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Condition for spin-rotational invariance in a semi-infinite itinerant-electron ferromagnet
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The dynamic transverse spin susceptibility X+ — of a tight-binding Hubbard model of an
itinerant-electron ferromagnet must exhibit a zero-frequency spin-wave mode if the starting Ham-
iltonian is spin-rotationally invariant. We give an explicit proof that X+ —for a semi-infinite Hub-
bard model will indeed have such a Goldstone mode if it is computed with the self-consistent-field
approximation. We also derive a necessary and sufficient condition on the free-particle suscepti-
bility Lf which ensures that X+ —computed in this approximation will be spin-rotational invari-
ant. Our work complements the more formal results of Brandt and co-workers on conserving ap-
proximations. We use our sum rule for Zf —to discuss various simplified models which have been
used to describe the eA'ect of a planar surface in Hubbard models. In particular, the work of
Mathon is discussed.

I. INTRODUCTION

In the theory of ferromagnetism, the close relationship
between the breaking of rotational spin invariance of the
original Hamiltonian and the appearance of a zero-fre-
quency spin-wave resonance in the dynamic transverse
spin response function is well understood (see, for exam-
ple, p. 676 of Ref. I). The original symmetry in spin
space is destroyed by spontaneous ordering along some
direction (described by the appearance of a static ex-
change field) but is dynamically restored by the exchange
interaction through the appearance of a low-frequency
Goldstone mode. This makes it clear that one must treat
the static and dynamic exchange fields at the same level of
approximation.

In the present paper, we discuss this problem within the
context of a tight-binding model of an itinerant-electron
ferromagnet with a planar boundary. ' We give an ex-
plicit proof that the transverse spin response function X+-
does indeed have a zero-frequency pole if it is calculated
within the self-consistent-field approximation (SCF)
[sometimes called the random-phase approximation
(RPA)]. In particular, we show that this will result if the
free-particle response function Z~ —is evaluated in terms
of the eigenstates of the static SCF Hamiltonian. This is
not unexpected in view of the work of Brandt and co-
workers. Generalizing the method of Baym and Ka-
danoff' to construct spin conserving approximations for
X+ — from a given self-energy, Brandt, Lustfield, Pesch,
and Tewordt proved that the Hartree-Fock and the
particle-hole T-matrix approximations give response func-
tions which are manifestly spin-rotational invariant and
hence exhibit the co =0 Goldstone mode.

The advantage of our approach is that it requires little
formalism and, as a by-product, leads to a sum rule on
X+ —which must be satisfied if X+ " is to exhibit the m =0
pole. This sum rule may be quite useful in conjunction
with approximate solutions of the SCF integral equation

for X+, based on a calculation of X+ using a realistic
electronic band structure. This is important since, in con-
trast with localized spin models, calculation of the spin-
wave modes in bounded itinerant-electron models' is
quite complicated and it is easy to lose spin-rotational in-
variance. The classical infinite-barrier model (CIBM) ap-
proximation for X+ —used by Gumbs and Grilltn' (GG)
does not satisfy this sum rule and hence it leads to a X+
which does not satisfy spin-rotational invariance (because
it ignores changes in the surface magnetization). Howev-
er, we show that their result Xg- is still useful since the
full SCF integral equation can be reformulated in terms
of ZP, with only the surface changes left as a perturba-
tion. This means that XP is, in fact, an appropriate in-
put response function in the approach recently suggested
by Mathon for solving the SCF integral equation for
X+ —.

We remark that a similar analysis can be given for the
SCF dynamic response function of systems with other
kinds of broken symmetry.

II. CRITERION FOR SPIN-ROTATIONAL
IN VARIANCE

We work with the standard tight-binding model of an
itinerant-electron ferromagnet. We refer to Ref. 1 for no-
tation and further discussion of this model. Restricting
ourselves to on-site matrix elements for simplicity, the
two-particle interaction reduces to [see Eq. (2.4) of GG]

V 2 QU(l)n(l)n(l) —QI(l)s(l) s(l)
I I

where l represents sites and

$~(l) =c(fc(f, s —(l) =c(fc(f

Sg(l) 2 (C(fC(f C(fc(f)
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As discussed in GG, the self-consistent-field approxima-
tion for (1) leads to

