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Localization in quantum percolation: Transfer-matrix calculations in three dimensions
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The quantum site percolation problem, which is defined by a disordered tight-binding Hamil-
tonian with a binary probability distribution, is studied using finite-size scaling methods. For the
simple cubic lattice, the dependence of the mobility edge on the strength of the site energy is ob-
tained. Exactly at the center of each subband the states appear to be always localized. The lowest
value of the quantum site percolation threshold is pq

——0.44+0.01 and occurs for an energy near
the center of the subband. These numerical results are found to be in satisfactory agreement with

the predictions of the potential-well analogy, based on a cluster coherent-potential approximation.
The integrated density of states is also calculated numerically. A spike in the density of states ex-

actly at the center of the subband and a gap around it are observed, in agreement with earlier
work by Kirkpatrick and Eggarter.

I. INTRODUCTION

Considerable interest in recent years has focused on
quantum percolation problems. ' Quantum percola-
tion is usually formulated in terms of a tight-binding
one-electron Hamiltonian on a regular simple cubic lat-
tice

H=g [n)s„(nf+ g fn)V„(m
t

n, m
(n&m)

where the transfer energy V„vanishes unless n and m

are nearest neighbors on the lattice and is constant oth-
erwise. We can describe the quantum analogue of the
site percolation by constant transfer energy V„=1

random-site energies obeying the probability distribution

p (E„)=p5(E„—e„)+(I —p)5(E„—e~ ), e~ = —E~ . (2)

In the classical percolation problem, sites on a lattice
are randomly occupied with probability p, and two occu-
pied sites are connected if they are nearest neighbors. Et

is well-known that there exists a critical value p„below
which all clusters of connected sites are finite. On the
other hand, for p )p, the probability is unity that there
exists an infinite cluster. In quantum percolation the
corresponding quantity of interest is the quantum per-
colation threshold pq, belo~ which all eigenstates of the
Hamiltonian are localized. It is clear that p )p„since
the existence of an infinite cluster is a necessary condi-
tion for the existence of an extended state. There have
been many estimates of the quantum percolation thresh-
old p for the simple cubic lattice. Early numerical
works suggested that p was in fact very close to p,
(p, =0.3117+0.0003 for a simple cubic lattice ). Ragha-
van using the tridiagonalization method found for the
simple cubic lattice p =0.38. Srivastava and Cha-
turvedi found that p =0.47 by examining numerically
the inverse participation ratio. Odagaki and Chang
used a real-space renormalization-group approach to ob-

tain p =0.70 and Root and Skinner using a macroscop-
ic renormalization-group method found that p =0.45.
While the different numerical methods clearly show that
indeed p is greater than p„there is not agreement on
its numerical value.

The purpose of the present paper is to make a detailed
numerical study of the quantum site percolation process
on the basis of the finite-size scaling methods' ' using
the very reliable transfer-matrix technique. For the sim-
ple cubic lattice we numerically obtained the dependence
of the critical value of cz on the concentration p for
E = c.~. We also calculated, for the first time, the entire
mobility edge trajectory in the concentration-energy
plane for different values of c.„.This trajectory is in
good agreement with the predictions of the potential-
well analogy (PWA) based on a cluster coherent poten-
tial approximation (CPA). We also calculate within the
CPA, the localization length A. , the correlation length g',

the mean free path l, and the density of states (DOS) as a
function of energy for different concentrations p. Final-
ly, we determined numerically the integrated density of
states (DOS) which clearly shows that the DOS exhibits
a strong dip around the center of the band as well as a
spike exactly at the center.

In Sec. II we briefly describe the formalism and the
method of calculation. In Sec. III we present and dis-
cuss the results of this calculation. In Sec. IV we
present the PWA cluster CPA method and its results
and in the final section, we summarize the conclusions of
this work.

