excitation frequency w,,. As we discussed
above, this is because we must have a dipole transition
which leaves both the atom and the surface in an excited
state. For instance, in the case of xenon-atom scattering
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from a metal surface, Eq. (14) would give energy losses
only above the excitation energy of about 9 eV. It is
only possible to have electron-hole pair excitations for
smaller incident energies by carrying the calculation to
higher orders of perturbation theory. It is then possible
to have a second-order process, where the atom is first
virtually excited in a dipole transition, and is then deex-
cited via a second dipole transition while creating a real
electron-hole pair or surface plasmon in the solid. Such
transitions can occur whatever the incident energy of the
atom, however, Sols, Flores, and Garcia® have investi-
gated these higher-order effects for helium-surface
scattering, and concluded that such terms make a negli-
gible contribution. Another possibility is coupling via
the short-range repulsion forces, rather than by the
long-range  dispersion  force. Gunnarsson  and
Schonhammer'? have found that the probability of
electron-hole pair excitation due to the these overlap
forces is a small effect.

In the following section we shall calculate the
electron-hole pair excitation probability in xenon-surface
scattering using Eq. (14). The treatment is thus restrict-
ed to beam energies of more than the excitation thresh-
old for xenon, ~9 eV. This is certainly an experimental-
ly feasible beam energy using seeded molecular beam
techniques. It should also prove possible to observe the
electron-hole pair production given by Eq. (9) at smaller
beam energies using probe particles with a lower excita-
tion threshold than xenon. An interesting example
might be a heteropolar diatomic molecule where this
mechanism could lead to vibrational excitation via the
molecular dipole moment. 7

A self-energy method similar to ours has been em-
ployed by Manson and Ritchie.!*'* These authors define
a self-energy =(Z) which depends on the position of the
probe particle and its velocity. The imaginary part of
their self-energy has two contributions: one is dissipa-
tive and gives energy losses when integrated along the
particle trajectory, and the other contribution is nondis-
sipative, and gives zero contribution when integrated
along the particle trajectory. In our approach, this dis-
tinction between dissipative and nondissipative contribu-
tions does not arise; the imaginary part of our self-
energy is always dissipative. This is because the integra-
tion over the particle trajectory is already included in
our definition of the self-energy [Eq. (9)] which explicitly
depends on the Born-Oppenheimer wave function for the
particle motion.

XENON-SURFACE SCATTERING

As an example of the use of Eq. (14) for calculations
of inelastic scattering probabilities we have applied it to
xenon atoms reflected from simple metal surfaces. We
approximate the surface dielectric function with the
well-known specular reflection model of Ritchie and
Marusak,!® which gives

1—¢,(q,0)

- ) 16)
14+¢&,(q,0) (

g(q,»)



8990

with

g [ 1
(@)=L [* dak,——F— (17)
elgo)=TJ", (k2 +q)elk, o)

with k*=k2+q> For the bulk dielectric function
e(k,w) we use the Mermin dielectric function,'® which
is a generalization of the usual Lindhard dielectric func-
tion. The Mermin dielectric function includes electron-
hole pairs, plasmons, and also damping. The damping
allows the plasmons to decay into electron-hole pairs,
and gives the plasmon line a finite width. The Mermin
dielectric function given by
(o+iD)[e (k,w)—1]

_, , (18
e(k,o) +w+ir[eL(k,w>—1]/[8L‘0"")_1] (18)

where the parameter I' measures the plasmon damping.
g, (k,®) is the usual Lindhard dielectric function, and is
the ' —0 limit of the Mermin function.

Figure 1 shows our results for the total inelastic
scattering probability of xenon atoms at normal in-
cidence, over the energy range from O to 30 eV. The
surface was taken at r,=2 jellium. As we have already
discussed, our leading-order calculation gives no
electron-hole pair excitation except for incident energies
above the atomic threshold of 9 eV, as can be seen in
Fig. 1. Above the threshold energy the inelastic scatter-
ing probability rises rapidly with beam energy. The in-
elastic scattering probability is typically 10~>, which is
substantially smaller than the experimental estimates of
Amirav and Cardillo.! Figure 1 also shows that the re-
sults are relatively insensitive to the magnitude of the
plasmon damping parameter I', values of I'=0.05, 0.2,

Inelastic Scattering

Probability

1ol (normal incidence)

x105 r-0.05

Probability

x165

]
10 20 30

Beam Energy (eV)

FIG. 1. Calculated inelastic scattering probabilities, for xe-
non atoms at normal incidence on an r, =2 surface. The atom-
ic excitation threshold is at about 9 eV. Calculations are
shown with the Mermin plasmon damping parameter I' at
0.05, 0.2, or 1.0 in units of the Fermi energy (12.5 eV for
r,=2).
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and 1.0 (in units of the Fermi energy, 12.5 eV for r, =2)
giving very similar results. This indicates that the dom-
inant excitations produced are electron-hole pairs, not
surface plasmons.

