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Hybrid molecular-dynamics algorithm for the numerical simulation of many-electron systems
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We present an algorithm for the numerical simulation of many electron systems, which is based
upon the hybrid stochastic approach presently being used to study lattice gauge theory. A method
for preconditioning the fermion matrices is described which significantly reduces the computing
time needed in the simulation. Results are presented for the three-dimensional Hubbard model on
lattices ranging in size from 4 to 10'.

I. INTRODUCTION

Numerical simulation has proven to be a very power-
ful tool for studying systems with many strongly coupled
degrees of freedom. This has been particularly true for
systems with bosonic or spin degrees of freedom and for
fermionic systems in one dimension. However, the simu-
lation of two- and three-dimensional systems with many
fermion degrees of freedom has proven to be extremely
challenging. In this paper we present an algorithm
which we believe has considerable promise for the study
of a variety of many electron systems in two and three
dimensions. We describe the algorithm in detail in Sec.
II. It is based upon the hybrid stochastic method'
which is presently being used with considerable success
to study lattice-gauge theory with dynamical quarks. '

In this paper we illustrate our approach by applying it
to the three-dimensional Hubbard model. We have
chosen this model because of its intrinsic interest, and
because we believe that it provides a particularly
stringent test of fermion algorithms. The fermion ma-
trices for the Hubbard model become ill conditioned at
low temperatures or at strong coupling, considerably
slowing the simulation. In Sec. III we show how this
difficulty can be overcome by preconditioning the fer-
mion matrices.

In Sec. IV we discuss tuning of the algorithm and
compare our results on a 4 lattice with those obtained
by Hirsch using an exact updating method. We also
present initial results obtained on 4, 6, 8, and 10 lat-
tices. Finally in Sec. V we brieAy discuss our results and
the application of our approach to other models.

The numerical calculations presented in this paper
were performed on the San Diego Supercomputer Center
Cray-XMP and on our ST-100 array processor.

Here c; and c, are the creation and annihilation opera-
tors for electrons located on the ith lattice site with z
component of spin cr =+, and n, =c, c, . U is the
repulsive Coulomb interaction between electrons on the
same lattice site, t is the hopping parameter, and (i,j )
represents a pair of nearest-neighbor sites on the lattice.
We shall consider the case of a half-filled band, so we
have explicitly written the Hamiltonian in particle-hole
symmetric form.

We are interested in performing calculations at finite
temperature. The average value of a physical observ-
able, A is given by
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We begin by turning the traces in Eq. (2) into path in-
tegrals. To this end we break up the imaginary-time in-
terval, 0(r &f3, into N, subintervals of width b,r. Then
the partition function can be written in the form
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II. THE ALGORITHM

Our approach can be employed to study a wide
variety of many-electron models. However, for
definiteness we shall describe its application to the
three-dimensional Hubbard model. The Hamiltonian we

and

H~= t g (c;tc, +c,t c, )—
(i,j ),o

Ht, ——U g (n, + ——,')(n, ——,') .

(4)
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For many models of interest the Hamiltonian is either
quadratic in the electron reaction and annihilation
operators or can be made so by the introduction of one

or more auxiliary fields. For the Hubbard model we in-
troduce a Hubbard-Stratonovich variable x; I at each lat-
tice site i and time slice l by means of the identity

exp[ —b&U(n, + ——,
' )(n; —

—,')]=(Drier)' e ' ~ f dx; I exp[ —Ar[x, I+(2U)' x; J(n, + n; —)]]
We can now perform the trace over the ferrnion coordinates to obtain

Z= f [5x]e detM+(x) detM (x), (7)

where [ ] indicates a functional integral. The partition function can be written in the general form given in Eq. (7) for
a wide class of models. For the particular case of the Hubbard model we have

S~(x}=br g x; I

and

M

—Bi
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0

0 0
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The entries in the matrix M are themselves V, && V, ma-
trices, where V, is the number of spatial lattice points. I
is the unit matrix, and

-5~KB,.=e —
e

~here

—t if i and j are nearest neighbors,
0 otherwise .

