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Plasma oscillations in heavy-fermion materials
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We calculate the dielectric function of the lattice Anderson model via an auxiliary-boson
large-N method suitably generalized to include the eA'ects of the long-range part of the Coulomb
interaction. We show that the model exhibits a low-lying plasma oscillation at a frequency m* on
the order of the Kondo temperature of the model, in addition to the usual high-frequency plasma
oscillation. We also analyze the Anderson model without the long-range Coulomb interaction,
computing the Landau parameter Fo„and showing that the model has a zero-sound mode whose
velocity we compute. We derive the version of the f sum rule applicable to our model and show
that our results satisfy it.

Heavy-electron metals are a class of compounds involv-
ing rare-earth or actinide elements which have recently
been much studied' because at low temperatures their
properties are, crudely speaking, those of a Fermi liquid of
mass m* —10 m (m is the usual electron mass) and Fer-
mi temperature T*—10-100 K. Here we report results
of a theoretical study of the small-q limit of the dielectric
function e(q, co). Our principle result is that heavy-
electron metals should have a plasmon mode at the renor-
malized plasma frequency co*=T*. The plasmon has
low spectral weight, making an order m/m* contribution
to the f sum rule, and is likely to be damped, but perhaps
ought to be observable in reflectivity or other measure-
ments. We also relate our results to a previous calcula-
tion of the optical conductivity cT(to), and comment on
the implication of our results for the physical interpreta-
tion of the heavy-fermion compounds.

As a model for the low-temperature behavior of heavy-
electron materials we use the auxiliary-boson (or "slave-
boson" ) large-N version of the lattice Anderson model.
The Anderson model is believed to represent the essential
physics of heavy-fermion materials. The slave-boson,
large-% version was devised for the single-impurity An-
derson model and has been also used to study various
aspects of the lattice problem. ' For a comparison of
this with other methods, see Ref. 2.

The Anderson model describes a structureless band of
conduction electrons (operator ck, energy et, ) hybridizing
via a hybridization matrix element V (conventionally as-
sumed to be structureless), with a dispersionless band off
electrons at an energy Eo, and subject to the constraint
that the number off electrons on site i, nI; ~ 1. We mea-
sure all energies with respect to the chemical potential
(taken to be zero) and we are interested in the Kondo lim-
it in which —Fp/ppV »1. pp is the c-electron density of
states evaluated at sk =0. We assume T =0 throughout.

The Anderson model as conventionally formulated does
not include the (physically necessary) long-range part of
the Coulomb interaction. We therefore add to it a term of
the form

4'H Coul g 2
q&q,

where nq is the Fourier transform of the density
n; =n„+nf;. We note that the short-range part of the
Coulomb interaction between the f electrons is already in-
cluded in the Anderson model, where it produces the
"infinite-U" repulsion leading to the constraint nI; ~ 1.
However, the long-range part of this interaction is not in-
cluded, as can be seen from a Gedankenexperiment in
which a few f electrons are moved from one end of the lat-
tice to the other, with everything else held fixed. The sum
on q in Hc,„~ must be cut oA' at q =q, &&kF to avoid dou-
ble counting. In this Rapid Communication we are con-
cerned only with asymptotically-long-wavelength proper-
ties, and will never have to specify q, .

The inequality constraint on nf makes the model
dificult to attack by conventional methods. In the slave-
boson method one introduces a new boson field b;
representing an empty set of f orbitals on site i, rewrites
the hybridization (Vctf bt+H. c.) and enforces the con-
straint nf;+ng; =1 via a Lagrange multiplier field A, . To
use the 1/N expansion one assumes both c and f electrons
are characterized by a N-fold-degenerate "spin" quan-
tum number m, conserved in hybridization and e-electron
propagation, and one rewrites the constraint as nf;
+nt, ; =qpN, where qp is regarded formally as independent
of N. (To recover the original Anderson model one sets
qp~ 1/N at the end of any calculation. 3) Next, one splits
the boson operators into static and Auctuating parts. Re-
taining only the static parts leads to a mean-field theory of
electrons moving in a renormalized band structure in
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which a dispersionless band of f quasiparticles3 at energy
T* & 0 hybridizes via a renormalized hybridization
a'p && V with the c-electron band. Corrections to the
mean-field theory come from Coulomb interactions and
interactions between the electrons and the fluctuating
parts of the boson fields. To study these corrections we
use the radial gauge formulation, but we write the elec-
trons in terms of the operators d; which diagonalize the
mean-field theory, and we take the small-q limit in the in-
teraction terms. The model is then specified by the La-
grangian L LF+Lg+Lq+Lc«~+L„,t, where