II. METHOD OF CALCULATION

Up to now, the most reliable numerical technique in
obtaining quantitative results in the problem of Ander-
son localization in disordered systems, is the transfer-
matrix method. ' ' In this method, one considers cou-
pled one-dimensional (1D) systems. Each 1D system is
described by a tight-binding Hamiltonian of the form as
in Eq. (1). In our explicit results for this study, we as-
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S (E, )I (E, ) =8.96 . (3)

It is important to stress that quantities which have been
obtained before' ' from the approximate scheme out-

sume that the probability distribution p (s„)of the ran-
dom sites is a sum of two 6 functions, as described in

Eq. (2). [In previous numerical calculations we' have
systematically studied the behavior of the tight-binding
disordered systems when p (e„)is given by either a rec-
tangular or a Gaussian probability distribution. ] The
corresponding sites of the nearest-neighbor 1D system
are coupled together by an interchain matrix element.
As the number of coupled chains approaches infinity, we
recover either the two-dimensional (2D) system when the
chains are placed on a plane of cross section M with two
nearest neighbors each, or the three-dimensional (3D)
system when they are placed to form a cylinder of
square cross section M . For the M regularly placed
chains of length X, one determines the largest localiza-
tion length A, M as N~oo. Then from a plot of A.M
versus M one can determine the localization properties
of the system. ' ' In particular, by studying A,M/M
versus M one obtains a reasonable estimate of the mobil-
ity edge trajectory. At exactly the mobility edge'
k~/M =0.6 while for extended and localized states we
have that kM/M versus M increases or decreases, re-
spectively. This criterion has been checked by us' for
disordered tight-binding models in ~D with a rectangu-
lar and Gaussian probability distribution for the site en-
ergies.

In addition to our numerical results" ' using the
transfer matrix, we have also used the PWA based on
the simple CPA and on a cluster CPA. We have found
that, while the simple CPA gives results with apprecia-
ble discrepancies from the numerical ones, the cluster
CPA agrees reasonably well with them. The CPA calcu-
lates the average Green's function G corresponding to II
from an effective periodic Hamiltonian resulting from
Eq. (I), by replacing s„by a common self-energy X,
which is determined by a self-consistent equation. '

By this procedure, the self-energy, the Green's function,
the mean-free-path length, /(E), the conductivity o o(E),
and the constant energy surface S (E) in 3D, are calcu-
lated. The details of this procedure can be found in
Refs. 13—15. The results of the CPA are used as input
to construct an effective potential well. The depth
Vo(E) of the effective potential well is proportional to
oo '(E)l (E), where D is the dimensionality and the
width a(E) is proportional to l(E). As we mentioned
above, by employing the CPA one can find at every ener-

gy E the mean free path 1(E) and the CPA conductivity
o o(E); then from l (E) and o o(E) one can construct the
effective potential well characterized by a(E) and Vo(E).
If this potential well can sustain a bound state with a de-
cay length A, (E) then the eigenstates at E are localized
with localization length A.(E). If no bound state exists at
the effective potential well, the eigenstates of E are ex-
tended. In 3D, the mobility-edge energy E, which
separates extended from localized states is given by the
relation

lined above (based on the CPA and the potential-well
analogy) are in satisfactory agreement' ' with results
based on independent numerical methods. However, in
the present case of a binary probability distribution, the
simple CPA results for the DOS, l(E), and cro(E) are
not accurate because this probability distribution makes
the role of cluster effects very pronounced, while at the
same time the CPA omits these effects.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present results based upon the nu-
merical techniques. We work within the framework of
Anderson's model. Thus the input of our study are the
following. (i) The lattice structure and quantities associ-
ated with the lattice structure such as the number of
nearest neighbors Z and the Green's function associated
with the periodic Hamiltonian H =g„Vn ) ( m

~

.
Here we consider the simple cubic lattice where Z=6.
(ii) The probability distributions of the site energies
p(s„).We consider here the case of a binary-alloy type
where p(c.„)is given by Eq. (2). This probability distri-
bution is essentially characterized by two parameters: p,
the concentration of 3 atoms, i.e., the probability that a
given site will be c~ and s„or5=

~

e„—c~
~

/
ZV=2c.