( Vi);~ =5;)(2U)' x; I .

Making use of a particle-hole transformation on the
spin-down electrons, it is easy to see from Eqs. (3) and
(6) that'

recompute 4 0 '4 each time we updated one com-
ponent of x. This would be too costly in computer time.
We can greatly reduce the number of times we need to
recompute 0 'N by making use of the ideas of molec-
ular dynamics. To this end we introduce a set of coordi-
nates p; I which play the role of momenta conjugate to
x; I and we extend the definition of the partition function
to

Z = f [5x 5p M&+54 )

X exp — g p; I +S~ (x )

0 'N +N 0
detM (x)=exp —br(2U)'~ gx;t detM+(x), (12)

= f [5x 5p 5&+54 ]e (15)

+4 0 —'4 ]I, (13)

where

0 =M M (14)

We do not choose to employ the standard Metropolis
algorithm in our simulation since it would require us to

so the integrand of Eq. (7} is positive definite, and it is
permissible to replace detM+(x) and detM (x) by their
absolute values. We can therefore eliminate the deter-
minants by the introduction of two auxiliary scalar
fields, N+ and N, and write

Z = f [5x 5@+5@ ] exp[ —[Ss(x)+4&+0+'N+

Clearly the introduction of the p field has no effect on
correlation functions involving x and the N .

Equation (15) is the starting point for our simulation.
We wish to obtain a sequence of field configurations
[x,p, C& I with a probability distribution proportional to
exp( —H'). Physical observables that can be expressed in
terms of the x;I can be easily measured in this set of
configurations. In general, measurements of ferrnion
correlation functions will require us to obtain averages
of various components of M ' or their products. We
will show below how M ' can be simply and rapidly
evaluated using an unbiased estimator.

We employ three types of updating steps to obtain the
desired distribution of field configurations. The com-
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=M R (16)

ponents of p and N are updated using heat baths. We
simply set each p; &

equal to a Gaussian random number
with probability distribution proportional to exp( —p, t ).
For the N fields we generate two vectors of Gaussian
random numbers, R, each component of which has a
probability distribution proportional to exp( —R; ). We
then write

minant did become negative, but they carried negligible
weight in the junctional integral for the range of param-
eters we studied. Thus the concern about zeros of the
determinant is not empty, and must be checked for each
new problem.

We integrate Hamilton's equations numerically, which
requires the introduction of a finite step size At. We
make use of the well-known "leap-frog" method, which
rests on the trivial observations that

from which it follows trivially that the @ have a proba-
bility distribution proportional to exp( —iI~ 0 + ).

The only nontrivial part of the algorithm is the updat-
ing of the x field. We vary x and p for fixed + accord-
ing to Hamilton's equations. That is,

av and

=2p, , (t + ,'bt)bt +—O(bt') (20)

(17) t (+3/2)kt, QV(t )
p, , (t + ,'At) p, ,—(t+—,'b t) =-— dt'

I +(1/2)ht BX; ~

where we have written

V(x)=S~(x)+g iIi 0 (18)

BV(t+bt) ~ O ~ ))At+0 bt ) .
xi, l

(21)

The dots over x; &
and p, &

in Eq. (18) indicate
differentiation with respect to molecular-dynamics or
simulation time t. From Liouville s theorem we know
that in integrating Hamilton s equations we move along
a trajectory in which both H and the differential volume
element in phase space are constant.

If the system is in equilibrium, that is, if the probabili-
ty distribution of the fields is given by

P(x,p, & )=Z 'e

then both the heat-bath updatings and the molecular-
dynarnics steps will keep it in equilibrium. If the system
is not equilibrium, then just as in any Monte Carlo algo-
rithm the heat-bath steps will drive it towards equilibri-
um. However, the molecular-dynamics steps will be
neutral in this regard since they simply amount to a per-
mutation among configurations of equal probability
weight.

