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The Monte Carlo simulation technique is used to study the phase diagrams of a two-

dimensional spin-1 Ising model with bilinear and biquadratic nearest-neighbor pair interactions
and a single-ion potential. A staggered quadrupolar phase appears at low temperatures with the
competing bilinear and biquadratic interactions. The phase boundary line of the staggered qua-
drupolar phase and that of the ferromagnetic phase are extremely close to each other at low tem-
peratures. An argument is used to distinguish the most probable phase diagram from the several
possible ones based on the Monte Carlo data.

The spin-1 Ising model with bilinear and biquadratic
nearest-neighbor pair interactions and a single-ion poten-
tial is known as the Blume-Emery-Griffiths (BEG) mod-
el. ' The model with vanishing biquadratic interactions is
called the Blume-Capel model. Both have been studied
extensively because of the fundamental interest in the
tricritical phenomena of physical systems such as He-
He mixtures, multicomponent Auids, metamagnets, and

ternary alloys.
The Hamiltonian of the BEG model is

0=D+s; —Jgs;s, —Kgs; sg (J& 0),
i &i,j) &i,j)

where each s; can take the values 1, 0, —1. The mean-
field approximation has been used for investigations of the
phase diagrams. Qualitatively correct results have gen-
erally been found but with some exceptions. More sophis-
ticated methods have been used to provide the correct pic-
tures, especially for the two-dimensional lattices. All the
treatments have essentially been confined to the parame-
ter space with J+K & 0 (with J & 0).

In the region of J+K (0, a new ordered phase occurs
at low temperatures which we name the staggered qua-
drupolar phase. Recently, the mean-field approximation
has been used to describe the phase diagram including this
region. Certain Monte Carlo simulation pictures have
also been shown.

In this paper we present the major results of the phase
diagram of the BEG model (J & 0) in a plane square lat-
tice with interaction parameters including the region
J+K(0. The results have been obtained by the Monte
Carlo simulation technique.

The standard Metropolis "importance sampling"
method is used with a vectorized program running on the
Cyber 205. The size of the lattice has been chosen from
10x10 up to 200x200 in the simulations. To locate the
phase transition points, we have analyzed the data of the
order parameters and the susceptibilities. The energy and
specific-heat data have also been produced, but the peak
of the specific heat is often overshadowed by the Schottky
anomaly associated with the anisotropy of the system. We
have also adopted the fourth-order cumulant method to
locate the critical temperature more accurately. The criti-

cal exponents are estimated with finite size scaling and ap-
propriate extrapolations.

In Fig. 1 the phase diagram in the (T/J, K/J) plane is
shown near K/J = —1. The solid lines represent the
second-order phase-transition boundaries and the dashed
lines the first-order phase-transition boundaries. Data of
high statistical accuracy have been used to locate the
phase boundary. In this plot the error bounds are about
twice the thickness of the line drawn. The phase boun-
daries are labeled by the single-ion potential parameter in
units of J.

To discuss the phase diagram, first we take D 0. It is
a second-order phase-transition boundary separating the
ferromagnetically ordered phase and the paramagnetic
(disordered) phase. As the value of K/J approaches —1

the critical temperature approaches zero linearly given by

T, 3.8J(1+K/J) . (2)

The accuracy of the coefficient 3.8 is well within 1%.
There is no ordering for K/J ( —1 in contrast with the
results of solving the model on the Bethe lattice. There is
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FIG. 1. Phase diagram of the BEG model near K/J l.
Solid lines represent the second-order phase boundaries and
dashed lines, the first-order phase boundaries. The phase
boundary lines are labeled by the values of d D/J.
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no first-order phase transition as speculated by Siqueira
and Fittipaldi. At K=O, the model is reduced to the
spin-1 Ising model with only the bilinear pair interaction
and T,/J =1.69 which agrees with the results of the series
expansion analysis' (T,/J=1.693). As K approaches
+~, the model is then equivalent to the spin- —,

' model.
In the cases with D & 0, a second-order phase-transition

line joins with a first-order phase-transition line at the tri-
critical point. At T 0, the ferromagnetic phase and a
phase with s; 0 at every site become coexisting at

K/J =D/(2J) —1 . (3)

P, 0.04 ~ 0.01

in agreement with the earlier work of Landau and
Swendsen. '

For D (0, a new ordered phase occurs in the region of
K/J( —l. It is a staggered quadrupolar ordered phase
with two interpenetrating superlattices; one sublattice has
s; 0 at every site and the other sublattice has sites occu-
pied randomly by s; 1 or —1. The ordering is similar to
that of the hard-core lattice gas, ' but in such interpreta-
tion, there are two types of atoms in the present case.

The ordering parameter can be designated as

Q- —' g sj —g sg' (6)
,f EA gEB

where W is the total number of sites of the lattice and the
two sublattices are labeled by A and 8. The phase transi-
tion can be located at the peak of the susceptibility,

W~ =m(&g') —(g)')/k, T .

The critical exponents P and y are found to assume the
two-dimensional Ising values (P=0.125 and y=1.75) as
expected. The critical temperature curves for D/J = —1.0
and D/J —0.4 are plotted in Fig. 1.

At T=0 the staggered quadrupolar phase and the fer-
romagnetic phase are separated at

K —J+D/4 .