„

/ZV, which can be considered as determining
the degree of disorder. A case of importance is the
binary-alloy distribution when 6~0o. In this case, the
only way an electron being initially at an A (B) site may
propagate to infinity is to find a path consisting entirely
of 3 (B) sites and extending to infinity. Percolation
theory examines exactly this problem, i.e., the probabili-
ty P(p) of finding such an exclusive A path. It turns out
that this theory predicts a critical concentration p, such
that P(p)=0 for p &p, and P(p) &0 for p &p, , where p,
depends on the particular lattice. For a simple cubic lat-
tice p, =0.3117+0.003. According to these remarks,
the concentration above which all eigenstates in the 3
subband as 6~oo are extended must be equal to or
greater than p, . We have systematically calculated the
k M

's for several values of 6, p, and energies E for
M =2—9. Using the criterion"' that X~/M =0.6 ex-
actly at the mobility edge, we have calculated for the
first time the dependence of the mobility edge on the dis-
order and concentration p. In Fig. 1 we plot 6 versus p
for E =cz, i.e., at the center of the 3 subband. Figure
1 can be used to describe qualitatively the sequence of
events associated with the introduction of impurities in a
given crystalline material. If the disorder is not strong
enough, i.e., 6 & 2 or c.~ & 6V, then the state at the center
of the 3 subband is always extended independent of the
concentration p of the A atoms. For higher disorder,
6 & 2, as the concentration of impurities increases from
zero an impurity subband is formed consisting initially
entirely of localized eigenstates, since the eigenstate at
the center of the subband is localized. The first extended
state at E =c~ appears at a higher concentration p of
the 3 atoms and depends on the strength of the disor-
der. It was expected that in the quantum percolation
limit, i.e., 6~ ao, the quantum percolation threshold p
would approach a value less than unity. However, as
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FIG. 1. Phase diagram of the binary-alloy model for E =c,&.
The strength of the disorder 5=2m. &/6V and p is the concen-
tration of the sites with energy c~. In the insert of ln5vs p is
plotted.

one can see from the inset in Fig. 1, p continues to in-
crease slowly as 6 increases. From the data given in the
inset, it is difficult to extract what is the functional
dependence of p on 6 for large 6. It seems that p fol-
lows either a weakly power-law dependence of the form

p =0.7 —0.26/c~ or a logarithmic dependence of the
form p =0.64 —0.5/ln(e ~ ). However, these fits are
only to data up to 6=10 and are probably not indica-
tive of the true 5~ ~ limit. In fact, a very plausible ex-
planation of our data is that, at E =a~, p is, in fact,
equal to 1 for 6= oo, as was first suggested by Kirkpa-
trick and Eggarter. '

From Fig. 1, we find that if we had used only the data
up to 6=10 then we would have erroneously concluded
that the threshold at E =c.~ is at p =0.50, well above
the classical percolation threshold of p, =0.3117, in
agreement with some of the previous numerical calcula-
tions. ' Most of the previous work, in this problem is
based on calculations of the participation ratio ' ' or of
the macroscopic renormalization group. ' Both of these
methods do not determine the nature of the eigenstate at
the center of the 2 subband. Instead, they average a
few eigenstates around the center of the 3 subband and
therefore the values that are obtained for p are
inAuenced by the states closer to the center of the sub-
band. For this reason we decided to systematically
study the dependence of p on the energy of the entire A

subband, with the transfer matrix method. ' ' The re-
sults of this study are shown in Fig. 2, where the mobili-
ty edge trajectory in the concentration-energy plane is
calculated for three different strengths of disorder c~.
The energy shown in Fig. 2 is measured from the center
of the A subband i.e., E =0, corresponds to E =Ez in
Eq. (2). Notice that p is very sensitive function of the
strength of the disorder c~ for E =0, while there is a
much weaker dependence on c~ for E&0. We want to
stress again that at the center of the 2 subband, E =0,