In order to introduce the auxiliary fields N in Eq.
(13), it was sufficient that the product of the deter-
minants of the spin-up and spin-down fermion matrices
be positive. This was assured by Eq. (12). However, if
there were a surface in the space of the x, &

on which the
individual determinants vanish, then on this surface
V(x) would be infinite. Hamilton's equations would not
propagate the system across such an infinite barrier, so it
would be necessary to introduce an additional type of
updating step to do so. In order to investigate whether
this problem arises for the Hubbard model we have gen-
erated a number of random and ordered configurations
for the x field, and then minimized detM with respect
to the x; &. For b,r & 0.05, P & 10.0, we found the
minimum of detM to be 1.0 in all cases. In the minimi-

zation process the determinants decreased in size by
20—30 orders of magnitude. We were able to find
specific configurations of the x field for which the deter-

Equations (20) and (21) suggest that we define the x and
fields at the times t, t +At, t +26t, . . . and p at the

times t + ,' b, t, t + ,' ht, . —. . .—Then given x (t) and

p(t+ ~At), we compute x(t+At), p(t+ ,'bt), etc. It-
will be noted that from Eqs. (17) and (18) that to move
one time step At, it is necessary to compute 0
once. However, with this calculation we are able to up-
date all components of x.

We must update N at the full rather than the half-
time intervals since we need M for this purpose. We
also perform the heat-bath updating of p at the full-time
intervals. In order to start the leap-frog process we
must then propagate p forward by —,'At. This must be
done by the forward difference equation

(22)

However, in order to evolve x and p at approximately
the same rate, we perform of order 1/b, t molecular-
dynamics steps for each heat-bath updating of p. Thus,
the error for one physical time step, consisting of one
heat-bath updating p and 1/ht molecular-dynamics
steps, is of order ht . This error is reflected in the mea-
sured quantities.

The most time-consuming step in our algorithm is the
computation of

X (t)=O 'C (t) . (23)

As is discussed in detail in Sec. III, this calculation is
performed by the conjugate-gradient method. One of
the major advantages of using deterministic equations
for x is that X will then evolve smoothly in time. Ex-
cept for the two steps immediately following the heat-
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bath updating of 4, we use the simple extrapolation
formula

X (r +br)=2X (r) X—(t —At)+O(br') (24)

to obtain a good starting point for the conjugate-
gradient calculation. At the expense of storing one extra
copy of X, we obtain very significant savings of com-
puter time. Quantitative results will be given in Sec. IV.

In order to measure many quantities of physical in-
terest we need an unbiased estimator of the matrix ele-
ments of M '(x). It would be extremely costly in com-
puter time to invert M each time we make a measure-
ment. Instead, we note that immediately after an updat-
ing of 4,

X =0 'N =M 'R (25)

III. CONDITIONING THE FERMION MATRIX

Thus, 2X; R is an unbiased estimator of M; '. In or-
der to measure this quantity or M, +M&&

' we do not
need to perform any matrix inversions beyond those al-
ready required in the simulation. To calculate M; 'M&&

'

requires only one extra conjugate-gradient calculation,
etc.

Let us summarize the algorithm. We begin each up-
dating cycle by making a heat-bath change in p. p is
then evolved through a time ,'b, t using Eq—. (22). Next,
of order 1/At molecular-dynamics steps are made using
Eqs. (20) and (21). Simultaneously with the heat-bath
updating of p, and possibly at several other times during
the cycle, a heat-bath updating of 4 is made using Eq.
(16). Measurements are made after each new value of N
is generated.

where we have denoted the scalar product of r with p by
(r,p). The process begins by selecting an initial value of
X,X0, calculating r0 ——N —OX0, and setting pa=ra. As
we mentioned in Sec. II, in the midst of the molecular-
dynamics steps, we use Eq. (24) to give XD. Immediately
after an updating of @ we have found nothing better to
do than take X0=0. In the following step we use a one-
term extrapolation formula for XD.

The constant a„defined in Eq. (28) is chosen to ensure
that the quadratic form —,'(X,OX) —(4,X) is a minimum
at each step of the calculation. b„ is fixed by the re-
quirement that (p„+],Op„)=0. In fact, it is possible to
show that, for rn&n,

(p, op„)=0 . (29)

This guarantees that the pn are linearly independent and
that the iterative procedure will converge in a number of
steps equal to the dimension of the matrix, V, N, . Of
course, the algorithm will be useful only if convergence
to the desired accuracy occurs in significantly fewer
steps.

