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Variational ground state for the periodic Anderson model with an indirect hybridization
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As the direct on-site hybridization is forbidden by inversion symmetry in most of the mixed-
valence compounds, an indirect on-site hybridization mediated by phonons has been introduced
into the periodic Anderson model to constitute our model system. Then we try to construct a
variational ground state for the model Hamiltonian by the following steps. First, we develop a
new procedure to transform the model Hamiltonian by a unitary transformation of the
displacement-operator type. Second, a two-phonon coherent state is taken as the trial-state vector
for the ground state of the phonon subsystem and the parameters of the two-phonon coherent
state, which are regarded as the adjustable parameters of the variational treatment, remain to be
determined. Third, a Bogoliubov transformation is introduced to deal with the electron subsys-

tern; the ground state and low-lying excited states are constructed directly. Finally, the parame-
ters of the two-phonon coherent state are adjusted to ensure that the energy functional of our vari-
ational ground state is a stable minimum. Numerical calculations have been done and a nonzero
energy gap and fluctuating valence have been obtained in various cases. Our results could be used

to explain the small energy gap and valence-fluctuation phenomena observed in some Sm-based
compounds.

I. INTRODUCTION

The problem of valence fluctuation, which occurs in
certain rare-earth metals and compounds, has aroused
considerable interest among solid-state physicists. '

Many essential aspects of valence-Auctuation phenomena
can be described by the nondegenerate periodic Ander-
son model (PAM), ' which describes hybridization be-
tween a wide d band and a strongly correlated disper-
sionless f band,

HpAM = QE kdt~ dak+g Efft~ft~
k, a l, a

+g Uf t rft ~ft if»
l

+gg(Vkdk ft e' +Vkft dk e
k, a l

where I is a lattice-site vector, Ek is the bare d-band
function, Ef is the bare f level, U represents the
Coulomb repulsion between f holes, and Vq and Vk are
hybridization functions. It is well known that when the
function Vk satisfies some conditions, a hybridization
gap is opened in the density of states of the elec-
trons. ' Some authors have explained the nature of
the gap in Sm-based compounds, such as SmB6 and SmS,
observed in experiments as such a d-f —hybridization
gap.

But in this paper, we shall discuss another possible
mechanism of inducing a gap in the density of states: a
gap might be induced by electron-phonon interaction
alone. The influence of electron-phonon interaction in
the valence-fiuctuation phenomena described by A'p~M
has been discussed by a number of authors, ' ' and the
renormalization of the electron-energy levels and the hy-

Hdf ph
—g g g-(q )e "'(ft dt~+ dt ft

qt,

x(b', +b, ),
has been added into HpAM, where bq and bq are the
phonon annihilation and creation operators, respectively.
Khomskii used the mean-field approximation

(2)

(bt +bi ) =const&0 (3)

in Bdf ph that is, assumed that strains near every site are
the same nonzero quantity. Alascio et al. ' proposed
that a local lattice distortion breaking the symmetry of
the electron states may produce a direct on-site hybridi-
zation. This idea is identical in practice with
Khomskii s, as we can obtain a direct on-site hybridiza-
tion after substituting the mean-field approximation (3)
into (2).

Brouers and de Menezes' introduced a unitary trans-

bridization function Vk has been obtained. ' ' ' How-
ever, because of the approximations used by them, their
results could be questioned. In the following we review
briefly their methods and approximations in treating
electron-phonon interaction.

It was pointed out that because most of mixed-valence
compounds (MVC's), such as Sm86 and SmS, are of the
highest symmetry of the Ol, point group, the on-site hy-
bridization between d and f states are forbidden by in-
version symmetry. "" However, the indirect on-site
hybridization mediated by phonons may still be permit-
ted because the participation of phonons in the d-

f—hybridization processes may cause the Hamiltonian
to remain parity conservative. ' In Refs. 4 and 13—18,
an indirect hybridization of the following form,
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formation to cancel the first-order term of g(q) from the
total Hamiltonian and ignored terms of g(q) of higher
than second order after the unitary transformation was
performed. Giner and Brouers' utilized the
transformed Hamiltonian of Brouers and de Menezes '

to reconsider the results of Entel et al. ,
' whose con-

clusions have led to some debate. They obtained within
the Hartree-Fock approximation a renormalized d fhy--
bridization and then investigated the effects of phonons
on valence transitions in MVC's. Although some in-
teresting results have been obtained by Brouers and de
Menezes and by Giner and Brouers, the reliability of
their conclusions might be suspect, because in their
treatment the higher-order terms of g(q) were all omit-
ted. It is worthwhile to discuss the effects of the
higher-order terms of g(q) on the valence-ffuctuation
phenomena.

Karnaukhov ' introduced a different unitary transfor-
mation than Brouers and de Menezes' to remove the
first-order term of g(q), and derived a Kondo-lattice
Hamiltonian. But in Karnaukhov's transformation,
terms of g(q) higher than second order were also omit-
ted, so his procedure could not be used for the valence-
fluctuation case.

Recently, Nunez-Regueiro and Avignon' have again
studied the renormalization of the hybridization by the
d fC-oulomb repulsion, by using the electron-phonon in-
teraction within the same approximation as Giner and
Brouers. ' They have pointed out that the local d~f
electron-phonon processes may exist even in the absence
of direct on-site hybridization, and such processes may
be the origin of the d fhyb-ridization in some mixed-
valence systems.

These remarks and insufficiencies have led us to recon-
sider carefully the eff'ects of the phonon-mediated d f-
hybridization on the valence-fluctuation phenomena
within the framework of the PAM. In this paper, a new
unitary-transformation procedure will be developed and
our model Hamiltonian 8 (which will be detailed in Sec.
II) will be transformed into a unitary-transformed form
H without any higher-order terms being omitted. Then,
we will construct a variational ground state for H and
discuss its physical properties, especially the energy gap
and the fluctuating valence. Finally, in Sec. V, the ap-
proximations involved in our variational treatment will
be discussed and a comparison between our treatment
and those of Refs. 1 3 —1 8 will be made.

II. MODEL HAMILTONIAN AND UNITARY TRANSFORMATIONS

In this paper, the model Hamiltonian we consider is as follows,

H = —To g g dirndl cr+QEfflvfla+g Ufl, fr, fr, fi"~
(11') cr 1 a 1

+ —gag(q)e 'q (fi d( +d( f( )(bq+b q)+gficoqbqbq,
1

&N
(4)

where the direct d fhybridizatio-n has not been included
because we are interested in the phonon-mediated in-
direct d fhybridizatio-n alone. The last term in (4) is the
harmonic Hamiltonian of phonons. %'e have taken the
tight-binding approximation for the d-electron band
function Ek, and g&& & &

represents a summation over
nearest-neighbor ion pairs. Without loss of generality,
we have chosen the center of the d band as the zero
point of the energy scale.