1.0 ..

l Extended

~ ~ 'Wa~e-
0.5—

Localized

'a
~ 24
R 200
~ 107

0.0
-3

I

-2
I

0
E/2V

FIG. 2. Mobility-edge trajectory in the concentration-energy
plane for the binary-alloy model in a simple cubic system for
three values of the disorder strength.

p is most probably equal to l in the limit c.z ~~.
Within our method of calculation we might not be exact-
ly at the center of the band, since we only do finite sys-
tems (9&&9)&6000) and have an imaginary part in the en-
ergy with magnitude of 10 or 10 ~ Notice that in the
region —1 & E/2V & 1, p is nearly constant with the ex-
ception of the sharp peak at E =0 and a weak maximum
at

~

E
~

/2V=0. 5 and depends very weakly on ez. For
~

F.
~

/2V ) 1, we observed no dependence of pz on s~.
Now let us consider some properties of the DOS. For

a given p and 6 or c.~ the DOS has the following form.
For zero disorder, 6 =c ~ =0, there is a single band span-
ning from E = —6V to 6V for the simple cubic lattice.
As the disorder increases the DOS remains a single band
which is a uniformly stretched version of the unper-
turbed DOS. For even stronger disorder, 5) 2, the sin-
gle band splits into two bands approximately centered at
—c~ and c.z with widths approximately equal to 2ZVp
and 2ZV(1 —p). CPA results show this behavior' '' as
well as the numerical results of Kirkpatrick and Eggar-
ter. ' Another very interesting feature of the DOS is an
obvious spike in the center of the subband and gap re-
gions on both sides of the central spike in which no
states are found. ' Both the gap and the spike became
narrower when the concentration is increased for sam-
ples of a given size. Finally, for large enough concentra-
tions the dip is no longer apparent.

We have undertaken' a systematic study of the in-
tegrated DOS for the binary probability distribution as
well as for other distributions to check the universality
ideas in the tails of DOS in disordered systems. Here we
only present how the spike at the center of subband and
the gaps around the spike depend on the strength of the
disorder c, ~ for a given concentration p =0.30. This is
clearly shown in Fig. 3 where the IDOS versus energy is
plotted for different values of c.~. Notice that for small
values of e „(5V and 8 V), there is only a very weak sig-
nature of a gap around the center of the subband and no
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0.21—
So = ( 2ir ) iri( po poi )

1/2

(10)
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where

Po2

Po

and

po2(E —eo)= j d k 6(E Ek—)vi, /(2')',
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po(E —eo)= J d k 6(E Ek )/(—2')

The quantities Po2 and po can be expressed in terms of
matrix elements of the unperturbed Green's functions. '

Explicit results have been obtained both for the simple
cubic case and the simple case (not corresponding to a
real lattice) for which Ez ——2&3Vcos(

~

k
~

/&3). The
latter case allows explicit analytical results for the un-
perturbed case:

FIG. 3. Integrated density of states vs energy for the
binary-alloy system in a simple cubic system at p=0.30 for five
values of the disorder strength.

po(E)=
~

C(E)
~

' /3ira V,

vo(E) =2v'3a V
~

C(E)
~

' /iri,

So(E)=16ir
~

C(E)
i
/&3a

(12)

(13)

(14)

spike at E =0. By c z ——30V, a spike has clearly
developed, as seen by the large jump in Fig. 3 for the
IDOS. The gap around the center of the subband is
clearly seen for c.~ =200V and 2400V.