The standard conjugate-gradient algorithm gives an
acceptable convergence rate only for small values of U
and P. The difficulty is that as either of these variables
is increased, the matrix 0 becomes increasingly ill condi-
tioned. That is, it develops a very wide spread in its ei-
genvalues. As is well known, the convergence of itera-
tive methods for matrix inversion can often be accelerat-
ed by preconditioning the matrix. Let 0 be a positive-
definite symmetric matrix which approximates 0, but
which can be inverted expeditiously. Such a matrix can
always be decomposed into the form

In the algorithm described in Sec. II the overwhelm-
ing fraction of the computer time is spent in solving the
V, N, coupled linear equations

O=J TL

Equation (26) can therefore be rewritten as

(30)

OX=& . (26)
O'X' =N',

with

(31)

(In this section we will suppress the spin index, o.) As a
result, it is worth taking some care to expedite this pro-
cess.

Since 0 is a positive-definite symmetric matrix, Eq.
(26) can be solved iteratively by means of the conjugate-
gradient method. If we denote the value of X after the
nth iteration by Xn, and the residual after the nth itera-
tion by

O'=L r—
GAOL

X' =LX,

r'=O' —O'X'=I. 'r .

(32)

rn =4—OXn,

then one iteration consists of the steps

n+] Xn+ npn

rn + ) = rn —an Opn

b„=(r„+],r„+])l(r„,r„),
Pn +1 rn + 1+bnPn

n+] ( n+]&rn+])~(pn ~]~ pn+])

(27)

(28)

Xn +1 Xn +anpn

rn +] rn anon
b„' =(r„0+]'r„+,)l(r„,O 'r„),

—1 I
pn+ ) ——0 rn+, +b„pn

t —1" +])~(p +] Op +])

(33)

Since 0 is also a positive-definite symmetric matrix, the
conjugate-gradient method can be applied to Eq. (31).
Equation (28) is replaced by
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with starting conditions

ro ——N —OXo,

,=0- (34)

We have tried a variety of forms for the conditioning
matrix O. The most promising is based on a strong-
coupling approximation for O. We start by writing

Oo ——

aI+Bo
—Bo, 1

0

0

BO, N

—Bo, 1

czI+B o, 2

Bo,2

0

0

0

—Bo,2

aI+Bo 3

0

0

0
—Bo3

CXI+Bo N
2

—BO, N —1

BO, N

0

—Bo,N —1

aI+Bo N

(35)

0 =L ~DL, (36)

with

D1 0 0 0

0 D2 0

0 D 3

0

(37)

Here, BD'=exp( orb, rV~—), where o is the spin of the
electron and V' is given by Eq. (11). For a=1, 00 is
simply 0 evaluated at zero value of the hopping parame-
ter. We have found it essential to take a slightly greater
than one so that Oo itself does not become ill condi-
tioned. Fortunately, as long as +~1.025, the conver-
gence rate is relatively insensitive to a for a wide range
of values of U and P. All results reported in this paper
are for a=1.05.

The matrix 00 defined in Eq. (35) cannot be inverted
analytically for a&1. We therefore take the condition-
ing matrix to be the incomplete Cholesky decomposition
of Oo,

for I =1,. . . ,N, &, and

—1
LN ——D1 BoN

T 1

DN =aI +Bo, N,
—Bo,N, 1DN, Bo ~

2 —1

—Bor N D1 Bo,N,
—1

(40)

It is, of course, trivial to invert 0, since it is a product of
triangular and diagonal matrices. The conditioning in-
creases the computer time needed for one conjugate-
gradient iteration by only a few percent.