In H, we have not included the f-electron —phonon
coupling,

Hf ph ~ g ggf(q)e 'q ft~fi~(bq+b —q)&N (5)

and the d-electron —phonon coupling,

Hd» gggd(q)e 'q'd—
( d& (bq+b q)

q i,.
while the former was included in Refs. 4, 1 3, and 1 5 —1 7,
and the latter was included in Ref. 1 5. The reason for
this exclusion is as follows. If the interaction functions
g(q) in (2), g&(q) in (5), and gd(q) in (6) are taken to be
q independent, as is the case in Refs. 4, 1 3, and 1 5 —17,
the interaction Hamiltonian A'df ph Qf ph and Ad ph

would take the following forms,

~df ph=gg(fi di-+4 fr )(br+bi)
l, o

Hf ph ggffi fi (bed+bi)

(2')

(5')

and

Hd ph
——g gddi~d~~(b~ +b~ ) .

l, o
(6')

Because the electron number operators f & f~ and d~ d~

are parity conservative, being different from the hybridi-
zation operator f& d& + d& f&, the local-phonon opera-
tors in Hdf ph and those in Hf ph and Bd p„must belong
to different branches, so one can deal with the electron-
phonon interaction in (2') and that in (5') and (6') sepa-
rately. In this paper only Hdf ph is considered as we are
interested in the energy gap induced by the phonon-
mediated d fhybridization. The m-ethod presented in
this paper Can also be used to deal With Hf ph and Hd ph
without difficulty.

As we have said above, the goal of this paper is to
construct a variational ground state

~

&0 ) of the model
Hamiltonian H and to obtain the energy spectrum and
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H =elcQe (7)

the density of states of electrons in this variational
ground state. In order to arrive at this goal, in this sec-
tion we first introduce a unitary transformation. In
general, if we make a unitary transformation

I

4 ) = U '
I

4 ) in the Schrodinger equation
H

I
cled) =E

I
N), it follows that UHU '

I
4) =E

I

4').
Thus, the Hamiltonian is transformed as
H~H= UHU '. The H describes the same physical
system as H does.

Our unitary transformation is

R= gg e q (fr di +d, f, )(bq b—q),

(8)

where g( —q)=g*(q) because of the unitarity of the
operator e

We develop a new procedure for the transformation
(7), which is different from that used in Refs. 15 and 18.
The practical processes of this transformation are quite
cumbersome and therefore are given in Appendix A,
where the terms in H are transformed one after another.
The transformed Hamiltonian H reads as follows:

H= ,'Ff g(—dr di +fi fi ) ——,'Ef g(di~di~ fr~fr~—)coshB(1+I)
l, o- l, o.

iEf g (dr fr fi di )sin—hB(1+1)+g fico b b
l, o

—
—,
' To g g( (dr~fr ~ fr ~dr~)[si—nhB(1' —I )+ sinhB(1'+I )]

+dr di [coshB(1 —I )+coshB(l'+I )]+fi fi [coshB(l' —I ) —coshB(1'+I )] j

—
& 2 2 X[ g(q) I'~&~,]e" "'(f'.d .+d'.f .)(f'„.d„. +d„'.f„.)

q m, o na'

+—g[dirdrr [I—coshB(I+I )]+fir fir [I+coshB(1+1)]+(drrfir frrdri)sinhB(1+1 ) j
l

X [d»di, [ I —coshB(1+I )]+f«f~, [ I+coshB (I+ I )]+(d&,fr, fr, d» )sinhB (I—+I ) j,

where

B(n+m) = — —g (e ' "+e 'q' )(bt —b ) .
( )

v~
q

(10)

We should emphasize again that the difference between
our transformation method and that used in Refs. 15
and 18 is embodied by the different manners of treating
the higher-order terms of g(q). Our unitary transforma-
tion (7) has been performed exactly and no higher-order
terms are omitted. The higher-order terms of g(q) in H
are all contained within the hyperbolic functions sinh(B )

and cosh(B ).
The variational evaluation of the ground-state energy

E of H will follow the general procedure of the varia-
tional method. Firstly, we construct a trial state vector

I

'P) for the ground state of H, which contains some
adjustable parameters. Then these parameters are ad-
justed so as to minimize the expectation value
(4

I
H

I
4). This minimum value, which will be denot-

ed E, will be taken as an approximation to the true
ground-state energy. Moreover, the corresponding-state
vector

I 4g ), which is obtained by making the adjust-
able parameters in

I

qr) equal to the values that mini-
mize the expectation value (4

I

H
I

'P), will be taken as

an approximation to the true ground-state vector.
We suppose that in the ground state of H the phonon

variables and electron variables could be separated ap-
proximately. In other words, we assume that the trial
state vector

I

rIr) for the ground state of H could be
written as a product of two state vectors,

I%)= I4„„) I, ), (I I)

where
I

'P~h) contains only phonon variables and
I
4, )

contains only electron variables. Because of such an ap-
proximate separation, we can consider the phonon sub-
system and electron subsystem separately. The following
part of this section serves for the discussion of

I

4 h)
and that of

I
4, ) will be presented in Sec. III.

If there is no electron-phonon interaction, that is, if
g(q) in H is equal to zero, the ground state of the pho-
non subsystem should be the multiplied zero-phonon
eigenstate of the phonon number operators of each
mode,

I
q', h&o= II I nq =o& (12)

where the subscript 0 denotes the case in which g(q) =0
and

I

n =0) is the zero-phonon eigenstate of mode q.
As in reality, g(q)~0, and the zero-phonon state

I

0'
r, )o

cannot be the ground state of the phonon subsystem be-



36 VARIATIONAL GROUND STATE FOR THE PERIODIC. . . 8739

cause we must minimize the total expectation value of H
in the state

~ 4g ) =
~

'P~hg )
~

qi,~ ),

E, =(q'„/ ( p,„, /

H
[ 4,„,) /

e„) .

