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Spatial distribution of tunnel current and application to scanning-tunneling microscopy:
A semiclassical treatment
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The Wentzel-Kramers-Brillouin approximation is extended to consider tunneling through three-
dimensional potential barriers. The formalism is used to obtain the tunnel-current density in a
scanning-tunneling microscope with a realistic model of the potential barrier. It is shown that the
tunnel-current density has a sharp peak under the tip, and that explains the high lateral resolution of
the instrument.

I. INTRODUCTION
( Vcr ) —ih'V o. =2m [E —V (r ) ] . (2.2)

The recent development of the scanning-tunneling mi-
croscope (STM)' has stimulated renewed interest in the
problem of a particle tunneling through a potential bar-
rier. The high lateral resolution of STM is a consequence
of the localization of the tunnel current in the immediate
neighborhood of the tip within a region whose lateral di-
mension is smaller than the radius of curvature of the tip.
Our object here is to analyze the problem using the semi-
classical method, and demonstrate the extent of localiza-
tion achieved in a typical STM geometry.

There is an extensive literature on the use of the semi-
classical method in multidimensional tunneling problems,
which occur in nuclear physics and in molecular phys-
ics. An application of tunneling through axisymmetric
potential barriers of the sort occurring in STM geometry
has been given by Sumetskii. The directness of the semi-
classical method when applied to such problems is an ad-
vantage over the more exact quantum-mechanical treat-
ment. Its lack of exactness is amply compensated by the
physical insight it gives, and the results obtained are
correct in a semiquantitative sense. In Sec. II we shall

briefly outline the use of the method, and in Sec. III we
shall discuss its applicability in tunneling problems. Sec-
tion IV will give the application to STM geometry and
Sec. V will conclude the paper.

Here E and V, respectively, are the total energy and the
potential energy of the particle. The semiclassical method
consists of expanding o. in a power series in A,

~=oo+ . &+ . ~a+ ' ' (2.3)
l

and evaluating o to the desired order in A. The equations
that o.o and o.

~ satisfy are

(Vcro) =2m [E —V(r)],
(Veri Voo)= —,V cro .

(2.4)

(2.&)

o o satisfies the same equation as the one for the charac-
teristic function 8' in Hamilton-Jacobi theory in classical
mechanics. The Hamilton- Jacobi equation has no
significance in the inaccessible region in which E & V(r),
but in quantum theory it can be built from the complex
solution of (2.4) in the inaccessible region, leading to a
nonzero probability of the particle being in that region.
The method of obtaining a solution of (2.4) in the classi-
cally inaccessible region in multidimensional problems has
been discussed widely since the classic paper of Kapur
and Peierls.

The formal solution of (2.4) is

II. THE SEMICLASSICAL METHOD o o(r) =o o(ro)+ f ' ds&2m [E —V(r)],
Sp

(2.6)

The basis of the semiclassical method, which reduces to
the Wentzel-Kramers-Brillouin (WKB) approximation in
one-dimensional problems, is the representation of the
wave function itj of the tunneling particle of mass m in the
form

where the integration variable s is the arc length along a
ray, i.e., the line of steepest gradient of o.o on which
ro ——r(so) and r—:r(s) lie. This ray is a classical trajectory
of the particle in the accessible region. In this region r
can be written parametrically in terms of time t as

it = exp [cr(r) E—t]— (2.1) r—:r(t) . (2.7)

where cr(r) satisfies the equation (obtained from the
Schrodinger equation for g)

This trajectory is obtained from Newton's equation of
motion, or from its first integral,
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dr
dt

2 —[E —V(r)],2
(2.8)

using other conservation laws arising out of the symmetry
of the potential. Obviously we need a method that would
enable us to continue the classical trajectory in the acces-
sible region to a "trajectory" in the inaccessible region, so
that op can be calculated in that region from (2.6).