IV. PWA RESULTS AND DISCUSSION

where C(E)=1 (E/6V) an—d a is the "lattice" spacing.
In the limit cz ~ oo, Eq. (4) reduces to

GX=1—p, (15)

which can be solved explicitly in the particular case of
Eqs. (12)—(14) to give

E,„—E, g +X =0,
1 —(e„—e„+X)G(E) (4)

The potential well analogy (PWA) leads' to Eq. (3)
for the determination of the mobility edge. The quanti-
ties l(E) and S(E) in Eq. (3) are obtained within the
framework of the simple CPA as follows.

The effective site energy cz —X is determined from
the equation

p(E)=, p—1

3'Va

for

E —e,
I

&6V

I (E)=
&3(1—p)

E —EA

6V

2 1/2

2

(16)

(17)

16~
where the average is over the probability distribution of So(E)= — 1—

2

c„andG is given by

G (E)=Go(E —e~ +X),

6V&p

for
~

E —e„~&6V&p (18)

G(E —eo) is the periodic site diagonal Green s function
for a band centered at cp. Then we have

Explicit

given by

results can also be obtained as cz ~ oo for
In this case the critical concentration p, is

(6)v (E)=vo(E —e ~ +ReX),

S(E)=So(E —e„+ReX),
1(E)= v (E)r(E),
r(E) =iri/2

~

ImX(E)
~

pc =1—2A dE
po(E)

3 2+E2 (19)

(8) where

So(0)u o(0)
35.84

(9) (20)

In Eqs. (19) and (20) we have taken a =A=2V=1. For
the simple cubic lattice 2 =4.64 and p, =0.20. For the
case of Eqs. (12)—(14) we obtain p, =0. 193. It is

worthwhile to note that Kolley and Kolley' have ob-
tained for the latter case p, =0.50 using a method simi-

The quantities So(E —eo) and uo(E —eo) are the area in
k space of the surface of constant energy E and the aver-
age of the velocity

~
vi,

~

over the same surface for a
periodic tight-binding band centered around cp. If one
assumes that Uo is the same as the inverse of the average
of

~
vz

~

' then one obtains
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lar to the PWA and employing the simple CPA. The
difference is due to their use of a localization criterion
which in our notation can be written as

1.0

Sl, I = 12~X, . (21)

In our PWA method A,z is always unity, the right-hand
side (rhs) constant is equal to 8.96 instead of 12vr =37.7,
and 1, is equal to l. (The difference between 1, and 1 is
explained in Ref. 13.) It should be noted that our locali-
zation criterion [i.e. , Eq. (3)] has been repeatedly
checked numerically, ' ' always with very good results,
while Eq. (21) has not been checked numerically. Thus
the fact that the PWA based on the simple CPA gives
too low a value for p, (even lower than the classical per-
colation limit) leads us to conclude that it is the ample
CPA which is responsible for this discrepancy. Indeed
the simple CPA, by omitting multiple scattering effects,
underestimates the role of disorder. This underestima-
tion is very severe in the present case of binary distribu-
tion as it is evident by comparing the simple CPA densi-
ty of states (see Fig. 5) with the numerical DOS (Fig. 3).
As a result the simple CPA mean free path is expected
to be much longer than the actual one. Thus we have
employed a cluster CPA approach in order to take into
account some of the multiple scattering effects omitted
in the simple CPA. Our cluster method obtains, in a rel-
atively simple way, g and g, and the diagonal and the
nearest-neighbor off-diagonal matrix elements of the
Green's functions, by considering a cluster of a central
site and its nearest neighbors connected to the rest of the
lattice which is described by the simple CPA Green's
function G as obtained from Eq. (16). The diagonal ma-
trix element g in our cluster method is given by

6
6 —nl n —1

, (n —1)!(7—n}!

1
X E —E„—3(7—n)G/8

(22)

The off-diagonal matrix element g, is obtained from the
basic equation (E H)g =1:—

1
gi = ll —« eA)gl—

6V
(23)

It is worthwhile to point out that the present cluster
CPA although not as sophisticated as others, incorpo-
rates certain multiple scattering effects which are very
important for states around the middle of the band.

