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Superconductivity and random disorder in the infinite-range hopping model
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The diagonal disordered tight-binding model with infinite-range hopping and the Bardeen-
Cooper-Schrieffer interaction term is solved. The results show that the zero-bandwidth limit is
the mean-field approximation of the tight-binding nearest-neighbor model and that for a finite
system disorder many induce superconductivity. Comparison with experimental results on amor-

phous alloys is made.

INTRODUCTION

Most theoretical arguments concerning superconduc-
tivity on disordered systems rely on the Anderson state-
ment! that superconductivity should be insensitive to per-
turbations that do not destroy the time-reversal invari-
ance. However, static disorder is known to have strong
influence on the electronic states in the normal phase,
such as the metal-insulator transition.? Consequently, su-
perconductivity is expected to be sensitive to the crossing
of the mobility edge.

It has been shown under some approximations? that su-
perconductivity persists below the mobility edge, but re-
cent experiments*® have shown that 7. is strongly
affected by disorder (as measured by electrical resistivi-
ty), giving a drastic reduction of T, with increasing resis-
tivity.

Although some authors assumed that disorder increases
the Coulomb repulsion leading to a decrease of T, 10-12 3¢
is also possible to study the effects of disorder alone.

Analytic results for disordered systems can easily be ob-
tained neglecting the kinetic energy of electrons, i.e., zero
bandwidth limit (ZBW). In a recent paper'® we de-
scribed the superconductivity in this limit. In spite of this
rather drastic approximation, satisfactory qualitative in-
terpretation of quite a number of different experiments
was obtained.

In this paper we consider the infinite-range hopping
model (IRH): that an electron may hop from a site to
every other site with equal matrix element. This model is
solved exactly. Although unphysical in the limit of mac-
roscopic systems the IRH model has proved to be very
fruitful in the field of spin glasses. Its analytic solution by
Sherrington and Kirkpatrick'4 gave rise to a very large
amount of work.

Compared to the ZBW !3 limit which represents the ex-
treme insulator regime, one could think that the IRH
should give the delocalized regime. As it is shown below
this intuitive interpretation is not exact.

From the point of view of the physical meaning of the
IRH model it can represent two different systems. One is
a finite cluster of IV particles where the size scale is of the
order of the hopping range. It would illustrate a granular
superconductor'® with low probability of tunneling be-
tween grains. In what follows we shall consider these
grains with a fixed number of particles or with a fixed
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chemical potential, each case representing different in-
teractions with the normal matrix. When the chemical
potential is kept constant this model presents the interest-
ing feature of superconductivity induced by disorder. It
means that for certain values of the parameter that define
the model the critical temperature superconductivity rises
with increasing disorder.

The other system that many be described with this
model is through the thermodynamic limit N — oo, where
the sample is embedded in an N-dimensional space. This
limit gives as a result that its solution reduces exactly to
that of the ZBW limit. Making an analogy with the re-
sults obtained in spin glasses where the solution of the
infinite-range interaction model'# is the mean-field solu-
tion of the model with first-neighbor interactions, we can
say that the ZBW approximation is the mean-field solu-
tion of electrons with first-neighbor interactions in a disor-
dered system.

Concerning the superconductivity we use the usual
Bardeen-Cooper-Schrieffer (BCS) mean-field term
Fourier transformed to site representation and define a su-
perconductive state to exist when the spatially uniform or-
der parameter is found.

THE MODEL

The model Hamiltonian for electrons on an hypercube
of N dimensions in the tight-binding approximation is

N N
H,=Y (& —u)CCis—1t' Y CLCjs . (1)
i,o i,j,o
C,-I, is the usual creation operator of an electron on site i
with spin o; & =¢;+1t' is the energy of site i plus the diag-
onal contribution to the hopping term; ¢’ is included here
in order to perform the sums in the second term of Eq. (1)
without restrictions on i and j. The hopping term between
two sites ¢ must be renormalized to the system size
t'=t/N to get the energy as an extensive variable (in the
thermodynamic limit). The site energies are considered as
random variables taken from a given distribution P(g;). u
is the chemical potential.
The superconductivity is described by the mean-field
BCS Hamiltonian

N
H,=—gAY (CACH +Ci Ciy) +gAN (2a)
i
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N
S<chch)y=—3S(c Ciy) . (2b)

A is the order parameter and g( > 0) represents the super-
conductivity coupling energy.