LF = g d;I [8,+c;(k)]d;k
i,k, m

Lc 2 g a(qT —Ep) aq+ 2iapoqk —q'
N

2V q

2Q'p
LI g d t k+qmdl mkaq+~~q

k, q, m Ek

(la)

+ (d jk~d i k+q ~+ H.c.) crq-8k —
Gf 10'p

Ek ' Ek

(lc)
4'

Lcoul g 2 nqn —
q

q(&q, ) Nq
(id)

where the d~(2&k and ci&2lk(k) are the operators and en-
ergies for the lower and upper bands of the renormalized
band structure; one has

ci(2)(k) =-,' [(ck+T ) (+) Ek]

rise to interband transitions.
The factor of N in Lc,„~ arises because we consider a

model with —1 electron per spin channel.
The expressions above are correct only up to terms of

relative order (q/kF) . The terms in L,«„ which we have
not explicitly written, include a three-boson interaction
(which does not contribute to the order to which we work)
with the terms which fix the mean-field parameters, and
the terms involving band-2 operators which do not con-
tribute at T=O.

From Eqs. (1)-(4) one may easily compute the
density-density correlation function X(q, co) by standard
diagrammatic techniques. Details of a similar calculation
are given in Ref. 10. To leading order in 1/N the only dia-
grams which contribute are shown in Fig. 1. They have
the familiar random-phase-approximation (RPA) form of
polarization bubbles connected by interaction lines, which
in this case may be either boson propagators [from Eq.
(lb)] or the Coulomb interaction. The polarization bub-
bles may be of inter- or intra-band type. Note that the
density operator (and thus the Coulomb interaction) cou-
ples to an interband bubble via a vector vertex, but the bo-
son propagator couples to an interband bubble via a scalar
vertex. Summing the diagrams we find at small q,

Il(q, co) +IIi2(q, co)
L q, co

2 2 p1+(4' /q N)[II(q, ro)+IIP (q, co)]

Here Hi2 is the interband density polarization bubble,

II~2(q, pi) —N g (pk q)
k(( kF)

and

E.-i(ck T*)'+4al . —
1 + 1

co —Ek +i6 —co —Ek —I 8'

We have assumed the Fermi level lies in the lower band.
The dk; are related to the c and foperators via

dk; -cos8k(ck; + sin8k; fk;,

(4)
and II(q, co) is the intraband density polarization bubble,
which includes the effects of electron-slave-boson interac-
tions. One finds

where II(q, co) -IIp(q, pi)/I + I &(cp)Iip(q, rp), (s)

tan8k; - [c;(k) —ck]/ap crp/[c;(k) —T*] .

The mean-field parameters ap and T*, to leading order in,
1/N, and qp are given by T Dexp(Ep/ppV ),
a'p =qpV (1 —nf), and nf =(1+T*/ppV ) '. Here D is
an energy of the order of the distance of the bottom of the
c-electron band from the chemical potential. The density
of states at the Fermi surface c~ (k) 0 is (m /m)
x (kF2/2n2)(dk/dck), where m*/m ap/(T ) cg,/o'$.
The band structure defined by LF is thus very flat at kF,.

its excitations are heavy fermions of velocity
v* dc~(kF)/dk. The band structure has a direct gap of
magnitude 2crp centered at sk =T*.

The operators o.
q and A.q are related to the fluctuating

part of the original Bose operators. In terms of the opera-
tors d;, the density operator is

nq g dY k+q, mdikm+Pk'q(df k+q ~dik~+H. c.)
k, m

(2)

pk (ap/E))(dck/dk) is the dipole operator which gives

where IIp is the bare intraband polarization bubble;

f(., (k)) -f(., (k+q))Ii, (q, ~)- —N g „.. (6)

X(q, ~) = + ~ ~ ~

FIG. 1. Diagrams for density-density correlation function, to
leading order in 1/N. The heavy dots denote density vertices.
The solid lines with arrows represent electron Green's functions
obtained from the inverse of LF, Eq. (2a) in the text. The
dashed line represents either bare boson propagators obtained
from inverting Lz, Eq. (2b) in the text, or the Coulomb interac-
tion 4xe2/q~N. The vertices at which boson or Coulomb lines
join fermion lines are obtained from LI, Eq. (2c) and L„Eq.
(2d), respectively.