We have studied the convergence of the conjugate-
gradient method with and without conditioning using
random values of the x variables with (x, ~) = ,'b, r, the-
value determined by Sz(x) alone. We have found that
results obtained with such configurations give a good es-
timate of the dependence of the convergence rate on the
conditioning, and on the coupling, temperature, and spa-
tial volume. However, configurations obtained in the ac-
tual simulation tend to have slower convergence rates
than the random ones. Our stopping criterion is

and

0 0 0 D
e=[(r, r)/V]' &0.002, (41)

L=

I —Li

0 I
0 0

0

—L2

0

0
—L3

0

0
(38)

0 0 0 LN —1

0 0 0 0

2 —1Dl =&I+Bo, t
—Bo,t —1DI —1Bo,i —»

(39)

D& and L& are V, & V, diagonal matrices chosen so that
0 j Oo' j for those elements of Oo which do not van-
ish. There is no restriction on the remaining elements of
O. These conditions are satisfied by setting

where r is the residual vector defined in Eq. (27). This
choice of e is typical of the accuracy needed for the
simulation.

In Fig. 1 we show the number of conjugate-gradient
iterations needed for convergence, Nc~, on a 4 lattice
as a function of U for P=2.0. In all of our plots the tri-
angles are for the unconditioned matrices and the
squares for the conditioning algorithm just described.
Ncz is sensitive to A~. In general, we have found that if
the convergence becomes unacceptably slow at large U
or f3, it can be improved by decreasing hr slightly. One,
of course, pays the price of a larger lattice. In Fig. 1 the
solid triangles and squares are for 6~=0.05 and the
open squares are for 6~=0.04. In Fig. 2 we plot Ncz as
a function of P for U=8 on a 4 lattice. The solid trian-
gles and squares are for 6~=0.04, and the open square
is for 6~=0.03.
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FIG. 1. The number of conjugate-gradient iterations, N«,
needed for convergence as a function of U. Data are for a ran-
dom configuration of the x field on a 4' lattice with P=2.0.
The stopping criterion is given in Eq. {41). Triangles are for
the unconditioned fermion matrix and squares for precondi-
tioning with the matrix 0 described in the text. Solid squares
correspond to A~ =0.05 and open squares to Ar =0.04.

Nc& is quite insensitive to the spatial volume. In Fig.
3 we plot it as a function of V, for U =6 and p=2. 0 on
4, 6, 8, and 10 lattices. All data were taken with
5%=0.05. Finally, in Fig. 4 we plot values of NCG tak-
en in an actual simulation as a function of spatial
volume for U=6.0 and p=2. 0. The triangles are the
average value of NcG immediately after a N updating,
and the squares the average value of Ncz after molecu-
lar dynamics steps.

We have also tried the incomplete Cholesky decompo-
sition of 0 itself as the conditioning matrix. For some
values of U and p it gives more rapid convergence than
0; however, it doubles the computer time needed for

FIG. 3. NcG, as a function of spatial volume V, for U=6.0
and P=2.0. Data are for a random configuration of the x field.
The triangles are for the unconditioned fermion matrix and the
squares for preconditioning with matrix O.

each iteration of the conjugate-gradient algorithm, and it
is significantly more sensitive to the size of b~. This is
illustrated in Fig. 5, where we plot NCG as a function of
b,r in a 4 lattice for U=6. 0 and P=2.0. The solid
squares are for the conditioning matrix 0 and the open
squares for the full incomplete Cholesky decomposition.

Finally, we have examined conditioning with a weak-
coupling approximation to 0; that is, we take the condi-
tioning matrix to be 0 with U set equal to zero. This is
very roughly analogous to the Fourier acceleration by
Batrouni et aI. In Fig. 6 we plot Nc~ as a function of U
on a 4 lattice with p=2 for this weak-coupling condi-
tioning (solid circles), for the unconditioned matrix (solid
triangles), and for our standard conditioning matrix 0
(solid squares). Unlike other conditioning methods we
have studied, the weak-coupling one improves as h~ is
increased. The results presented in Fig. 6 are for
Dr=0. 2, which is somewhat large than the value one

