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Distribution of fracture strengths in disordered continua
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We have studied the distribution of fracture strengths in disordered continuous systems. The
model that has been used is a network of nonlinear resistors which burn out and change irreversi-

bly into insulators if their dissipated power becomes very large. Fracture occurs when a sample-

spanning path of insulators is formed. The conductance of the resistors is distributed according to
a probability density function (PDF). We find that if the first inverse moment of the PDF is finite,
the fracture distribution is in the form of an exponential of an exponential recently derived by oth-
ers, even if the system does not have the topology of a percolation cluster for which the distribu-
tion was intended. However, if the first inverse moment is infinite, neither this distribution nor the
classical Weibull distribution can describe the distribution of fracture strengths, even if the system
has the topology of a percolation cluster.

Electrical and mechanical failure in disordered media
is of immense technological and economic importance.
Microscopic failure plays a fundamental role in many
systems of industrial importance ranging from aircraft
structures and pressurized nuclear reactors to the propa-
gation of cracks in underground oil reservoirs and
ceramics and fibrous composites. There exists an exten-
sive literature on the general problem of electrical and
mechanical failure of disordered solids. ' However,
most of the models discussed in the literature incorpo-
rate artificial features such as preassigned fracture loci
and very complex microscopic laws of fracture. The
contribution of such complexities to the phenomena of
failure may not be essential and, therefore, their intro-
duction into the model may only complicate the study of
such phenomena.

More recently, a few simple models have been intro-
duced for both electrical and mechanical failure of
disordered solids. De Arc an gelis, Redner, and Her-
mann introduced a percolation model for the electrical
breakdown of disordered media. In this model, each
bond of a network is a fuse with the probability p and an
insulator with the probability 1 —p. Each fuse has a unit
conductance and it burns out and becomes an insulator
if a voltage drop of more than unity is imposed on it.
For p &p, , (p, is the bond percolation threshold), a
sample-spanning cluster of fuses is formed and macro-
scopic conduction takes place. If a sufficiently large
voltage drop is imposed on the network, some of the
fuses will burn out, and if enough fuses burn out the en-
tire network will break down. In this situation, we say
that "fracture" has occurred, and the macroscopic con-
ductivity of the system is zero. In order to find the
breakdown voltages, i.e., the voltages at which the fuses
burn out, one finds the distribution of voltages at the
nodes of the network using the Kirchhoff's law. The
fuse with the largest voltage drop (i.e., the hottest fuse)
is converted to an insulator. The procedure is then re-
peated until the macroscopic fracture is formed. In the
class of models that was introduced by Sahimi and God-

dard, 9 each bond of a fully connected network is a spring
that breaks irreversibly if stretched beyond a critical
length u, . At each step of simulation, all springs whose
lengths have exceeded u, are broken (not just the one
that has suffered the largest stretching). This breaking
of several springs at a time enhances the formation of
the macroscopic fracture, and introduces a subtle
difference between this class of models and that of de
Arcangelis et al. Moreover, it was shown that de-
pending on the statistical distributions of u, and the
effective spring constants, a variety of macroscopic frac-
ture behaviors appear, which are also in agreement with
recent continuum theories of mechanical failure. '

Of particular interest in the study of failure phenome-
na is the distribution of breakdown strengths of the
disordered media. This is the probability F, that on ap-
plication of an external voltage gradient of V/L (L is
the length of the system), the first fuse in the network
will burn out. By fitting a probability distribution to the
strength data, Weibull, ' in 1939, predicted the average
fracture strength of brittle materials. Weibull s distribu-
tion is of the following form:

F =1—exp[ c,L (V/L)—]

where c, and m, are constant and d is the dimensionali-
ty of the system. Equation (1) has been widely used in
fitting breakdown distributions in engineering applica-
tions of materials. On the other hand, Duxbury, Beale,
and Leath, who analyzed the model of de Arcangelis
et al. argued that

F = 1 —exp[ c2L exp( —m zL—/ V) ),
where cz and m2 are also constant. The derivation of (2)
is based on a Lifshitz-type argument and the fact that
the distribution of defect clusters in percolation net-
works above p, is exponential. '

Real disordered continuous media are usually charac-
terized by statistical distributions for the conductances,
or the effective elastic constants of the transport paths.
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f(g)=(1 —a)g, 0&a&1 (3)

where a is a constant. Halperin, Feng, and Sen' have
shown that Eq. (3) describes the distribution of the con-
ductance of the channels in the random-void ("Swiss
cheese") model of continuous media. In this model,
spherical holes are randomly placed in a medium having
otherwise uniform transport properties. It was proposed
many years ago' '' that such distributions would give
rise to nonuniversal behavior of the conductivity of per-
colating systems near p, . We have shown that
such distributions can alter diffusion, reaction, and
random-walk processes in disordered systems. The ap-
plicability of such distributions to continuous media is
one of our prime motivations for using them here. As
the second PDF, we have used

f (g) =(2&)