Let D be the region in which V)E. To simplify the
analysis we assume that V) E in the interior of D and
V=E on its boundary; this boundary is moreover as-
sumed to be smooth. Clearly, no interior points of D are
accessible along classical trajectories from points outside
D. The boundary of D on which V=E is only accessible
from points outside D along those classical trajectories
which meet it normally. This is a consequence of the fact
that the total kinetic energy of the particle traversing such
a trajectory becomes zero at the boundary, and its direc-
tion of motion, being along the gradient of V, is normal to
the boundary.

Inside the region D no classical trajectory is possible for
particles having total energy E. However, a formal trajec-
tory can be constructed by varying the time parameter t in
(2.7) along the imaginary axis ' in the complex t plane.
In other words, a particle with total energy E ( V(r) will
have a trajectory inside D given by the solution of the
equation

2
dr
d7

=—[V(r) E], —2
(2.9)

obtained from (2.8) by substituting t =ir Again, t.his tra-
jectory, where it meets the boundary of D, does so orthog-
onally. It is easy to see that this trajectory, which corre-
sponds to "real-time" motion of a particle with the poten-
tial [—V(r)] and total energy ( E), will min—imize the
action in the forbidden region in the way Kapur and
Peierls have prescribed. It must be stressed here that the
classical trajectory outside D and its continuation into D
along the solution of (2.9) just gives us the path along
which the integral occurring in (2.6) is to be evaluated to
help us obtain rrp(r) when r=r(s) lies inside D, and that
no other significance should be attached to them.

Let us consider a trajectory from a point ro outside the
region D, governed by Eq. (2.8), which meets the bound-
ary at r| (Fig. 1). In this case, if the time increments from
the instant the particle was at r~ are kept real, the trajec-
tory from r] would retrace itself into the accessible region.
If, on the other hand, the time increments are along the
imaginary axis, the trajectory from r& will enter the region
D, governed by Eq. (2.9), and may reach the boundary
again at rq. It will of course be orthogonal to the bound-
ary at both the entry and exit points. For further
imaginary-time increments the trajectory from rz retraces
itself into region D. However, if at the point rq the time
increment is made real again, the trajectory from r~ will
emerge into the classically accessible region as a solution
of (2.8).

The various alternatives discussed above give rise to
different values of the characteristic function o.o at any
particular point in the trajectory. For example, at a point

FIG. l. D represents the classical inaccessible region where
E ( V. A classical trajectory starting at rp in the accessible re-
gion meets D at rl and continues into D along the solution of
(2.9) until it emerges out of D at rq. From r~ onwards it contin-
ues as a classical trajectory. The trajectory is normal to D at r&

and r~.

Sl
o.p"'(r ) = o p(rp)+ ds&2m (E —V)

Sp

+ i2n ds 2m V —E
Sl

—f ds &2m (E —V), (2.10)

where s; is the value of s at rq, i =0, 1,2,a and n
(=0, 1,2, . . . ) is the number of reflections the trajectory
suffers at the point r~. Similarly, at a point rp on the tra-
jectory beyond rz the characteristic function will be given
by

Si
o p" (rp) = o.p(rp)+ ds&2m (E —V)

Sp

+i (2n + 1) f dsv'2m ( V E)—
Sl

+ f ds&2m (E —V) . (2. 1 1)

Here n (=0, 1,2, . . . ) denotes the number of reflections
that the trajectory suffers at the point r&.

The time-independent part of the wave function + at
the points r and rp are then given, respectively, as

%(r )= Apexp —[o.p(rp)+ f &2m (E —V)ds]
Sp

OO l (n)+ g A„+~exp —op"'(r )

n=0
(2.12a)

OO

%(rp) = g B„e p x—o p"'(rp) (2.12b)

r between ro and r] the characteristic function when eval-
uated along the trajectory from ro to r is

op(r ) =o p(rp)+ &2m (E —V)ds .
Sp

One can, however, also consider a trajectory which starts
from ro and reaches r after suffering reAection at either
or both of the points r] and rq. The characteristic func-
tion o.o when evaluated along such a trajectory will be
given by
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exp —— ds 2m V —E
sl

Hence we shall consider the wave functions in the follow-
ing simpler forms:

'P(r ) =exp —crp(lp)+ ds&2m (E —V)
Sp

(2. 13a)

l Sl
4(rg) =exp — crp(rp)+ ds+2m (E —V)

Sp

+i f ds&2m (V E)—
Sl

+ ds 2m E —V (2.13b)

We shall now proceed to use these wave functions for
evaluation of the tunneling current.