For K ) J+D/4 the system is or—dered ferromagnetical-
ly. The phase transitions from the ferromagnetic phase to
the disordered phase and from the staggered quadrupolar
phase to the disordered phase are both of second order. In
Fig. 1 the phase diagram shows that the two second-order
phase boundary lines approach and become extremely
close to each other at low temperatures. Using only the
Monte Carlo data some possible pictures can be produced
and some can be eliminated but no definite final answer
can be reached. In the following we first discuss the pic-

The tricritical points are located as the hysteresis starts to
disappear. " In the region of K/J close to —I, the tricriti-
cal point is located at

Tr =03D

with the value of K/J extremely close to the value given by
Eq. (3). The tricritical exponent P has been estimated us-

ing the finite-size scaling method. The tricritical behavior
dominates as the tricritical point is approached. We ob-
tain

H= —( D+h)gs; —(J+K)gs—;s~ .
l (i,j )

Expressing the Hamiltonian in terms of t; =s; —2,

H = —[S -D - (J+K)z/2]gt,

(9)

—(J+K)g t;tj +const, .

&i,j )

(10)

tures of the phase diagram based on the Monte Carlo data
and then use an argument to obtain the most likely pic-
ture.

Assuming that the two phase boundary lines meet at a
finite temperature, a possible picture indicated by the
Monte Carlo data, the two ordered phases (ferromagnetic
and staggered quadrupolar) will then be separated by a
phase boundary line which is either second order (picture
A) or first order (picture 8) observed in the mean-field ap-
proximation. A careful examination of the critical ex-
ponents ruled out picture A. It is argued that in picture 2
three second-order lines meet at a tricritical point, and the
exponent P should then be a factor of 3 smaller. The tri-
critical behavior has been observed dominating near the
tricritical point in many models studied. The fact that the
estimated critical exponent P stays always in the range of
0.1 and 0.15 along the boundary line indicates that where
the three phase boundary lines meet is unlikely to be a tri-
critica1 point.

However, the second-order phase-transition behavior
observed can not eliminate the possibility of picture B.
Recently, ' in the study of the three-dimensional three-
state Potts model and the two-dimensional q-state Potts
models with q equal to 5 and 6, such "pseudocritical" phe-
nomena have been observed with no regular first-order
transition features detected, even though it is known that
the phase transition are of first order for these models,
especially for the two-dimensional models for which exact
solutions exist. ' The phase transitions of these models
are named as "weak first-order phase transition. " At the
transition, the discontinuity of the order parameter is
small and is superposed by a second-order-like power-law
behavior. In the Monte Carlo study of the present model,
the observations of the apparent coexistence of the two or-
dered phases in the plots of the spin configurations at the
boundary line and the fact that the system can stay in ei-
ther of the ordered phases for a long period of time com-
pared to the time it takes the system to change from one
phase to the other phase (with some second-order-like
fluctuations) seem to support picture B. Because of the
statistical fluctuations and finite-size eff'ects in the Monte
Carlo simulations, it is a difficult problem to distinguish
the order of the phase transition.

An argument, however, rejects picture 8 and presents
the more probable picture of the two second-order phase
boundary lines meeting at zero temperature.

The argument follows from observing the finite field be-
havior of the system and considering the zero-field limit.
Adding an externa1 magnetic field to the system yields the
Zeeman energy term —gs; in the Hamiltonian. At low
temperatures if Ph »1, the possibility of s; = —1 is very
small. Thus in such limit, s; =s; and the Hamiltonian be-
comes
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with t; + —,
' and z 4 for the plan square lattice.

For 1+%&0, the situation we are considering, Eq.
(10) can be interpreted as an Ising antiferromagnet with
nearest-neighbor coupling in an external field. The phase
transition is known as second order. 's

This implies that the phase transition of the staggered
quadrupolar phase at low temperature is of second order
with a field applied, and the field can be of arbitrarily
small value as long as the temperature is sufficiently low
(i.e., Ph» 1).

According to the picture 8 (mean-field approximation)
a finite portion of the boundary line of the staggered qua-
drupolar phase is of first order. When an external field is
applied to the system, the region of the first-order transi-
tion becomes smaller but it should still appear for
sufficiently small field. As discussed above, at sufficiently
low temperatures (Ph»1) the phase transition should be
of second order. This means that in picture 8 the phase
boundary of the staggered quadrupolar phase in the pres-
ence of a small field consists of at least a part of second or-
der at sufficiently low temperatures and a part of first or-
der at higher temperatures. In fact at high temperatures
the transition of the quadrupolar phase to the disordered
phase is observed as second order in the present simulation
and other approximations. Thus two tricritical points
would appear on the phase boundary. It is a rather rare
feature. However, as mentioned previously, the tricritical
exponent P is three times smaller than the second-order
value and normally dominates near the tricritical point (as

observed in the case of D & 0 of the present BEG model).
The observed critical exponent P along the phase bound-
ary line of the staggered quadrupolar phase always shows
the second-order value within the statistical uncertainty in
the current Monte Carlo simulations. The opposition of
both picture A and picture 8 leads us to propose that most
probable phase diagram with the phase boundary lines of
the staggered quadrupolar phase and the ferromagnetic
phase meet at zero temperature in the cases of D & 0, and
both are of second order.

In conclusion, a phase diagram which includes the stag-
gered quadrupolar phase for the BEG model has been
presented. The most likely picture is that for D & 0 the
staggered quadrupolar phase and the ferromagnetic phase
are separated by a disordered phase and the second-order
phase boundary lines of the two ordered phases meet only
at zero temperature. It is diAerent from the mean-field
picture.
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