Such inhomogeneities can give rise to fIaws of different
shapes, sizes, and orientations, which in turn will give
rise to a large scatter of fracture strengths in nominally
identical small-scale specimens. Moreover, disordered
continuous media do not usually have percolationlike
characteristics and, therefore, may behave quite
differently than those systems that were analyzed by
Duxbury et ah. The purpose of this paper is to report
the results of a study of the effect of such inhomo-
geneities on the failure and fracture behavior of disor-
dered materials, and to test the validity of Eqs. (1) and
(2) for such systems.

We have used the following model, which is a hybrid
of the models of de Arcangelis et al. and Sahimi and
Goddard, to study the fracture behavior of disordered
media. To each fuse a conductance g is assigned which
is selected at random from a probability density function
(PDF) f (g). At the beginning, the network is fully con-
nected so that percolation effects are totally absent.
Since the cond uctances of the bonds are distributed
quantities, the proper correlating variable in Eqs. (1) or
(2) is the voltage of the bond that dissipates the largest
electric power (because this is the hottest bond), and not
the maximum bond voltage in the network. The distri-
bution of fracture strengths is determined by the method
described above. We then try to find the best fit to the
data using Eqs. (1) or (2). We have used square net-
works of lengths L=50, 75, and 100 to test the effect of
network size. We have also used up to 1200 different
realizations of each network and, therefore, we believe
that our data are sufficiently accurate and representative
of the system. Two different PDF's have been employed.
The first one is a power-law PDF
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FIG. 1. Comparison of simulation data (solid circles) with
the predictions of distribution function (2) (straight line) for the
PDF (3) ~

is divergent, whereas f, is finite for distributions such
as (4).

As it has already been pointed out, the best way to
distinguish between distributions (1) and (2) is to isolate
V/L. From Eq. (1), we find that

=ln[ —ln(1 F/c, L —)]=—m ~L /V,

whereas the corresponding expression for Eq. (2) is given
by

A„=In[ —ln(1 F/c2L )]—= —m2ln(V/L) .

We now plot A and A„against L /V and ln( V/L) and
see which plot provides a straight-line fit to the simula-
tion data. In Figs. 1 and 2 we compare the data with
the best fit which were obtained by using the PDF (3) us-
ing a=0.1 and L=75. As can be seen, neither plot pro-
vides a good fit to the data, especially in the end tails of
the curves, with the distribution (2) performing slightly
better than the Weibull distribution. We carried out
many statistical tests and various methods of fitting to
see if we could find a better fit for the data using the dis-
tribution function (1) or (2). In no case could we find a
satisfactory fit to the data. We also obtained similar re-
sults with L =50 and 100. Similar results were obtained
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with the conductance g being uniformly distributed in
the interval (1—A, , I+A, ). Changing the parameters a
and A, allows us to vary the broadness of the distribu-
tions and study its effect on the quantities of interest.
Note that the PDF's (3) and (4) have very different prop-
erties. In particular, distributions such as (3) have the
property that

f i= J, f(g)/gdg
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FIG. 2. Comparison of simulation data (solid curves) with
the prediction of the Weibull distribution (straight line) for the
PDF (3).
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with other values of a (the details will be given else-
where). In all cases that we studied the Weibull distribu-
tion provided a worse fit to the data than that of Dux-
bury et al. The system that was studied by Duxbury
et a/. was a percolation network with p=0.9, and all of
the intact fuses had a unit conductance. When the dis-
tribution functions (1) and (2) were fitted to the data and
were plotted against V/L, they provided virtually the
same fit to the data, and they both appeared to be good
fits. Using Eqs. (6) and (7) was the only way of distin-
guishing (1) from (2). For our system, even a plot of F
versus V!L provided strong indications that neither dis-
tribution (1) nor (2) would provide a satisfactory fit to
the data. Since for practical applications, the end tail of
the distribution of fracture strengths is what is really
needed, our results strongly indicate that microscopic
disorder plays a fundamental role in the fracture behav-
ior of disordered materials and one has to be cautious in
using distribution function (1) or (2).