Z+ (1,!')=i—„dte'"'([s+(l, t),s (1',0))&8(t)

(3)

Here the free-electron transverse response function Z+ is
evaluated using the single-particle static SCF Hamiltoni-
an

Inserting (6) into (9) leads precisely to the requirement
that Z+ satisfy (8). Thus we see that (8) is a necessary
consequence of the spin-rotational invariance sum rule
(6). The remaining question is whether the validity of (8)
is sufficient to guarantee (6). Using (8) in (9), we obtain
after some rearranging

(10)

where we have defined the new function

2(s, (l))
gran (1,1 ';to+i 0+ ) =—

/
I co+10

(6)

if Z+ (l, l') is computed using (4). We recall that (6) is
a direct consequence of the fact that the total spin opera-
tors

S~ =ps~(t)
I

commute with (1).
To begin, we note that using (4), one may easily show

that the equation of motion for S—(t ) only depends on the
third term in (4), with

dS (t) =i [HscF, S—(t)]
dt (7)

=t'+2I(l ')(s, (1'))s (1', t ) .
(i

Taking the time derivative of Z~ (l, l';t) as defined in the
first line of (3) and using (7), one immediately finds

to+ZP+ (1,1';to) =QXP+ (1,1 ';to) 2I(l ')

HscF = g Ttt ct~, . ++V(t)n(t) QH, (—t)s, (t), (4)
I,1 ', 0.

where the effective fields are defined by

V(t):—U(l)(n(l)), H, (l) =2I(l)(s, (l)) .

It is to be emphasized that HSCF is manifestly not spin-
rotationally invariant.

The solution of (3) is very difficult even for the simple
semi-infinite model GG discussed (simulated by setting all
hopping integrals T&&. to zero between the planes l =0 and
1 =a in a simple cubium model). However, we shall give
an explicit proof that the solution of (3) is indeed con-
sistent with the exact spin-rotational sum rule [see Eq.
(2.20) of GG]

Clearly (10) may be viewed as a homogeneous system of
linear algebraic equations for the variables A(l). There
may be nontrivial solutions of (10) for certain isolated
values of m. Apart from these values, the only possible
solution of (10) is the trivial one, A(l) =0 for all 1. Since
2 (1) =0 is equivalent to the sum rule (6), we see that (8)
is sufficient to guarantee that (6) is valid, apart from iso-
lated values of co such that (10) has nontrivial solutions.
With this proviso, we have proven that a necessary and
sufficient condition that the full transverse spin response
function Z+ —(t, t';to) given by the SCF equation (3) will
exhibit a Goldstone zero-frequency pole [i.e., will satisfy
the sum rule (6)] is that X+ —(t, t';co) and (s, (l)) satisfy
(8). This condition should be satisfied in any solution of
(3), numerical or otherwise.

For infinite periodic systems, of course, (8) is trivial to
satisfy since I(l) =Ip and (s, (1))=sit, independent of the
site l. In that case, (8) reduces to

Xp (q =0, to) —=QZP+ (1,1';co) = 2$g

co —2Iosg
(i2)

X+ —(q =0, co)
Z+ (q =O, ro) =

1 IpZ+ —(q 0, to)

2$g (i3)

This example shows how the high-frequency Stoner ex-
citations of E+ associated with the broken rotational
symmetry are removed by the effect of the time-dependent
symmetry-restoring exchange field. ' In the case of semi-
infinite systems, where (s, (l)) will be site-dependent near
the boundary, the same physics is involved in (8) but it is
not as transparent.

Thus the condition (8) simply leads to Zp+ (q =O, ro) hav-
ing poles at the Stoner excitations. These ensure that the
solution of (3) exhibits the required zero frequency pole

x(s, (t')) —2(s, (l)& . (8)
III. APPLICATIONS OF SUM RULE

This relation is a sum rule for Z+ —(t, t';to). We have
shown that if X~ and (s, (l)) are computed in the SCF
approximation given by (4), they must satisfy (8).

Going back to the SCF integral equation in (3), we sum
over l' to give

(9)

In Sec. II, we have shown explicitly that the SCF ap-
proximation does in fact lead to the sum rule (8). Of
course, other approximations for X+ may also be con-
sistent with (8). In this section, we use (8) as a way of
constructing and discussing models which will be spin-
rotationally invariant.