It is evident that any eigenstate of phonon number
operators can not also be the ground state of the phonon
subsystem because of the same reason mentioned above.
Therefore we should search for other state vectors to
meet our aim. As a trial state vector for the ground
state of the phonon subsystem, we propose the following
form,

two-photon coherent state in quantum optics proposed
firstly by Yuen, ' we call

~

qi h) in Eq. (14) the two-
phonon coherent state in which the average values of
phonon creation and annihilation operators are zero but
the average values of phonon number operators are
nonzero. ' We shall show in Sec. IV that the minimized
value of the variational ground-state energy is indeed ob-
tained when the adjustable parameters eq's are equal to
some nonzero value.

According to the variational method we should derive
the energy functional E from the following formula,

~%' h)=e g ~

n =0),
where

S=g aq(bqb q bqb q )

(14) E=(% ~H
~

%)=(%,
~

(4 „~H
~

4 „)
~
4, ) . (16)

E is a functional of all adjustable parameters. In order
to treat the problem clearly we designate (4'~„~ H

~

4 h)
as an effective Hamiltonian H,~ for the electron subsys-
tem,

and a 's are real numbers because of the unitarity of e .
The adjustable parameters a will be adjusted to mini-
mize the energy functional of our variational ground
state. When a =0 for every q mode

~

4 h) becomes the
zero-phonon state

~
4~„)0. As long as aq&0 for some or

all q modes, our trail state vector
~
4„h) should be a

new and special state of the phonon subsystem, other
than any eigenstate of phonon number operators. Be-
cause the unitary operator e ' is similar to that of the

i«o which Eq. (14) has been substituted. The unitary
transformation

H =e+'He
is performed in Appendix A and the result is

H =QRcoq(bqcosh2aq+b qsinh2aq)(b qsinh2aq+bqcosh2aq)
q

,'Ef g (di di—fifi )coshA—(1+I)—,'Ef g (di fi—fidi )sinhA(1—+I)
l, o. l, o.

+ ~Ef g (di di +fi fi ) ——,
' To g g I (di~fi ~ fi di )[sinh—A (I' —I )+sinhA (I'+I )]

l, a ( l, I') o

+di~di ~[cosh A (I' —I )+cosh A (I'+I )]

+fi fi [coshA(I' —I)—coshA(I'+l)]I

1 g g g[ ~
g(q)

I
IAcoq]e (f d +d f )(f d +d,of )

q m, o no'

+—g [di„di~, [1—cosh A (I + I )]+f»fi, [1+cosh A (I + I )]+(di,f« fi,d«)sinh A (I +I )j-
l

&& [d»dit, [1—cosh A (I+I )]+fiifii [1+cosh A (I+I )]+(ditfii fiidi&)sinhA (I+I—) J,

where

A( + ) & g q, q(
—iq n+ —iqm)( . tb( ) —2a

v ~ Ace q —q
q

(20)
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After substituting H into (17) we obtain the eff'ective Hamiltonian:

H, z
—g Ace (sinh2a ) +Ed g di di —

q g g d~~di + f g finfi~
l, o. (1,1') o. l, o

gfiafin —g 2 J (f d +d f )(f d +d f )+Uf g fitfitfiifli
(I,I') o. m, o n, o.' I

+&d Xd»di~dii ii+&f~ X di d(.fi.fi. —-Ufd—X (fitdir ditf—it)«(idio diff—i, ) .
I l, o. 1

The various quantities are given by
El 2'=

—,'Ef(1+e i'), p= —g I g q I e

(21)

Ufd ———(1 —e i'),U
8

Uf

4 I—' =—
( —,'+2e i'+ —'e i')

T '
2'=

—,'To exp ——g [ Ig(q)
I

~&~q]'e 'C, (q) +exp ——g [ lg(q)
I

/Ace, ]'e 'C2(q)
q

(22)

C, (q)= —g sin
Z

C2(q) = —g cos
z $ 2

1Jmn

q

iq (m —n)

ACOq

where z is the nearest-neighbor number and 5 is a
nearest-neighbor vector.

We can see that the form of D,ir is something like the
transformed Hamiltonians in Refs. 13, 15, 16, and 18,
which were obtained after respective unitary transforma-
tions had been performed and the higher-order terms of
g(q) had been omitted. But it should be pointed out
that, in fact, there are differences between H,~ and the
transformed Hamiltonian in Refs. 13, 15, 16, and 18. In
H, f[, the renormalized quantities Ed Ef Td Tf Ud,

Uf, and Ufd are all functionals of the adjustable parame-
ters aq's. In addition, besides the f fHubbard term, in-

H, s- there are d dand d fHu-bbard terms -which did not
appear in the transformed Hamiltonian in Refs. 13, 15,
16, and 18. de Menezes and Troper had derived a
phonon-mediated attraction between d and f electrons,
but their physical background is different from ours.

III. BOGOLIUBOV TRANSFORMATION
AND THK KNKRGY FUNCTIONAL E

In this section we will obtain the energy functional E
[see Eq. (16)]. In order to achieve this, we should write

I

~. I P. & =g (fi fi +di di
l, o.

=g (fkofkn+dk~dk )
I
+e &

k, o.

out the explicit form of our trial state vector
I
4, & of

the electron subsystem, which may contain some adjust-
able parameters, and derive the expectation value of H,z
in

I

qi, &; that is, E=(O,
I
H, ir I

'I', &, as is indicated by
Eqs. (16) and (17).

In analogy with Brandow's variational ground state
for the PAM, we propose the following form of the trial
state vector

I
4, &,

g(iik+Ukfk dk ) Hfi fi I
a«um&

k, o.

where uk's and vk's are adjustable parameters. uk and
vk are real numbers and must satisfy the normalizing
condition

gk+vk —1
2 2 (24)

This trial state vector
I

qi, & is an exact eigenstate of the
total electron number operator g, and the eigenvalue of
it is 2X,

=g(ft f +d„d„)( „+ „f d )( + f„d )g g( + f -. d'—. ) gf'f i

k'@k

2 [+ k (fknf ka +d kyar d kcr ) + U kf ka d kn l ( ii k +~ kf„.d„'.)-—
k, o

& II H( k'+Uk'fk' 'dk' ) IIfifi lva«um&=2+
I

q'. &

k' a'
k'~k

(25)
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(26)

where X is the total number of the unit cells. Equation
(25) indicates that our trial state vector 4, & can serve
only for those systems in which the average number of
electrons per unit cell is two. This is just the case for a
model system being suitable to SmB6 or SmS. '

The problem now is to derive the expectation value of
H, ff in the state vector (23) and adjust the parameters ui,
and Ui, under the condition (24) to make this expectation
value a minimum. This problem has a similar form as
that discussed by Bardeen, Cooper, and Schrieffer (BCS)
in their famous paper ' concerning the superconducting
state of metals. It had been proved by Valatin and Bo-
goliubov that the BCS variational method is
equivalent, in essence, to the method of introducing new
collective fermion operators by a Bogoliubov transfor-
mation and constructing the ground state and low-lying
excited states by these collective fermion operators. In
this section we use the method of Valatin and Bogo-
liubov to deal with our variational problem stated above
because by this method the excitation spectrum of the
electron subsystem can be discussed in a more straight-
forward manner.