Having g and g& we have estimated the cluster CPA
mean free path I from the equation

IcpA

In/G/G,
/

In/g/g,
/

where 6 and 6, are the simple CPA results for the diag-
onal and the nearest-neighbor off-diagonal matrix ele-
ments of the Careen's function. Equation (24) is based
upon the relation g(n, m }=g exp( —

~

n —m /21), which
is correct for

~

n —m ~~1; n, m are lattice sites. If mul-

tiple scattering effects were negligible g =6 and g, =6,
and consequently l = IcpA.

P 0.5

1.0 2.0
E/2V

3.0

FICx. 4. Mobility-edge trajectory in the concentration energy
plane for the binary-alloy model in a simple cubic system.
Solid squares are numerical results. Solid circles are the pre-
dictions of the PWA based on a cluster CPA. The solid line is
the CPA band-edge trajectory.

We have calculated the mobility edge trajectory for
the binary disorder case in the limit c. ~ ~ oo using Eq.
(3) with 1=1 as in Eq. (24). The results are shown in

Fig. 4, where the concentration p, versus E is plotted.
The energy is again measured from the center of the 3
subband. The solid squares are the numerical results
shown in Fig. 2 while the solid circles are the results
from the PWA based on the cluster CPA. The agree-
ment between the cluster CPA results and the numerical
results for the binary probability distribution of the
tight-binding Hamiltonian is rather good. We find only
a 10—20% discrepancy and the main features are faith-
fully reproduced; we remind the reader that for the rec-
tangular and the Gaussian probability distribution the
agreement was even better with a discrepancy of less
than 5%. In Figs. 5(a), 5(b), and 5(c) we plot the cluster
CPA DOS p(E), the cluster CPA localization length ~
or the correlation length g, and the cluster CPA mean
free path l as a function of E for three concentrations of
p=0.20, 0.35, and 0.40. The shaded regions in p(E) in
Fig. 5 represent localized eigenstates, while the unshaded
regions correspond to extended eigenstates. Notice that
around the center of the band the DOS has a small dip,
and by construction a 6 function exactly at E =0, which
is not drawn. The values of I for the cases examined is
less than interatomic distances. However, there is a rich
structure for ~ and g at p=0.35, since at this concentra-
tion as one increases E from E=O starts from localized
states crosses to extended, then there is a small region of
localized states followed by a small region of extended
and finally we go into localized and or into the gap.
This rich structure reAects the nonmontopic behavior of
p, versus E shown in Fig. 4 with the sharp peak at E =0
and weak maximum at E /2 V =0.5. Note that this
structure exists both in the numerical data as well the
cluster CPA data. However, in the latter appears for
lower values of p, . The structure seen for E/2V=0. 5
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FIG. 5. Results for the density of states p(Fi localization length k or correlation length g and mean free path I as function of en-
ergy for a simple cubic lattice of a binary alloy, within the PWA based on a cluser CPA for (a) p=0.20, (b) p=0.35, and (c) p=0.40.

rejects probably the Van Hove singularity of the unper-
turbed DOS.

V. CONCLUSIONS

We have calculated the quantum site percolation
threshold on a simple cubic lattice not only at the center
of the minority subband as in previous studies but in the

entire energy region. The mobility trajectory edge in the
concentration energy plane for the tight-binding model
with a binary-alloy distribution, first calculated by us in
this study, is compared with results obtained within the
PWA based on a cluster CPA. The agreement between
them is satisfactory. Using a new numerical technique,
we have calculated the IDOS clearly showing the spike
at the center of the subband as well as the gap around it.
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The most strikingly result of the present study is sum-
marized in Fig. 2 or Fig. 4, where a nonmonotonic
dependence of p, on E is observed. The most difficult
states to localized are not the ones at the center of the
subbands (these states are probably localized at any con-
centration p&1 in the limit e~ ~ ao) but the states at
E/2V=0. 3.
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