In order to compare with the results presented in Figs.
1 and 2, we present in Fig. 3 the best fit of our simula-
tion data using the distribution (2) for the PDF (4) with

3
The agreement is good, and a good fit was also

obtained with the Weibull distribution function, al-
though Eq. (2) performs slightly better. These results in-
dicate an important difference between the macroscopic
fracture behavior of disordered continuous materials for
which f i is divergent and those for which f, is finite.
In the latter case, the distribution of fracture strengths
derived by Duxbury et al. (and, to a somewhat lesser
degree of accuracy, the Weibull distribution) accurately
predicts the onset of fracture, even if the system does
not have the topology of a percolation cluster for which
the distribution (2) was intended. However, in the form-
er case for which f, is divergent, neither distribution
performs well. We should point out that if we use the
maximum bond voltages as the correlating variable, nei-
ther (1) nor (2) can provide a good fit to the data, regard-
less of the behavior of f, . Finally, in Figs. 4 and 5 we
present the average breakdown voltages as a function of
L for various values of a and X. As can be seen, the
effective slopes of the lines are sensitive to the values of
a, but they show no apparent dependence on A.. This
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FICs. 4. The dependence of the fracture strength (i.e., the
voltage of the first burnt-out resistor) on the length of the sys-

tern for the PDF (3).

supports further the validity of our argument.
The reason that the distribution of Duxbury et al.

seems to provide an accurate prediction of the fracture
strengths of the (nonpercolating) systems studied here
may be the following. Although none of the resistors
has a zero conductance, there are only a few paths of
resistors that contribute significantly to the distribution
of voltages and currents (or stresses in an elastic medi-
um) in the system. The conductances of the rest of the
resistors are small enough that such resistors cannot
contribute significantly. Thus, the system may
effectively have the topology of a percolating system
and, thus, the distribution of Duxbury et al. should be
applicable. Similar ideas have been used to model suc-
cessfully hopping transport in disordered solids and
single-phase flow in porous media, ' where none of the
systems seemed to have the topology of a percolation
cluster.

One reason for the sensitivity of the fracture behavior
of the system studied here to its microstructure is the
fact that such systems are highly nonlinear and, there-
fore, are far more sensitive to the microstructure than
the corresponding linear systems. Generally speaking,
the nonlinear systems of interest here are in one of two
groups. The first group is made of systems that contain
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FICx. 3. Comparison of simulation data with the prediction
of distribution function (2) for the PDF (4).
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FIG. 5. The dependence of the fracture strength (i.e., the

voltage of the first burnt-out resistor) on the length of the sys-

tem for the PDF (4).
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constitutive nonlinearity, i.e., the microscopic elements
obey nonlinear laws. For example, the fuses of our net-
work are in fact nonlinear resistors, because they break
down if their dissipated power becomes too large. The
second group consists of systems that are made of linear
elements, but because a very large macroscopic driving
force (e.g. , a large external voltage) is imposed on them,
their macroscopic response is also nonlinear. For exam-
ple, the random resistor networks recently studied by
Gefen et al. ,

' and the two-dimensional assemblage of
nearly rigid disks that was recently used by Bashir,
Sahimi, and Goddard to study the shear How of dense
granular media, are in this group of nonlinear systems;
the latter system can also contain constitutive nonlinear-
ity. Thus, the two-dimensional system of disks with fluc-
tuating radii that was recently studied by Herrmann,
Stauffer, and Roux falls in the first group of nonlinear
systems, and it is not surprising that the macroscopic
properties of the system do not follow linear elasticity
(despite their claim that this is simply because of ran-
domness in the radii of the disks).

In summary, we have found that the distribution of
fracture strengths of continuous media depends on the
behavior of the statistical distribution f (g) of the con-
ductance g (or the spring constant) of the elements of the
system near g=0. If the first inverse moment f i of
this distribution is finite, the distribution of fracture
strengths of the system can be accurately described by
the distribution function (2), derived by Duxbury et al. ,
even if the system does not seem to have the topology of

a percolation cluster. However, iff, is infinite, neither
the distribution of Duxbury et al. , nor the Weibull dis-
tribution, can accurately describe the fracture behavior
of the system. Thus, to the extent that the present mod-
el represents the physics of failure phenomena in real
materials, our results may have important implications
for practical applications. In particular, they may pro-
vide a criterion based on which one may be able to pre-
dict a priori the fracture beahvior of such disordered
continuous materials. On the other hand, it may be
more reasonable to assume that fracture behavior in
some real materials may be rate dependent, in that
there is a gradual "softening" of the microscopic ele-
ments of the system (i.e. , the bond conductance or the
effective spring constant decreases gradually), as opposed
to the abrupt breakdown of the elements that was used
here. It remains to be seen whether the fracture behav-
ior of such materials is very diA'erent from what is found
here. Work in this direction is in progress.
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