We introduce the new collective fermion operators
gi,~, gi, , i)i, , and i)i,~ in the Bloch representation by
means of the Bogoliubov transformation

dk~ ~kafka+ Uk 9—ko'&

Qk+Vk =12 2

fkm Ukkka ~k ) —ko&

1 1 F(k)Qk= + [F2( k ) +4G 2( k ) ] i ~2

1/2

1 1 F(k)
[Fi(k)+4G (k)] ~

' ]/2

The definitions of F(k) and G(k) are given in Appendix
B. Our effective Hamiltonian Bdr after the transforma-
tion (26) and (27) has been made is

k, o.

(28)

where

i, , and il i, satisfy the anticommutation re-
lations in a standard fashion. The practical process of
this transformation is given in Appendix B because the
algebraic operations of it are quite cumbersome. In Ap-
pendix B the parameters uk and vk are determined by
the condition (24) and that the second-order nondiagonal
terms of the collective fermion operators in the
Bogoliubov-transformed Hamiltonian must be eliminat-
ed. They are

Eg(k)= —,'[F (k)+4G (k)]' + —,'S(k), E„(k)=—,'[F (k)+4G (k)]' ——,'S(k), (29)

Td + TfE =g ficoq[sinh(2aq)] +g Ed+Ef+ Ei,—Jo+ ,' Ufnd+ ,'—Udnf+ —,
'

U—fd

k 0

i, [F (k)+4G (k)]'~ &
q [F (k+q)+4G (k+q)]' q

G (k) X+2+ [F (k)+4G (k)]' + —(Ufnd —Udnf —Ufdnd+ Uf„nf }(nf nd ) . — (30)

S(k), 1id, and nf are also defined in Appendix B.
The collective fermion operators gi, and gi, are con-

sidered to create the excited states of the electrons sub-
system, so that the ground state

I
'P,s & of this subsystem

should therefore satisfy

I
+.g & = H 4oni,. Q fi'~fi'i

I
vacuum &

k, o. Uk I

g (iig+Ugf j( dk ) g fi(fl(
k, o.

kk I
+g&=o (31)

(33)
Thus

I
4, & is an eigenstate of the collective fermion

number operators and the eigenvalues are zero:

(32)

It follows from the properties of the fermion operators
that gi, gi,

——0, i)i, hali,
——0; according to this fact the

ground state
I

'P,s & satisfying (31) may now be con-
structed as

which has been normalized already. This state vector
has the same form as that in Eq. (23). The expectation
value of B,ff in

I
%,g & is

(qi,
I
E+g E~(k)gi, gi,

k, o.

(34)
k, o.
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and

Nf —( q „~Nf ~

q „)=2 g u,' .
k

(35)

In Eq. (34) we have made use of Eq. (32) and the fact
that the collective fermion operators are of normal order
in H', z. E is just the energy functional we are going to
obtain in this section and its explicit form is in Eq. (30).
%e should emphasize again that E is still a functional of
the parameters czq. By adjusting the aq's in Sec. IV we
shall show that E may arrive at a minimum.

As has been proved in Eq. (25), the ground state

~

0',~) is an eigenstate of the total electron number
operator N, and the eigenvalue is 2N. However,

~
%,~ )

is neither an eigenstate of the total d-electron number
operator Nz ——g& d& d& nor an eigenstate of the total
f-electron number operator Nf ——g& f& f& ', the average
values of these two number operators in

~
4, ) are

.Vd ——( 4,g Nd
~

+,g ) =2 g vk
k

vector k involving a superposition of a d electron and an

f electron, both of wave vector k, and qq 4',~ ) is a
state of wave vector k involving a superposition of a d
hole and an f hole; both of them are of wave vector —k.
These states are quasiparticle states and their excitation
energy may be determined by H, z in Eq. (28). To this
end H', z in H,z may be ignored because the terms in
8',z represents the interactions between quasiparticles.
After ignoring this it is evident that the excitation ener-

gy of gk ~%',~) is E&(k) and that of r)k
~

q',~ ) is E (k).
The explicit forms of E~(k) and E„(k) are in Eq. (29).

It should be pointed out that external fields do not
create these quasiparticles singly. Since gk is a linear
combination of single-electron operators and gk is a
linear combination of single-hole operators, the gq 's and

s always occur in pairs in an interaction Hamiltoni-
an which describes the interaction between our model
system and external fields and must conserve the elec-
tron number. As a result, the quasiparticles are created
in pairs and the energy gap observed experimentally
should be

Thus we may consider that the average d-electron num-
ber and f-electron number per site per spin direction is

nd Nd/2N=——(1/N) g v&
k

b =E~(k) ~;„+F.„(k)
~

[[F(k)+4G(k)] +~S(k)j

+ P[F'(k)+4G'(k)]'" —!S(k) ) ~

(38)
and

nf Nf /2N =——( 1/N ) g u k,
k

(36)
where min denotes "minimum. " The model system will

appear as a small-gap semiconductor so 1ong as 5 is a
small positive quantity.

respectively. This is Eq. (B9). It follows from condition
(24) that nd +nf ——1, which is consistent with the fact
that the total electron number in our system is 2N since
in our discussion we do not consider any magnetic or-
dering.

The low-lying excited states of our model system may
be obtained more conveniently by means of the collective
fermion operators. With the aid of (24) the transforma-
tion (26) can be easily inverted:

g„~=uzdk~+v„f~~ &

nk~ =vkd-~~ —ukf —k~ .