I c is the effective boson-mediated interaction between
two band-1 quasiparticles with k=-kF. It is made up of
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bare boson propagators appropriately dressed by inter-
band bubbles. I ~ is a function of co/era and we shall re-
quire only its co 0 limit, which we find to be
I ~(0)- (m'/mp).

Equation (3) is the central result of this paper. To un-
derstand it, we first study the model without long-range
electric fields by setting e -0. Equation (3) then be-
comes Z II+II~q. The term in II~2, which is explicitly of
order q, gives the contribution to Z from interband tran-
sitions. The term in II gives the intraband contribution,
which is altered from the "noninteracting" value IIo by
the electron-boson interactions. By using Eqs. (3)-(6) we
find limv oZ(q, O) p(1/1+ pI z). We therefore identify
pI g(co 0) with the Landau parameter Fo, =m*/m &) l.
All other Landau F parameters are of order 1/N. s Note
also that X has a pole at co =c2q2, with c (Fo,/3)U*,
this is the familiar zero-sound mode of a neutral Fermi
liquid with Fo, » 1. The Fermi liquid under consideration
stems from the hybridization of two bands, one of which is
dispersionless. The model is therefore not Galilean invari-
ant. In a Galilean-invariant Fermi liquid with m /m» I,
the expression for the zero-sound velocity would necessari-
ly involve also F~, 3[(rn*/m) —1].

Consider now the spectral weight of density-fluctuation
excitations, S(q, co) (I/rc) 1m'(q, co). S(q, co) satisfies
the f sum rule"

J dco coS(q, co) n&,&q /2m,

where n&„ is the total number of electrons and m is the
electron mass. The Anderson model, however, is an
effective Hamiltonian presumed to describe the physics of
heavy-fermion materials at energies less than the
conduction-electron bandwidth, which is of order D. In
particular, higher-excited states of the f electrons, which
presumably form bands at energies ) D above the Fermi
surface, are not included. These higher bands will con-
tribute, at high frequencies, to the f sum rule; therefore,
the S derived from Eq. (3) does not satisfy the full f sum
rule. However, by applying the standard derivation" of
the f sum rule to the Anderson model we have derived a
partial f sum rule

dcocoS(q, co) =n, q2/2m . (7)
Here n, is the number of conduction electrons. (We as-

sume unit volume. ) If one assumes ek =k /2m —p, then
n, =Nkvd, /6n where kq =J2mp. We expect that the
difference (n —n, )q /2m between (7) and the full f sum
rule is made up by the previously mentioned interband
contributions to S(q, co) at co)'D.

Now using Eq. (3) one may easily check that (7) is
satisfied at small q. In the case e 0 there are three con-
tributions. One comes from the particle-hole continuum
near the Fermi surface, co & U q, and contributes a term
of order n, q2/Fj, m* to the right-hand side of (7). Thus
the low-lying quasiparticle density fluctuations have negli-
gible spectral weights. The second contribution comes
from the zero-sound mode; it contributes nq /2m*, where
in a model with a spherical Fermi surface, n Nkg/6rc .
The third contribution comes from the interband transi-
tions at frequencies cu 2oo contained in II~2, yielding
n, q /2m —(nq /2m*).

e(q, co) = 1 +
2 [II(q, co) +II&2(q, co)] . (8)

In the static limit, co=0, II(q, co) p/I+Fo„while
II~2 tends to the value (q /4xe ) (co&,/6oo), where
co~2, =4rrn, e /m. Thus

e(q, 0) =eo+
2q2 ]+F0,

Here eo =1+co~,/6oo. In physical terms eo represents a
reduction in the Coulomb interaction between band-1
quasiparticles due to polarization of the "light" c-electron
degrees of freedom. Because Fo, =m*/m, the Thomas-
Fermi screening length is not renormalized from a value
characteristic of a conventional light-electron system.

The frequency-dependent conductivity o(co) is related
to the dielectric function by

lim e(q, co) =1+4rcicr(co)/co .
q 0

The results presented here for e(q, co) agree with results
previously calculated for cr(co) in the limit N
r~ ~ (r is the impurity scattering time defined in Ref.
3).