500—

400—

U =8.0
V,=4

Unconditioned (A~= 0.04)—
~ Conditioned (hT= 0.04)
o Conditioned (hr= 0.0&)

ppp,

U=-6.0
P =2.0

& After 4 Updating
~ After Molecular Dynamics Step

300—

200—

100
100

p
0 2 6 0

FICs. 2. Nco as a function of P for U=8.0. Data are for a
random configuration of the x field on a 4' lattice. The trian-
gles are for the unconditioned fermion matrix and the squares
for preconditioning with the matrix O. Solid squares corre-
spond to 6~=0.04 and open squares to 6~=0.03.

p
0 200 400 600 800 1000

V,

FIG. 4. NCG from an actual simulation as a function of V,
for U=6.0 and p=2. 0. The triangles are the average value of
N« immediately after a N updating and the squares are the
average value of N«after a microcanonical step.
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5QQ — V=6.0
P =2.0

~ Condi t,ioned
a Incomplete Cholesky

I I I I I

U=6.0
P =2.0

400—

300—
4 a

200—

100—

0
0.00

~ ~

o

0.05 0.10 0.15 0.00
I I I I I I I I I I

0.02 0.04 0.06

FICr. 5. Nco as a function of b,r for U=6.0 and P=2.0 on
a 4' lattice. Data are for a random configuration of the x field.
The solid squares are for preconditioning with the matrix 0
and the open squares are for the preconditioning with the in-
complete Cholesky decomposition of the Fermion matrix.

FIG. 7. The staggered susceptibility 7 as of function of At
on a 4' lattice for U=6.0 and p=2. 0. The error bars indicate
statistical errors only. The solid line is our best estimate of the
exact answer, and is in agreement with the result of Hirsch.
The integration of the molecular-dynamics equations becomes
unstable for ht ~ 0.06.

would use in an actual simulation because of the errors
introduced in the breakup of the Hamiltonian, Eq. (3l.
For the unconditioned matrix and conditioning with 0
we use 6~=0.05. Although the weak-coupling condi-
tioning allows the use of somewhat smaller lattices than
other approaches, it takes significantly more computer
time per conjugate-gradient iteration because of the
Fourier transforms it requires. Even ignoring this fact,
we see from Fig. 6 that the weak-coupling conditioning
is significantly worse than the conditioning we have
adopted at all but the smallest coupling constants. In
fact, it becomes worse than no conditioning at aH for in-
termediate values of U. This is not a surprising result.

The Hubbard-Stratonovich field is not dynamical, and
there are no gradient terms in the action to damp its
high-momentum, large-frequency modes. It is these
modes that appear to give rise to the small eigenvalues
of 0, and they are not well described by a weak-coupling
approximation.

IV. NUMERICAL RESULTS

In this section we discuss initial numerical results ob-
tained from applying the algorithm to the three-
dimensional Hubbard model. %'e will present a detailed
study of the phase structure of this model at a later time.

P=2
V,=4

Unconditioned
~ Conditioned
~ Weak Coupling V=6.0

1000—
R

a

500—

0— t

U 0.0001 0.001
I I I

0.01
I I I I I II,

FIG. 6. Nco as a function of U for P=2.0 on a 4 lattice.
Data are for a random configuration of the x field. The trian-
gles are for the unconditioned matrix, the squares for condi-
tioning with the matrix 0, and the circles for weak-coupling
conditioning. For the latter we use 6~=0.2 and for the first
two 6~=0.05.

FIG. 8. The staggered susceptibility P as a function of the
conjugate-gradient stopping parameter e on a 4' lattice with
U=6. 0 and p=2.0. The solid line is our best estimate of the
exact answer.
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staggered susceptibility as a function of At on a 4 lattice
for U=6. 0 and P=2.0. The error bars indicate statisti-
cal errors only. As At is increased the systematic error
remains small almost to the point where the numerical
integration becomes unstable.

We have found that it is sufficient to work with A~ in
the range 0.10—0.16 to reduce the errors arising from
finite h~ below our statistical ones. However, we have
actually used significantly smaller values, 0.04—0.05, in
order to speed the convergence of the conjugate-gradient
calculation.