It follows from Eq. (32) that the states gk ~
+,g ) and

~
4,~) are excited states of the system. It is ap-

parent from Eq. (37) that gk~ ~

%,~ ) is a state of wave

IV. THE RESULTS OF NUMERICAL
CALCULATIONS

In this section we are going to minimize the energy
functional E to get the variational ground-state energy
E~ and calculate the energy gap 5 and the fluctuating
valence of ions in the variational ground state. As can
be seen from Eqs. (30), (36), and (38), for these goals we
must solve the simultaneous equations (B6), (B7), and
(B9) first to obtain the quantities G(k), F(k), and nd

(nf ——1 —nd ) in explicit form since in these equations
G(k), F(k), and nd are defined in the forms of implicit
functions. For clarity, we rewrite Eqs. (B6), (B7), and
(B9) as follows:

G(k)= —g J(0)G(k')/[F (k')+4G (k'))'~ — g J(q)G(k+q)/[F (k+q)+4G (k+q))'
N k, X

(39)

F(k)=Ed Ef'+ E„+Ufnd ——Udnf —Ufdnd+Ufdnf+ —.g J(q)F(k+q)/[F (k+q)+4G (k+q)]Td Tf 2 2 2 1/2

To A

(40)

nd ———— QF(k)/[F (k)+4G (k)]'
2 2N

(41)
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g(q)=g and co =cop, (42)

that is, we use the local-phonon-mediated d fhy-bridiza-
tion (2') instead of (2) and let the local-phonon frequency
to be equal to a constant cop. This assumption is con-
sistent with the model parameters used in Refs. 13 and
15—17 and it can largely simplify the calculations
without loss of physical contents. According to this as-
sumption,

J(q)= g(q)
~

/fico~=g'/ficop=Jp (43)

is also q independent and the adjustable parameters aq
may be taken to be q independent too, aq ——a for every q
mode. Thus the various quantities in Eq. (22) are rewrit-
ten as

These simultaneous equations could be solved by self-
consistent methods.

A simple assumption concerning the functions g(q)
and mq should be introduced to facilitate solutions of
Eqs. (39)—(41). We suppose that g(q) and co& are con-
stants that are q independent,

6 =—Jp g 6/[F (k)+46 ]'
N

(39')

Equation (39') can be solved more easily than Eq. (39)
can. It may be seen that for Eq. (39') G =0 is a trivial
solution, but our interest is in a nontrivial solution
G&0. In the following we shall show that when G&0 a
nonzero energy gap 5 is opened in the density of states
of electrons and the variational ground-state energy E~
of this case is lower than that of the case of G=O in
which 6=0 also. Divided by G on both sides of Eq.
(39') it becomes

6 Jp
& „[F'(k)+46']'" (39")

We should solve Eqs. (39") and (41); the function F(k) is
defined as (40').

In order to make the k summation (k integration) in
various expressions in the paper be summed (integrated)
analytically, we take the band function Ek to be of a
constant density of states 1/2D; that is, the density of
states is

—4 o 2 —2p= —ge = r, i e. , r=e
scop N 'Act) p

Jmn p~mn ~

(44)

(45)

1 0, c~D or c. & —D
1/2D, —D &c &D .

(47)

Td ——Tpe Tf ——0 .

Equation (40) becomes

(1/~) g C, (q) =(1/~) g C, (q) = —,',
q q

(46)

Adopting this p(e), Eqs. (39") and (41) are changed into

1= f dc, bJp/[F'(e)+4G']' '
2D —D

and

F(k) =Ed Ef + ( Td /T—p )Ek + Uf nd —Ud n f
—Ufd nd + Ufd nf —

2 Jp( nd —nf ) (40')

so 6(k) in Eq. (39) may be taken to be k independent,

—,
' —nd —— f dc. F( e) /[F ( )+e4G ]'

4D —D

where F(c, ) is the same function as F(k) in Eq. (40'), but
replacing Ez by c. The results of integrations in the two
equations are

3Jp1= ln
De

F(D)+ [F'(D)+4G']'"
F( —D)+ [F~( D)+4G~]'c'—

L

—,
' —nd ——I[F (D)+4G ]'c —[F ( D)+4G ]'c2I —/4De

G and nd can be solved from these equations,
[/2

2nd De
De ~+X+ Ynd +

exp(De i'/3 Jp ) —1

2n„De —
&

exp(De ~ /3 Jp ) —1

]/2

(48)

where

De i'[exp(De i'/3 Jp ) + 1]/[exp(De i'/3 Jp ) —1 ]—X
Y'+ 2De i'[exp(De i'/3J p ) + 1]/[exp(De i'/3J p ) —1]

X= —E e ~ ——+—e ~ ——e ~+2Jp,f 4

Y= —+—e 1' —4JU U
p2 2

(49)

It should be pointed out that, as indicated in Eq. (48), G and nd are still related to the parameter p, the actual value
of which is undetermined now. Because of the functional relation between p and ~ and the adjustable parameter cz as
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-0.25 0.08

(2)

2)

-0.45
O. I

I

0.5 0.8 0.01 0.05
O

0
0.08

FIG. 1. c vs r relation in the case of Jo ——0.045, F~ ———0.4,

Acro ——0.02, and U=O. See text for details.
FIG. 2. U and 6 vs Jo relations in the case of Fg ———0.4,

A'coo ——0.02, and U=O (1) or U=2 (2). See text for details.

shown in Eq (44). we could consider p or r as our adjustable parameter and determine both by the varlational method
as mentioned in Sec II Using the assumptions (42) and (47) and doing some complicated algebraic operations and in
tegrations, an analytical formula of the energy functional E can be derjved from Fq. (30),

2N 8
ficop(r —1/&) +6 /6Jp+ 'Ef+ {1—e—~)+ —(1+e '~) —2J (n n~)—f l6 4

P d—

Gz
ln

2De

F(D)+ [F~(D) +46 ~] i &&

F( —D)+[F ( D)+46 ]—'~

8De
F{D)[F{D)+46']' + F( —D)[F ( D)+46—]'~',1

8De
(50)

in which the variational parameter ~ should be deter-
mined by the condition that when z is equal to a special
value ~p, E/28' must arrive at its minimum Eg/2N.
After rp is determined, the various quantities in Eqs. (22)
and (46) that are related to parameter p may be fixed by
making p in these quantities equal to pp corresponding to

That is, pp:(Jp/ficop)rp and

Ed ——(EI/2)(1 —e '), E& ——(E&/2)(1+e ),
Td ——Tpe ', TI —0 Ufd —( U/8)(1 —e '),
U„=(U/8)(3 —4e '+e "),

(51)

(52)

In our model the ions have two valence states —one is
the state having two f electrons localized at one site and
the other having one f electron. We will regard the
former as the divalent state and the latter as the

UI ——( U/8)(3+4e '+e ) .