Away from normal incidence the inelastic scattering
probability falls off quickly with the beam angle. This is
demonstrated in Fig. 2 where we plot the total inelastic
scattering probability for 15-eV xenon atoms. For com-
parison we also plot the loss probability of atoms at nor-
mal incidence with an energy E, =Ecos’(6,), E,=15
eV. This demonstrates that the loss intensity scales very
accurately with E |, and that the motion parallel to the
surface is relatively unimportant. As expected, the loss
intensity shown in Fig. 2 drops almost to zero when E
falls below the atomic excitation threshold w,, For
such large angles of incidence the only available loss pro-
cesses involve a large momentum transfer to the solid
with g >>2k,, a regime where the surface response func-
tion Im[g (g,w)] is very small.

The overall magnitude of the electron-hole pair excita-
tion probability that we calculate is of order 1073, which
is much smaller than estimated experimentally by
Amirav and Cardillo! (0.2 per xenon atom). Of course,
the experiments were performed on semiconducting sur-
faces while our calculations were for metals, but this is
unlikely to explain such a large discrepancy. For fre-
quencies above the energy-gap region the semiconductor
dielectric function should not be very different from the
metallic one we used, since Ge and InP are weak pseu-
dopotential materials with nearly-free-electron bands.
Furthermore, both the semiconductor and the metal
dielectric functions satisfy the same f sum rule:

%fowwlm 1

—E(k,a)) do=—4mn ,

Angular
Dependence
(15eV beam)

05x10" 8-

Probability

10 20 30 40 50 60
Angle of Incidence (deg) N

FIG. 2. Solid curve: loss probability vs angle of incidence
for a 15-eV xenon atom (taking I'=0.2Er). Dashed curve:
loss probability for xenon atoms at normal incidence with ener-
gy E, =E,cos*0;), E,=15 eV. This demonstrates good scal-
ing with the kinetic energy of motion normal to the surface
and the relative unimportance of parallel motion. At the criti-
cal angle of 38° the kinetic energy due to normal motion
E, cos?(0;) is less than w,,, the atomic excitation threshold.
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where n is the average electron density, which is essen-
tially the same for ;=2 jellium and Ge or InP. Thus it
seems that some other electron-hole pair excitation
mechanism must be important in Amirav and Cardillo’s
experiment; the long-range van der Waals coupling pro-
vides too weak an effect to account for the data. For ex-
ample, one possible mechanism is electronic excitation at
short range due to the overlap force.!? Alternatively,
formation of local “hot spots” may occur, as proposed
by Amirav and Cardillo.! In this case the xenon atom
first loses large amounts of energy to the substrate pho-
nons, creating a region of high temperature from which
electron-hole pairs can be thermally excited.

To conclude, we have developed a self-energy ap-
proach to the long-range interaction of an atom or an
ion with a surface. This self-energy gives the van der
Waals potential for an atom (or the image potential for
an ion) as its real part and gives an inelastic scattering
rate as its imaginary part. Our expression agrees with
previous calculations of the van der Waals energy, and
with standard results for the inelastic scattering of ions
or electrons from surfaces. In the case of neutral-
atom-—surface scattering we give a general result for the
excitation probabilities of electron-hole pairs and of sur-
face plasmons (if there is sufficient energy). The simple
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first-order loss mechanism that we propose only occurs
at incident energies above the atomic excitation thresh-
old, since the atom must undergo a dipole transition.
For example, this loss mechanism would be applicable to
the scattering of hyperthermal atomic beams from sur-
faces. Comparison with available experimental results
suggests, however, that this long-range coupling gives
only a minor contribution to the inelastic scattering
probability. Therefore the dominant electron-hole pair
excitation mechanism for hyperthermal atom scattering
cannot be long-range van der Waals coupling, but must
be attributed to some other process, for example, the for-
mation of local hot spots as proposed by Amirav and
Cardillo.!
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