Here we have replaced o. by o.o, in order words, we retain
only the terms of zeroth order in A in the expansion (2.3).
In these equations the maximum contribution to + will
come from those values of the characteristic function o.o
(at the points r and rp) which are obtained by integrating
Eq. (2.6) along trajectories which do not sufFer any
reflections at r~ or r2. This follows from the fact that
when n changes by 1, the amplitude of the corresponding
term in 0 in (2.12) diminishes by the exponential factor

the integration being along part II of the trajectory, and
(st —s2) is the corresponding arc length. Therefore, along
every trajectory that enters and emerges out of D, the
transmission coefficient, in terms of the ratio of the emerg-
ing and entering current densities, is given by

dV(r)/ds ~, 2T=
~

d V(r)/ds
(3.3)exp( —T~q) .

This coefficient determines the contribution of a trajectory
to the tunneling current across D. This is clearly of the
same form as the tunneling transmission coefficient in a
one-dimensional problem obtained by WKB approxima-
tion. ' lf we take into account multiple reflections at r]
and rq and use the wave functions in the form (2.12), the
transmission coefficient along a trajectory will turn out to
be of the same form as that in a one-dimensional
potential-barrier problem. Moreover, the coefficient of
reflection along the trajectory will be given by R =1—T.
In fact, the three-dimensional tunneling problem is re-
duced to a one-dimensional tunneling problem along each
trajectory.

Trajectories that are close to each other form a tube
across the region D in the same manner as the stream
lines in fluid flow form the stream tube. The tunneling
current through each such tube (of small cross section) in-
creases with that of the density of the trajectories through
the tube and decreases exponentially when the average
value of the integral T]2 inside the tube increases. These
factors can lead to an appreciable localization of the tun-
neling current through some regions of D, thereby show-
ing a focusing eftect.

III. THE TUNNELING CURRENT IV. A MODEL FOR STM

To obtain the probability current transmissions
coefficient in tunneling across the region D, we consider
the set of all trajectories that enter D and emerge out of it.
We give an orientation to this set by specifying that the
direction along which the arc-length parameter s increases
along a trajectory is nearly the same as that in nearby tra-
jectories. Each trajectory will have three parts. Part I is
the portion of the trajectory before it enters D, part II is
the portion inside D, and part III is that after it emerges
out of D. Using the form of the wave function given in
(2.13), it is easily shown that the probability current densi-
ty vector [J(r)=(fi/m)Im(+*V+)] at any point r on part
I of a trajectory is given by

1/2

t(r), (3.1a)

and the corresponding expression for the probability
current in part III is

1/2

In this section a particular model for STM geometry is
chosen for illustration. We apply the methods developed
in Sec. II to this model and then show the localization of
the tunnel current as discussed in the last section. This in
turn enables us to have an estimate of the lateral resolu-
tion of the STM.

The model has the following essential features. The
scanning needle tip is a sphere of diameter 2a. The sur-
face of the sample being investigated is a plane (p, O, z)
denotes a system of cylindrical coordinates as shown in
Fig. 2. The (p, 8) plane is the sample surface, the z axis
passing through the center of the sphere representing the
tip, and zo is the distance between the tip and the sample
surface. The model having cylindrical symmetry about
the z axis, it is sufficient to take only the (p, z) plane into
account to analyze the current distribution.