Then these fixed quantities are substituted into Eqs. (B8),
{40'), and (48) to obtain the actual values of S{k),F(k),
6, and nd. Substituting S(k), F(k), and 6 thus obtained
into Eq. (38), the energy gap b. becomes

1 [F2( D )+462]ij2+ i [F2(D)+462)1/2 D i 0

trivalent state for the sake of comparing our results with
the experimental data for some Sm-based com-
pounds. ' ' Thus the number of trivalent ions is equal
to 2N —2n~N=2ndN, so V=2+2nd may be used to
represent the fluctuating valence of the ions (the origin
of the constant 2 in v =2+2nd is that the valence of the
ions is fluctuating between 2 and 3).

Equations (48), (50), and (52), in which p is replaced
by pp, comprise the starting point of the following nu-

merical calculations. In the calculations, all
quantities —being of the energy dimension —are ex-
pressed in units of half the bandwidth D of the bare d
electrons: EI ——EI /D, Jp =Jp/D U = U/D,
fico() fico p /D, G =G /D, b——, =6 /D, E =E /D, Eg E /D, ——
etc. The employed values of these parameters in the cal-
culations are given in the following figures and table sep-
arately, which are reasonable as D is of the order of 1

y 1 —5, 9

The r;=E/2% versus the two-phonon coherent state
parameter r [see Eq. (44), r=e ) relation is illustrated
in Fig. 1 for a special case offered as an example. From
the figure we see that when ~=~p ——0.25, c. decreases to
its stable minimum value F~. So in this case the ground
state of the phonon subsystem is the two-phonon
coherent state with the parameter o; equal to
o;p ————,'ln~p=0. 7. We have made the calculations in

some other cases with the employed values of the param-
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0.08 3

2
0.01

(2)

0.05

2)

0
0.08

2
0.01 0.05

0
0.08

0

FIG. 3. U and 6 vs Jp relations in the case of cy ———0.5,
A'cop ——0.03, and U=O (1) or U=2 (2). See text for details.

FIG. 4. U and 6 vs Jp relations in the case of FI ——0,
Atop ——0.02, and U=2(1) or cI ———0.8, ATop ——0.02, and U=O (2).
See text for details.

eters Jo, E~, %coo, and U being different from those of
Fig. 1, and found that a stable minimum value cg always
exists in every case as the variational parameter ~ arrives
at some particular point.

Figures 2—4 are the fluctuation valence U and the en-
ergy gap 6 versus Jo relations in various cases. The
variation of Jo may result from the external pressure or
from the changed chemical composition, because the
electron-phonon interaction is sensitive to them. ' ' '
In the figures we see that as Jo increases 6 also in-
creases, but U keeps a constant value, approximately.

The values of v are sensitive to the adopted values of EI
and U, as we can see in these three figures.

For the sake of clarity, in Table I the calculated values
of U and 6 are listed. From the table we see that when
Jo is in the reasonable range of 0.02 —0.07, the calculated
values of U and 6 are consistent with the experimental
data for SmB6 and SmS [SmB6, v —2.67 and b —3 meV
(Ref. 5); SmS, v-2.6 and b, -1 meV (Ref. 5)], at least
being of the same order of the magnitude (the unit of en-
ergy is D —1 eV).

TABLE I. Values of U and 6 in some cases.

Jp

0.01

U

and
cI———0.4
Atop

——0.02
U=O

2.615
0

c,g
———0.4

%cop
——0.02

U=2

2.283
0

Eg
———0.5

%cop ——0.03
U=O

2.517
0

cI ———0.5
Scop ——0.03

U=2

2.232
0

c.g
——0

Scop ——0.02
U=O

cg ——0
RBp ——0.02

U=2

2.491
0

cg ———0.8
Ace =0.02

U=O

2.217
0

Fg ———0.8
RBp ——0.03

U=O

2.217
0

2.617
4.17X 10-'

2.274
2.38 x10-

2.518
3.58 x 10-'

2.222
2.98 x 10

3
5.96x 10-'

2.482
2.98 x 10

2.215
2.38 X 10-'

2.215
2.38 x 10-'

0.03 2.615
8.40 x 10-'

2.266
6.09 x 10-'

2.515
7.78 X 10-'

2.213
5.92 X 10-'

3
1.02 x 10-4

2.477
7.07 X 10

2.208
6.32 x 10-'

2.208
6.29 x 10-'

0.04 2.613
1.15x 10-'

2.258
8.66 x 10-4

2.512
1.08 x 10-'

2.205
8.47 x 10-4

3
1.35X10 '

2.472
9.81x 10

2.199
9.0x10 ' 2.200

9.01 x 10-'

0.05 2.611
5.44 x 10-'

2.252
4.23 x 10—'

2.509
5.14X 10-'

2.197
4.13x 10

3
6.27 x 10-'

2.469
4.71 x 10-'

2.192
4.40 x 10-'

2.192
4.39x 10-'

0.06 2.612
0.015

2.250
0.012

2.509
0.014

2.192
0.012

3
0.017

2.467
0.013

2.188
0.013

2.187
0.013

0.07 2.617
0.032

2.246
0.026

2.513
0.030

2.190
0.025

3
0.036

2.468
0.028

2. 189
0.027

2.189
0.027
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V. DISCUSSIONS AND CONCLUSIONS

Since the method used in this paper is a variational
one, there are no small parameters involved explicitly in
our treatment. In the above presentations we have not
mentioned what approximations are used and why they
should be introduced. But it goes without saying that
some approximations must be involved.

Although we have said in Sec. II that in the two uni-
tary transformations we have not omitted any higher-
order terms, in the variational treatment in Secs. II and
III some approximations have been introduced implicit-
ly. The first is that of Eq. (11), by which we could deal
with the phonon subsystem and the electron subsystem
separately. We consider this approximation to be satis-
factory because the effects of the electron-phonon in-
teraction have been included in our theory by means of
the first unitary transformation (7).

When we eliminate the electron-phonon operators in

H by taking the expectation value of H over the two-
phonon coherent state

~

4' h) with nonzero variational
parameters a to obtain the effective Hamiltonian H, ff,q
as indicated in Eq. (17), another approximation has been
introduced. It is obvious that the odd functions of the
operators B in H contribute nothing to the effective
Hamiltonian A, ir and the contribution of the even func-
tions of B results from taking their expectation values
over the two-phonon coherent state. This approxima-
tion is something like that used in dealing with the
small-polaron problem.