The required sum rule (8) immediately shows the
difficulty with the classical infinite barrier model (CIBM)
approximation used by GG in an attempt to solve (3) for
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an itinerant-electron ferromagnet with a planar boundary. Assuming for simplicity translational symmetry in the x-y
plane parallel to the surface, we Fourier transform (3) with respect l~~-l(~ to give'

X+ —(1,l,q)[, co ) X+ —(1„1 ';qi~, co ) +gx+ (1„1,";qi~i, co )I(l,")X+ (1,",1,';q[[, co ) (i4)

Similarly, (8) is equivalent to

2(s, (l, ))
gXy (l„l,';q(( =0, co) =—gX+ (l„l,';q() =0, co)I(l,')(s, (1,'))—

CO CO
2 g

(is)

GG kept the geometrical effect of the planar boundary
(classical refiection of electrons) but ignored surface-
induced changes in both I(l, ) and (s, (l, )). The neglect of
these surface-induced changes means that (1S) reduces to

gX+ (l„l,';q(( =0, co) = 2$g

co 2Ips g
(i6)

xg(l„l,') =xi (1, —I,')+ Z~P+(1, +1,'), (i7)

and this is not consistent with (16). Thus it is no
surprise' that Z+ —(l„l,';q~~, co) does not satisfy (6).

In a more realistic model for the single-particle Green's
function for a half-space, ' l(l ) is assumed unchanged but
the surface layer spin (s, (l, =a)) =ss is assumed to be
different from all the other (bulk) layers, (s, (1,
~ 2a)) =sg. For X~ —(l„l,';q~~, co), we also assume that it
is so short-ranged that it vanishes unless 1, =1,'. In this
case the solution of (14) is trivially obtained:

On the other hand, the CIBM approximation ' for
X+ —(l, , l,';q~~ =O, co) is given by

2sg&I
A(q[[, co) = X+ —(lz =0;q~[, co)

co —2(Ip+ AI)sq
and

X+ (l, &0;q((, co) =0 .

(23)

(24)

In deriving these results, crucial use is made of the fact
that Xp (1, —1,') satisfies (16). Since

x+ —(q, =0) =gx (1, ) =x (1, =0), (2s)

the last equality following from (24), and we know from
(13) that to have a zero-frequency bulk spin-wave mode
we must have

limXP~~ (q=O, co) = 1

co~ 0 Ip

one can show that (23) reduces to

(26)

nored [such as included in (17)) but a surface layer
change is included. After a little calculation, one may
verify that for this model, our sum rule (1S) implies that

X+ (l„l,;q((, co)8, ,
Xy —(lz, lz;q~~, CO) =

1 IPX+ —(lz, lz,'qadi, co)

—h,I
lim A(q~~ =O, co) =
m-p '

Ip Ip+AI
(27)

For the sum rule (1S) to be satisfied, one may verify that
for this microscopic model, we must have

X+ —(l„l„q)(=O, co) = —2$s

co —2Ips'
, forl, =a

(i9)

X+ (lz„zl„q)( =0,co) = —2(s, (l, ))/co, (2o)

as required in this simple model.
In earlier work, Mathon tried to improve upon GG by

constructing a solvable model in which spin-rotational in-
variance could be ensured. He assumed (s, (l)) =sg for
all layers but

r(l ) =I,+Ar, 1, =a,
(2i)

=Ip, lz =2a, 3a

2$g
, for l, =2a, 3a, . . . .

co 2Ips g

One sees explicitly that with (19), (18) is indeed con-
sistent with the sum rule (6) in so far as

This is Mathon s self-consistency condition for this mod-
el. However, he did not obtain the additional require-
ment given by (24). The complete neglect of any refiec-
tion and the extreme short-range of the correlations im-
plied by (24) means that this cannot be taken as a realistic
model for the surface of an itinerant-electron ferromag-
net. The same point has been made by Mathon in his
more recent work.