In what follows we assume that || and ¢’ are much
smaller than the Debye energy; therefore the sum in Eq.
(2) extends over all sites.

It is possible to show that the H,, Hamiltonian can be
diagonalized in a new set of operators dj, defined as
d,a=2j u;Cjs. The uj; are the elements of a real orthogo-
nal matrix. H, is diagonalized into a set of single-particle
levels &* (V) provided the uj; satisfy the equations

N
(ef —ei+)Uy=—1t'3 Uy . 3)
J
The solutions of Eq. (3) are

N
@) '=Y(—pu—¢)", “)
‘ N -1/2
Ui1=(61’—u"6f)_1[Z(s}—‘u-—sf)—z] . (5)
J

The fact that Uj; is a real transformation allows us to also
diagonalize the superconducting Hamiltonian H;. The to-
tal Hamiltonian H, + H, can be written in a site-diagonal
form:

H=H,+H,
N N

H=Y e'dld,+gA*N—gAY (dfdfi+He) . (6)
lo l

It is clear that in the Hamiltonian (Eq. 6) the sites are
coupled only through the mean-field parameter A (to be
determined from the minimum of the total free energy).
The Hamiltonian is now diagonalized for each site.

If we define

H[=81* Zd{Ld]a'i‘gAz—gA(dﬁidu"l‘H.C.) (7)
the eigenstates of the Hamiltonian are (a) two one-
particle states djf,|0) with energy & +gA? and (b) two

states mixing zero and two particles (a linear combination
of |0) and dj}d} | 0)) with energies

(gA2+&F) e +g2A2 .
The free energy for a site / is
Fir=—B"'1n(Z;)
=—p"'In{2expl—B(ga2+ )]
x[1+cosh(B/eF2+g2aD1 . (8)
Using the “quenched-type” average ' we get

F=S(F)=NE)=N [PGIFGdst . ©)
1

Considering the random variable ¢;, uniformly distributed
between — W/2 and W/2, and Eq. (4), it can be shown

(9)
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FIG. 1. Variation of the critical temperature (7,) with disor-
der (W) according to Eq. (11) for the hopping term (¢') rang-
ing from 0 to 1.5. (a) t'=0; (b) t'=0.45; (c) ¢'=0.5; (d)
t'=0.7; (e) t'=1.5. Measuring energies in units of the super-
conductivity coupling energy (g).

that P(g*) becomes

. w W
/W if ——+t'—pu<egf=—+t'"—u ,
PGt = / ) H=g¢g 2 u

0 otherwise .
Equation (9) reads

F=-— %’- In(2) +NgA2+Nt'

N 1 W/2+t'—p

—w/2+t'—u

5 W de* In[1 +cosh(BVe*2+g%A%)] .

(10)

From this expression for the free energy the superconduct-
ing normal second-order transition temperature 7, is ob-

<n>

0.4 -

02

w (g)

FIG. 2. Variation of the average number of particles per site
{n) with disorder (W) according to Eq. (12). The hopping term
(¢') ranging from O to 1.5, corresponding to the same values as
in Fig. 1.
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tained solving

ett'—pu

| = w/2 de
2T,

an
QW -wiz (g+1'—p)

tanh ‘

Also the average number of particles per site is obtained
from

coship/2l(W/2)+t'— ul}

1= =—2In
cosh{p/2[—(W/2)+t'—ul}

W

(12)

We proceed to analyze the case u =0.

Numerical solutions of Eq. (11) for T,./g as a function
of W/g for several values of ¢'/g are shown in Fig. 1. Fig-
ure 2 shows {(n) as a function of W/g for the same values
of t'/g.

DISCUSSION

In order to get analytic results we shall consider two
limit cases, W/g <1 and W/g>1. In the limit of small
disorder (W/g < 1) Egs. (11) and (12) can be written as

I=E§—,—tanh 2’T , (13a)
c
(my=1—-2L . (13b)
g

Equation (13a) has solutions only if 0=¢'/g<1/2. In
the limit ¢'/g— 0 we recover the result of the ZBW limit
T.=g/4 together with {(n)=1. Increasing the hopping
leads to a decrease of the transition temperature down to
zero for t'/g=% and a corresponding decrease of (n)
which is zero for T, =0. In the case of t'/g > I, the sys-
tem contains no electrons and 7, =0 in the limit of vanish-
ing disorder.