The small polaron corresponds to an electron in some
ionic crystal, which is in a narrow band but interacting
with phonons strongly. In the treatment of the small-
polaron problem, it was considered that in the lowest-
temperature region the diagonal transition of the phonon
subsystem, described by even functions of phonon opera-
tors, plays a dominant role, and the probability of the
nondiagonal transition, described by odd functions of
phonon operators, is so small that it could be disregard-
ed. In fact, the approximation adopted in the small-
polaron problem is the narrow-band approximation;
that is, the terms in the Hamiltonian corresponding to
the band energy of the electron may be treated as a per-
turbation, but the electron-phonon interaction could not
be treated by any perturbation method. Therefore, our
approximation used in deriving H, & from H in Sec. II is

also a narrow-band one. It was pointed out by many au-
thors' that for the d band in MVC's the narrow-band
approximation is a good one.

Although there are similarities between our model sys-
tem and the small-polaron one, some differences exist.
The first is that in the small-polaron problem the in-

teraction between electrons, in general, is not taken into
account, but in our problem the interaction between
electrons plays a very important role. The second and
more influential difference is that the population of the
small polarons in the conduction band is very few, but
that of the electrons in the d band of our model is of the
same order of magnitude as the number of the total unit
cells, X. It was shown that for the small polaron the
concept of an energy band is still valid, but the band-

width is renormalized and narrowed by the action of
phonons, even if the phonon system is in the ground
state. Since the population of the small polarons is very
few, this narrowing of the band has no effect on the total
energy of the system. However, in our model system it
is not the case. Because the population of electrons in
the d band is of the order of magnitude N, narrowing
the d band by the action of phonons must make the total
energy of the system increase. In order to lower the to-
tal energy in our variational treatment, we introduce the
adjustable parameters aq. The nonzero eq's, which serve
as the parameters of the two-phonon coherent state, can
offset the narrowing of the d band mentioned above.
When the aq's tend to infinity, we can see from Eq. (22)
that p =0 and Ed ——0, Ef ——Ef, Td ——To, Tf ——0,
Ufd —Ud —0, and Uf ——U; that is, these quantities are
not affected by the action of phonons. However, the
nonzero aq's may increase the harmonic energy of the
phonon subsystem and when o.'q's tend to infinity this en-
ergy tends to infinity also. Therefore, these two effects
of aq's compete with each other and our variational
treatment consists of selecting the proper values of aq's
at which a stable minimum of the total energy of the
system can be obtained.

Some comparisons between our effective Hamiltonian
H ff and the transformed Hamiltonian in Refs. 1 3, 1 5,
16, and 18 were made at the end of Sec. II. At present,
we will emphasize a further point. In Refs. 13, 15, 16,
and 18, after the unitary transformation and omission of
the higher-order terms of g(q), the interplay between the
phonon subsystem and the electron subsystem is cut off
completely. But in our treatment the interplay between
the two subsystems is considered in the following way.
The renormalized quantities in H, z, Ed, Ef Td Tf Ud,
Uf, and Ufd are all functionals of the adjustable parame-
ters cxq's, and the aq s should be determined by minimiz-
ing the total ground-state energy of the two subsystems.
This is the reaction of the electron subsystem on the
phonon subsystem since the selected values of the aq's
fix the state of the phonon subsystem.

Finally, we arrive at the following conclusions.
(1) We have obtained a variational ground state of the

periodic Anderson model with an indirect hybridization,
which is composed of the two-phonon coherent state of
the phonon subsystem and the pairing state of the elec-
tron subsystem. In such a ground state a nonzero ener-
gy gap and a fluctuating valence exist, the calculated
values of which are consistent semiquantitatively with
the experimental data for SmB6 and SmS.

(2) In this paper a new concept —the two-phonon
coherent state —has been introduced to make the energy
of the ground state arrive at a stable minimum value.

(3) By means of a Bogoliubov transformation we have
constructed the pairing state as the ground state of the
electron subsystem. This procedure could be used only
when the total electron number is equal to 2N, because
the pairing state is also the eigenstate of the total elec-
tron number operator N, and the eigenvalue of it is 2N.
So it is obvious that only when the total electron number
is 2N can a nonzero energy gap be observed experimen-
tally.
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APPENDIX A: THE TWO UNITARY TRANSFORMATIONS

In this appendix we give the practical processes of the two transformations (7) and (18). For the first one, it can
easily be verified that

—g[g *(q)/&coq]e"'(fi. di. +di'. fi(y ),1

&N,

=bq — —g [g*(q)/& co]qe' (fi~di +di fi ) .

In order to transform several electron operators in 8, we define two operator functions,

Fo'
( g ) )Leaf

t f —i.R

and perform differential operations on these operator functions as follows:

D „(A)= —g [g(q)/ficoq]e (f d„e 'q d f„' e—'q'")e (b q
—b q ),1

d A,
" v'~

(A2)

(A3)

F „(A)= —g [g(q)/Acoq]e (d f„e 'q f d„e ' 'q—")e (b" b), —di " v'N
q

d2
2D „(&)=—g [g(q)g(q')/iricoqRcoq ][D „(i(,)(e 'q+q ' +e 'q+q '")

q, q'

—iq m iq n+ —'—iq n iq m)]—(b
't-

(A4)

(A5)

d „(i()=—g [g(q)g(q')/fico fico ][F (A, )(e ' + '"+e 'q+q '
)

q, q'

Do' (g)(e —iq n iq' m+ ——iq m iq' n)](—btmn q —q q' —q' (A6)

Equations (AS) and (A6) are simultaneous differential equations and in order to solve them conveniently they may be
changed into the following forms,

'2d2 1[D „(A.)+F „(A,)]=[D „(A,)+F „(k)] —g [ g(q) /iircoq]( e 'q —e 'q'")(bq bq)—
2

o a o. o 1

dk &N
q

2 [D „(A)—F „(X)]=[D „(A) F„(i(.)] ——g [g(q)/A'co ](e 'q +e 'q")(bq bq)— (A8)

The initial (X=O) conditions for solving the differential equations (A7) and (A8) can be derived from Eqs. (A2) —(A4);
they are

and

[D „(i()+F „(A)]
i z 0 dd„+f f„—— (A9)

[D (i()+F (X)] =(f d +d f ) —g[g(q)/ficoq](e q + e q' )(bq bq)—
Equations (A7) and (A8) are second-order ordinary differential equations, the solutions of which under the initial con-
ditions (A9) and (A10) can be obtained without difficulty,

D „(A)+F „(1)=(d f„+f d„)si n[hAB(n —m)]+(d" d„+f f„) scho[AB( nm)], (A 1 1)