Recently, Mathon has discussed a way of solving (14)
by analogy with methods developed for semi-infinite
Heisenberg ferromagnets. In this context, it is useful to
separate X+ —(l„l,') into the part Zp~(l, 1,') corresponding
to classical reflection of electrons at planar boundary
given by (17) and a part Xs(l„l,') which describes the
effect of the surface-induced changes (localized at the first
few atomic layers). Following Mathon, one may define
the "spin-wave" Green's function

r-=(1 rpx' ) ' =i+r~, - (28)
where the matrix elements are labeled by the atomic
planes parallel to boundary. One may then easily show
that (14) can be written in the form

and

X' (l„l,') =X+' (1, 1,')+A~, .S, . — (22)

I =I i+I iRgI

where

(29)

Thus any effect due to reflection by the boundary is ig- r„—= (r —rpz,', ) -' =I+Ipx„, (3o)
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and the surface perturbation is defined by

Wg =Ip—(Zi ——X,i) =I(gs (31)

X,i(/„/, ';q(), co) =Zgj (/„/, ') — F(/, )F(/,'—),1 1

0
(33)

where [compare with (17)]

&.i(/„/, ') =&+-(/, —/,';qii, co)+&+-(/, +/.';ql(, co) . (34)

Here Zf (/, —/,') is the spin response function of an
infinite tight-binding model as discussed in Refs. 1 and 2.
In addition, we have introduced the functions

D(q((, co) —= g )
1 1

&0~ ~u qz

(3S)
cosq, /,

~o . .~(q. )
'

where eM(q, ):—1 —IpX+ (q, co). As proven by GG, the
poles of Z,i(/, /,') in (33) are given by the zeros of D, not
by the zeros of e~.

In our preceding discussion, we have argued that the
most natural way of solving for the spin-wave Green's
function I was to first split oA the "classical reflection" or
CIBM part of Zo~ —(/„/, ') and treat the rest as a localized
surface perturbation 8'. However, the decomposition of
L+ is somewhat arbitrary and other choices are possible.
In fact, Mathon separates out what he calls the

The spin waves of the semi-infinite itinerant-electron fer-
romagnet are then given by the solutions of

detlI I &Ws I
=0 (32)

where I,i is the resolvent operator (30) associated with
the CIBM response function X,~ worked out by GG.

In terms of this formulation, GG's work consisted of ap-
A

proximating I by I,~, completely ignoring 8'~. As
Mathon has emphasized, however, it is crucial to include
Ws and solve (29) self-consistently if spin-rotational in-
variance is to be obeyed. On the other hand, we see that
I,~

is the natural input in the sort of analysis given in Ref.
2. The exact solution of (14) using (17) is given by (3.40)
of GG. After some calculation, this can be written in the
equivalent form

zo 0„/,') =zp (I/, /,'I—) —~,.s, ,g+' (a)
—/iio~i. &~+~ (a) . (36)

In contrast to (17), this gives a free-particle spin suscepti-
bility which is identical to the bulk value for 1„1,' 0 or
/„/, ' ~ a. In particular, the reflection term (characteristic
of an itinerant-electron system) must then be included in
the appropriate surface perturbation W' in (31).

Using (36), Mathon argued that the spin-wave resol-
vent is given by

r, (/, , /,') =l-, ( I /, —/,
'

I ) r,—( I /, +/, '
I ), (37)

which has the same form as the spin-wave Green's func-
tion for a semi-infinite Heisenberg ferromagnet when one
neglects changes in the exchange interactions near the
surface. At least in the case of a strong ferromagnet,
Mathon was then able to show that the secular equation
(32) had the same form as in a Heisenberg ferromagnet,
which is known to satisfy spin-rotational invariance (and
hence exhibit the correct zero-frequency Goldstone mode)
and which can be solved. The disadvantage of this ap-
proach is that it is apparently limited to a specific limit
with only nn interactions and where the classical reflection
term is unimportant. For more general itinerant-electron
ferromagnets, we believe our approach based on isolating
the CIBM part of X+ may have advantages and that our
new sum rule (15) will be useful in finding acceptable ap-
proximations to the surface perturbation 8'g localized to
the first few surface layers. However, such calculations
are quite complicated and we defer further discussion to a
future publication.
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"geometric approximation" to X+ . In contrast to the
classical-reflection approximation given by (17) (which
results from cutting electronic hopping matrix elements
between the /, =a plane and the /, =0 plane), the
geometric approximation is defined directly in terms of
setting Z+ equal to zero across the surface, i.e.,
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