Zeros of e(q, co) correspond to plasma oscillations of
the system. There are two in this model, at co=mh;zh and
co =co*, where, using Eqs. (3)-(5) and (8),

(9a)

co* =6(1+nf/n, ) T* (9b)

The high-frequency plasma oscillation occurs at ap-
proximately the plasma frequency of the c electrons alone.
This is to be expected: Heavy-fermion behavior is essen-
tially a low-frequency and -temperature phenomenon,
which should not affect high-frequency phenomena such

It is now accepted that the low-energy excitations about
the T=O ground state of the lattice Anderson model are
those of a Fermi liquid of large effective mass m*. 2 3 s'
It has also been asserted that the effective density of parti-
cles in the Fermi liquid is n(m/rn ). ' One may inter-
pret the results of the present paper as supporting this as-
sertion, because the "Fermi-liquid" contributions (from
the intraband particle-hole continuum and the zero-sound
mode) to S(q, co) contribute only n(m/m )q /2m to the
total spectral weight required by the f sum rule. Howev-
er, it is also argued in Ref. 12 that n(m/m )—(1 —nf),
so that heavy fermions are to be interpreted as holes in the
f band. This assertion is not supported by the present
model because nf and m*/m are separate parameters of
the model and can be independently varied by appropriate
variations of the bare parameters Eo and V.

We now consider the physically relevant model, in
which long-range Coulomb forces are present. For
charged systems the relevant quantity is the dielectric
function, e(q, co), which may be computed either directly
from the diagrams for the dressed Coulomb interaction or
from the identity

e '(q, co) =1+(4rce'/q')Z(q, co) .

By either method one finds
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as the plasma oscillation.
The low-frequency oscillation may be thought of as a

heavy fermion plasma mode. It is reduced from a typical
plasma frequency co 4tre2n/m by two effects: (i) the
mass enhancement (m /m) and (ii) the reduction of the
eff'ective Coulomb interaction between two band-1 quasi-
particles which is given by eo. The low-frequency plasma
oscillation may be thought of as the zero-sound oscillation
of the neutral system, pushed up to a finite frequency by
the long range of the Coulomb interaction. It has spectral
weight nq 2/2m as does the zero-sound mode.

The form for e is precisely what would be expected for a
metal which happened to have the "mean-field" band
structure described by Eq. (Ia). 'i However, the mean-
field solution is valid only for T«T; for larger T a pic-
ture in which c electrons are incoherently scattered by
spin fluctuations is more appropriate. Our theory applies
only for very low temperatures, but we suspect that Res
would not have a low-lying zero crossing for temperatures
comparable to or greater than T*.

Zeroes of e correspond to poles in X. By using Eq. (3)
with for the charged case one easily verifies that to leading
order in q2 the only contributions to (7) come from the
two plasmon poles. The plasmon at m* contributes
nq 2/2m *; the plasmon at cob;st, contributes n, q /2rrt—nq /2m . Thus the low-lying plasmon has spectral
weight nq 2/2m as did the zero sound mode of the neutral
system. Note that Ree(q, co) also vanishes at a value
ai tap~ 2o'p. However, at to-cop, Ime is large because of
interband transitions. This zero of Ree therefore corre-
sponds to a heavily damped oscillation, and not to a distin-
guishable mode of the system. The other two plasma
modes are undamped, to leading order in 1/N.

To summarize, we have calculated the dielectric func-
tion for the Anderson lattice to leading order in 1/N using
the slave-boson method. We have included the long-range
part of the Coulomb interaction. We have shown that the
model exhibits a low-frequency plasma oscillation at a fre-
quency m* —T*, where T is the characteristic or Kondo
temperature of the model, as well as the usual high fre-
quency plasmon.

In conclusion, we discuss the observability of the low-

lying plasmon in real heavy-fermion materials. We first
note that the characteristic energy scale is set by T, the
Fermi temperature of the heavy fermions. T determines
the coefficient of the linear term in the low-temperature
specific heat and the T term in the resistivity. s T deter-
mines the heavy-fermion plasma frequency (nf/n, is of the
order 1), and our calculation only applies for tempera-
tures small compared to T . In the very-low-temperature
regime where our calculation is valid, the low-lying
plasmon is undamped to leading order in 1/N. However,
the system is not Galilean-invariant; therefore 1/N effects
involving inelastic scattering of electrons off of slave-
boson fluctuations could, in a system in which N is not
large, lead to a large value of Ime(q, co) for ta —T*. This
would substantially broaden the low-lying plasmon pole
(and, also, the interband edge). The broadening, com-
bined with the low spectral weight, may make the plasmon
difficult to observe.
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