In Fig. 8 we plot the average value of 7 as a function
of the conjugate-gradient stopping parameter e for a 4
lattice with U=6. 0 and P=2.0. It should be noted that
as the temperature is lowered or the coupling increased,
the fermion determinant becomes a more rapidly varying
function of time, and it is necessary to decrease both ht
and e.

The algorithm can be tuned by varying the frequency
of the two heat-bath —updating steps. This will not
change the value of any measured quantity, but it will
change the computer time necessary to generate statisti-
cally independent quantities. In our simulations we
made one heat-bath updating of the p field for every
1/At microcanonical steps. The N fields were generally
updated every fifth microcanonical step. The more fre-
quent updating of the + fields did not significantly affect
the autocorrelation time, and it improved the statistics
in the measurement of quantities involving the electron
Green's functions.

In Fig. 9 we plot the susceptibility 7 as a function of
U for P=1.0, and in Fig. 10 X is shown as a function of
f3 for U=6. 0. The spatial lattice size is 4 . The solid
squares are data from our present algorithm, and the
solid line is drawn through data obtained by Hirsch us-
ing an exact updating algorithm and a discrete
Hubbard-Stratonovich transformation. ' The error bars
in both our data and Hirsch's are smaller than the plot-
ting symbols. We find equally good agreement for other
physical quantities. ' The excellent agreement with
Hirsch's results is our final evidence that we do have
good control over the systematic errors in our algorithm.

The advantage of the present algorithm is that it en-
ables one to work on large lattices and at low tempera-
tures. This is illustrated in Fig. 11, where we plot the
susceptibility as a function of temperature on a 8 lattice
for U=4. 0 and 6.0. The sharp rise in g as the critical
temperature is approached is clearly evident. In Fig. 12
we plot 7 as a function of the spatial volume for U =6.0
and P=2.0, 2.25, and 2.50. Data are given for 43, 6, 8,
and 10 lattices. The lack of variation of 7 with volume
for P =2.0 indicates that this temperature is above the
critical temperature T„whereas the linear increase of 7
with volume for P=2.25 and 2.50 indicates that these
temperatures are below T, . Our results are consistent
with Hirsch's conclusion that a phase transition occurs
in the neighborhood of P=2.0. However, we postpone a
detailed study of the phase structure of the model to a
later time.

V. DISCUSSION

The algorithm we have described can be used to make
detailed studies of a wide variety of many electron sys-
tems. As long as the Hamiltonian is quadratic in the
electron creation and annihilation operators, or can be
made so by the introduction of auxiliary fields, the parti-
tion function can always be written in the form of Eq.
(7). For models of electron-phonon interactions the
Hubbard-Stratonovich field is replaced by the phonon
field, and Sz contains terms which describe the kinetic
energy and self-interaction of the phonons.

The hybrid molecular-dynamics approach offers a
number of important advantages. The combination of
heat-bath and molecular-dynamics updating steps leads
to a relatively rapid evolution of the system through
configuration space. The errors introduced by the
finite-step size in the integration of the molecular-
dynamics equations can be well controlled. In particu-
lar, it is possible to integrate these equations correctly to
second order in the step size at the cost of only one
conjugate-gradient calculation per step. In addition, a
mechanism exists for choosing a good starting point for
the conjugate-gradient calculation during the molecular-
dynamics steps, which leads to a considerable savings in
computer time.

The Langevin equation has been used extensively to
study analogous problems in lattice-gauge theory.
Where direct comparisons have been made, '" it does
not lead to as rapid evolution of the system through
configuration space as the hybrid method. This is
presumably a result of the fact that in contrast to the
deterministic molecular-dynamics equations, the
Langevin equation leads to a random walk through
configuration space. In addition, integration of the
Langevin equations to second order in the step size re-
quires at least one extra conjugate-gradient calculation
per step. Finally, the noise in the Langevin equation
prevents a smooth extrapolation of the quantity 0
needed as the input into the conjugate-gradient calcula-
tion.

We are presently using the algorithm to make a de-
tailed study of the phase structure of the three-
dimensional Hubbard model. Work on a model of
electron-phonon interaction and on the negative-U Hub-
bard model in two dimensions is also in progress.
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