D „(A.) F„(A,)=(dt f„f d—„)si nh[AB( n—+m)] +( d d„f f„)c sho[AB—( n+m)], (A 12)
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where

B(n+m) = — —g [g(q)/Rcoq](e ' '"+e '" )(bq b—q),N
(A13)

and sinh and cosh represent the hyperbolic sine and cosine functions. From Eqs. (Al 1) and (A12) we can write out
D „(A, ) and F „(A,), respectively, as

e dmt d„e =D „(1)=—,
' [cosh[I(n —m)]+cosh[I(n+m)])d d„

+ —,
'

I cosh[8(n —m)] —cosh[8(n+m)]) f f„
+ —,

'
[ sinh[8 (n —m)]+ sinh[S(n+ m)] ] d ~ f„

+ —,
'

I sinh[8 (n —m) ]—sinh[8 (n+ m ) ] )f d „

e fm f„e =Em„(1)= —,
' Icosh[S(n —m)] —cosh[8(n+m)])dt

+ —,
'

I cosh[8 (n —m) ]+cosh[k(n+ m) ] )f f„
+ —,

'
I sinh[8 (n —m ) J —sinh[8 (n+ m) ] ) d t f„

+ —,
'

[ sinh [8( n —m ) ] +sinh [8( n+m ) ] )f t d „ (A15)

where we have made the parameter A. equal to 1. Substituting Eqs. (Al), (A14), and (A15) into the unitary transfor-
mation H=e He, the transformed Hamiltonian H can be obtained and its explicit form is given in Eq. (9). It
should be pointed out that in our treatment we have collected all higher-order terms of g(q), so that the transforma-
tion making above is exact and no approximation has been involved.

For making the second unitary transformation (18), we need to define an operator function

A.sb t —A.s
q (A16)

Performing the diff'erential operation on fq(A, ) and making use of the commutation relation [S,bq] =2a b, we can
obtain

f (A, )=e 2abe =2ae~b e (A17)

(A18)

Performing the di6'erential operation again we can obtain the following second-order ordinary dift'erential equation:

fq(A, )=2aqe [S,b q]e =(2aq) e bte =(2aq) f (A) .

The solution of this equation under the initial conditions

fq(0) =bq

and

(A 19)

fq(A. ) =2aqb q

6

X=O
(A20)

fq(k)=bt c sqh(o2 A.a)q+b qsinh(2a A, ) .

It may be derived from Eqs. (A16) and (A21) that

e b qe = bsqi hn(2 akq) +b qcosh(2aqA, ) .

After making the parameter A, equal to 1 in Eqs. (A21) and (A22), they take the form of

e bqe =bqcosh(2aq)+b qsinh(2aq)

(A21)

(A22)

(A23)

and

e b qe =bqsinh(2aq)+b qcosh(2aq) . (A24)
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The following two equations can be derived from Eqs. (A23) and (A24) very easily,

e (bqt+b q}e =(bq+b q)e

e bqbqe =(bqcosh2aq+b qsinh2aq)(b qsinh2aq+bqcosh2aq) .

Substituting these two equations into the second unitary transformation (18), the transformed Hamiltonian H has been
written out in Eq. (19). The second unitary transformation is also performed exactly and there are no omitted
higher-order terms of this transformation.

(A25}

APPENDIX B: BOGOLIUBOV TRANSFORMATION

Td
H,ff=g A'cvq(Sinh2o. q) +g Ed+ E„d„ad„a

q k, o 0
r

Tf+g Ef + Ek fkerf kcr + ~ Ufd p g dko'd k+qaf k'cJf k' qa + Uf p fk1 fk+q1f k'1f k' —q1
k, o. T0 k, k', q cr k, k', q

+—Ud g dk„dk+q1dk1dk q1
——g g J(q)(f„+q d„+d„+q fk )(f„q d„+d„ f„~)

1

k, k', q
N k, k', q a, o. '

In this appendix we give the practical procedure of the Bogoliubov transformation (26). In the Bloch representa-
tion, 8,ff may be written as

1
fd X (fk+q1 k1 k+-q1f k1 }(fk' —q1dk'1 d k' qcf k'1 )

k, k', q

(Bl)

where J(q)=
~
g(q)

~

'/A'co and Ek is the d-band function. Substituting the transformation (26) into (Bl) H js
changed into the fo11owing form:

H ff
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Td Tf
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This form is more complicated and it contains c-number terms, second-order diagonal terms, second-order nondiago-
nal terms, and fourth-order terms which should be normal ordered. The c-number terms are

2 2 d 2E=g A'cvq[sinh2aq] +g vk Ed+ Ek +uk E~+ Ek
k TQ TQ

16 4J(0) g ukvkuk'vk +—g J(q)ukvkuk+qvk+q
k, k'

2——& J(q)(vk+qvk+ukuk+q)+ g( ufvkvk'+udukuk'+2u fdukvk')2 2 2 2 2 2 2 2

N k N „„,
(B3)

where we have designated the sum of the c-number terms as E because we shall show below that this sum is just the
quantity E=(+, ~H, tt ~

4, ) we want to obtain. The second-order diagonal terms are
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The second-order nondiagonal terms are

k, o-

) 2
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In Eqs. (B4) and (B5) we have used the following functions:

8 2G(k)= —J(0) g uk vk ——g J(q)uk+qvk+q,N

(B5)

(B6)

Td Tf 2F(k) =E„' E&+ — E„— g J(q)(v'„+q —u k+q )+ U&nd —Udnj- —U&d nd + U&dn&,
0 q
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(B9jf +k nd k
k k

The sum of fourth-order terms, in which the collective fermion operators are of normal order already, is designated as
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8',s' and the explicit form of A'', tr' is not given here because in this paper we are concerned only about the properties
of the variational ground state.

According to the method of Valatin and Bogoliubov, we should eliminate the second-order nondiagonal terms in
Eq. (B5) by proper choice of uk's and U~'s. This aim can be easily arrived at under the condition that

F(k)ugvk+G(k)(uk —uk)=0 .

1 1 F(k)
[F2(k)+4G2(k)]1/2

1 1 F(k)
uk —— —+—

2 [F'(k)+4G'(k)]'"

Equation (B10) and uk+uk =1 must be solved simultaneously to determine uk and uq. The solutions are
1/2 ' 1/2

(B10)

(B1 1)

After substituting (Bl 1) into (B3) and (B4), we obtain the Bogoliubov-transformed form of B,tf and it is written out in
Eq. (28).
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