The potential energy of an electron between the needle
tip and the sample surface in this model is taken to be of
the form

Jitt(r) = [E —V(1 )]
2
m

exp( —T)2)t(r) . (3.1b) aa
V(p, z) = —Vp

2[(zp —z+a) +p —a ]

T~2 = —f ds&2m [ V(r) E], —
sl

(3.2)

Here t(r) is the unit vector along the tangent to the trajec-
tory at r and

This is very similar to the more exact forms evaluated by
Mahanty and Michalewicz. " Writing x = (z /a),
r = (p/a), and xp = (zp/a), the dimensionless potential en-

ergy (with Vp =e /a) is given by
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1

6
11
16
21
26

1.6518
1.6576
1.6757
1.7127
1.9212
3.1235

with the z axis. Since the trajectories governed by (4.5)
meet the circle (4.4) orthogonally, the value of dr/dx at
each of the points P„ is determined. Equation (4.6) is
then solved through each of the points P„with x decreas-
ing until the solution curve reaches the surface (4.3). We
thus obtain trajectories (4.5) across D, the nth trajectory
having the initial point ( x;,r;)„=P„on the surface (4.4)
and the final point (xf, rf )„on the surface (4.3).

Let a =mao, ao being the Bohr radius. Along the nth
trajectory the integral (3.2) becomes

(~f )„(Tf)„=2&2a f "dx +P
1/2

X 1+ dr
2 1/2

=2v/ZaI„. (4.7)

We assume that the tunnel-current density has a constant
magnitude over the surface of the tip. Then the ratio of
J„, the magnitude of the current density at the end of the
nth trajectory, to J~, the magnitude of the current density
at the end of the first trajectory, is given by

J„
+n =

J)
where

exp[2&2m(I ~ I„)], —(4.8)

/

dV/ds /.

/

dV/ds /,

1/2

on the nth trajectory.
The trajectories of (4.5) are obtained with parameters

P=5 and xo= 1. The integral I„ is then evaluated along
each trajectory with 2a =10 A, i.e., a=9.45. The results

TABLE I. The distance from the z axis of the point of emer-
gence of a trajectory from the potential barrier increases with the
trajectory number n. The nth trajectory emerges normally from
the spherical tip subtending an angle (n —1)&0.01 rad with
respect to the z axis. The table shows the increase of I„with n.

Trajectory number n

are plotted in Fig. 3. They demonstrate the following
features.

(i) The first trajectory, i.e., the one starting at the point
P], is along the z axis inside the region D. For other tra-
jectories the ratio (pflp;) is a factor greater than unity,
and increases with n [Fig. 3(a)]. In other words, as we
approach the plane of the sample surface, the current
tubes spread further apart.

(ii) The integral I„along a trajectory increases with the
distance of the trajectory frotn the z axis (Table I). Hence
the transmission ratio T of (3.3) along a current tube de-
creases exponentially as the distance of this tube from the
axial tube along the z axis increases.

These two factors clearly localize the tunnel current to
a small region around the z axis and the smallness in the
lateral spread of this region determines the lateral resolu-
tion of the STM. To obtain an estimate of lateral resolu-
tion we plot X versus pf [Fig. 3(b)]. Since 7=0.5 at

pf = 1.7 A, the lateral resolution of the model chosen is of
the order of 3.4 A when the tip has a diameter of 10 A.

V. CONCLUSION

Although the above analysis, being semiclassical, does
not have the rigor required for a complete analysis of the
tunneling problem, it provides a picture of the tunnel-
current density in a very direct way, and reasonable quan-
titative conclusions can be drawn from it. The special po-
tential distribution in STM geometry obviously is respon-
sible for the bunching of tunnel current just below the tip,
thereby leading to high lateral resolution. The method we
have adopted can give the tunnel-current distribution for
any shape and form of the potential barrier.

We have not connected the currents to the surface elec-
tronic properties of the tip and the sample. To obtain the
actual tunnel current account must be taken of the fact
that the strength of the current will be proportional to the
available number of electrons at the tip, and also the
available number of states at the surface into which the
electrons can go, i.e., to the densities of states of the elec-
trons at the surface and at the tip energy E. Inclusion of
this feature would lead to the sort of formula for the tun-
neling current given by Bardeen. ' However, we have not
considered this aspect here, our main interest being the
study only of the tunnel-current distribution relative to
the axial current, assuming uniform emission at each
point on the surface of the tip in a direction normal to it.
Our analysis supplements the other theories of STM
(Refs. 13—15) which discuss the problem in terms of the
total tip current and its dependence on the tip-sample sep-
aration distance and the local electronic densities of states
on the sample surface and the tip.
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