The second case W/g> 1, strong disorder, usual ap-
proximations in the integral appearing in Eq. (11) give

T, =0.5[(W/2)2—1?12expll —(W/g)] , (14a)
while Eq. (12) gives
1ot

(n)=1 2W . (14b)

Equation (14a) gives an exponential decay of the transi-
tion temperature with increasing disorder. The validity of
this result is restricted to the condition ' < W/2. Obser-
vation of Fig. 1 indicates that this condition is always
fulfilled in the cases of interest.

Finally it is interesting to analyze the case t'/g > }.
From Fig. 1 we observe that a finite amount of disorder is
necessary to induce superconductivity. Analytically this
critical disorder W, corresponding to a given value of the
hopping ¢’ is given by the solution of

W, W,
t’=—coth[ ] ) (15)
2 g

Fort'/g 2 % it reduces to

w.=gl6l(t'/g)— L1} 12 (16)

and in the case t'/g>1
a7

and whenever T, =0 in this regime, (n) is also zero. The
conclusion of the analysis is that the effects of the disorder
in a system with hopping ¢' can be classified in two re-
gimes. For t' < g/2 the disorder starts increasing the T,
with null derivative at W =0 to decay exponentially at
large disorder. Consequently, 7, reaches a maximum at
some value of disorder. For t'= g/2 the ordered system
has no electrons and the superconductivity may be in-
duced if the disorder is large enough. Further increase of
W makes T, reach a maximum to die off exponentially at
w>g.

From the definition of ¢’ (z'=¢/N) the thermodynamic
limit implies ¢'— 0. In this limit Eq. (11) reproduces ex-
actly the result of the zero band-width model'® (ZBW).
This conclusion suggests a natural interpretation of the
ZBW: The infinite-range interaction model is equivalent
to the mean-field approximation to the tight-binding diag-
onal disorder nearest-neighbors model, and in the thermo-
dynamic limit gives the same result as the ZBW model.
Therefore the ZBW model is the mean-field approxima-
tion of the tight-binding diagonal disordered nearest-
neighbors model

Now let us analyze the case 40 in such a way that
(n)=1 regardless of the values of ' and W. From Eq.
(12) {(n)=1 implies p=t', which, replaced in Eq. (11),
gives T, independent of the value of ¢' and equal to that
obtained in the preceding analysis with ¢'=u =0, i.e.,
curve a in Fig. 1.

In other words if the system conserves the number of
particles then the infinite-range hopping model reduces
exactly to the ZBW limit not only in the thermodynamic
limit but for any sample size.

From the point of view of the qualitative microscopic
interpretation of the effects of ¢' and W, in the case of a
fixed chemical potential, let us see what happens on a par-
ticular site. In this model the superconductivity is essen-
tially the result of a quantum mixture of zero- and two-
particle states. This mixture is optimized when the two
states are degenerate (A=+). Without disorder, the
effect of ¢’ is to split the zero and two-particle levels weak-
ening the superconductivity (A < ¥ ), leading to a com-
plete destruction for t'=g/2(A=0).

For a given ¢' and small disorder (W <t') the splitting
between zero- and two-particle states is reduced in some
sites and increased in others, giving a net result of an
enhanced superconductivity.

For large disorder (W > 2t') the decreasing number of
sites where the pair formation is factored leads to a net
reduction of the critical temperature.

The existence of a maximum of 7. at some disorder
W=0 is an experimental fact observed, for instance, in
several zirconium-based amorphous transition-metal al-
loys.!7 These observations are usually explained in terms
of the electrons per atom ratio rules, !* which are supposed
to reflect the dependence of the electron density of states
at the Fermi level in the alloy. However, these explana-
tions are not completely satisfactory and perhaps a contri-
bution of the effect outlined in this work is also present.

W.=2t',
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Besides the existence of the maximum, the exponential
decay of T, at large disorder is in good agreement with
experimental results.® The theoretical model used in Ref.
6 to fit the experimental data'® based on an enhanced
Coulomb repulsion, fails to explain the decrease of the
rate of the T, depression as disorder increases. Our result
suggests that the effect of disorder alone could account for

the experimental observations, although the simplicity of
our model prevents us from a quantitative comparison.
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