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Within a replica-symmetric mean-field theory we have studied the proton pseudo-spin-glass be-
havior of a random-bond classical Ising system in a homogeneous transverse field  and a random
longitudinal field. This model is expected to describe some properties of the mixed hydrogen-
bonded ferro- and antiferroelectric crystals such as Rb,_, (NH,), H,PO, which have recently been
investigated experimentally. It is shown that in the presence of Gaussian random fields with zero
mean and variance A the proton-glass transition is smeared out, i.e., the cusp in the dielectric sus-
ceptibility is rounded off and the proton-glass order parameter remains finite at temperatures
above the nominal freezing temperature. However, the average dielectric polarization is strictly
zero for a symmetric bond distribution. We have also determined the limits of stability of the
replica-symmetric solution for the case of a deuterated system (Q=0). The replica-symmetric
proton-glass phase is separated from the phase with broken replica symmetry by a line of instabili-
ty in the (7,A) plane. The crossing of this line is thus connected with a phase transition which
persists in the presence of random fields. Finally, the distribution function of local parallel fields
P(h) determining the magnetic resonance line shape has been calculated within the random-field
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model and the results applied to interpret some recent experimental data.

I. INTRODUCTION

The infinite-range model of Sherrington and Kirkpa-
trick! (SK) and its subsequent solution by Parisi® has
played a central role in modern understanding of mag-
netic spin glasses.’> Recently,* an extension of this model
has been proposed to describe the frozen proton pseudo-
spin-glass (PG) phase observed in the mixed hydrogen-
bonded ferro- and antiferroelectric crystals such as
Rb, ,(NH,),H,PO,, commonly abbreviated as
RADP.>~7 In analogy to spin glasses, the frozen PG
state is believed to be due to quenched random interac-
tions between the pseudospin degrees of freedom which
represent the equilibrium positions of the protons within
the O—H - - - O bonds. The simplest prototype model
of a PG is thus the tunneling model,* i.e., a random-
exchange version of the Ising model with a transverse
field 1, which represents the tunneling frequency of the
protons.® According to the tunneling model the transi-
tion from the paraelectric to the PG phase occurs at a
freezing temperature T,({) which decreases with in-
creasing () until a critical value _ is reached such that
T,(Q.)—0 and no PG phase exists for Q>Q.. At the
absolute zero of temperature the PG transition is con-
troled solely by the transverse field Q.

More recently, it has been suggested that the NH,
groups in RADP, which are positioned nonsymmetrical-
ly with respect to the surrounding cations, tilt the pro-
ton double-well potential in a random manner, thus in-
ducing an effective local random field. The essential
difference between the magnetic spin glasses and the pro-
ton pseudo-spin-glasses is the fact that in this last group
of materials an intrinsic random field generated by sub-
stitutional impurities always exists. The presence of this
intrinsic random field adds new features to the PG case,
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which is, therefore, not just another analogue of the
magnetic spin glass. It has been observed already by
Courtens® using dielectric measurements that the PG
transition in RADP is smeared out and no sharp cusp in
the dielectric constant, as predicted by the SK theory,
exists. Blinc et al.” have shown by NMR techniques ap-
plied to deuterated RADP that the assumption of local
random fields is essential to the understanding of PG or-
dering in these systems.

The purpose of this work is to investigate the effects
of Gaussian random fields on the PG phase using a
replica-symmetric mean-field approach. Since we are in-
terested in the general features of a PG system in the
presence of random fields, we consider the simplest pos-
sible theoretical model, i.e., the random-bond transverse
Ising model in a longitudinal random field. We do not
treat in this paper any more realistic microscopic models
of the Slater type.” We argue that already a weak ran-
dom field can drastically change the PG behavior by (i)
smearing out the cusp and shifting the peak in the
dielectric susceptibility; (ii) maintaining a nonzero value
of the PG order parameter well above the nominal freez-
ing temperature. Since by assumption the random-bond
distribution is symmetric around zero, the average spon-
taneous polarization remains zero at all temperatures.
By considering small fluctuations of the order parameter
around the symmetric solution we derive a line of insta-
bility in the (7,A) plane for the case of a deuterated PG
(©2=0), which is analogous to the de Almeida—Thouless
(AT) line in spin glasses,!” below which only a solution
involving broken replica symmetry is stable. The only
phase transition in the system is thus the breaking of re-
plica symmetry occurring as one crosses the line of insta-
bility which is characterized by a temperature T,(A). In
the region T >T;(A) our symmetric solution is fully
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applicable. For this region we calculate the average
probability distribution of local fields P(k), where the
total longitudinal field 4 can be decomposed into a local
random field due to the impurities plus a random-
exchange contribution from the other pseudospins. P (k)
can be measured directly by local techniques such as
NMR (Ref. 7) and EPR (Ref. 11), and thus provides a
crucial test of the theory.

The paper is organized as follows: In Sec. II we
present the general formalism applicable to a PG in the
presence of a random field and derive the replica-
symmetric solution for the order parameter and the sus-
ceptibility. In Sec. III the stability of this solution
against replica-symmetry breaking is discussed for the
case of a deuterated PG and the instability line T;(A) in
the (T,A) plane is obtained. The local-field distribution
P(h) is derived in Sec. IV and evaluated for several
representative cases. Finally, in Sec. V the results are
discussed in the light of recent experimental data.

II. RANDOM-FIELD TUNNELING MODEL

We consider the tunneling model of a PG (Ref. 4) to
which we add a term describing the coupling to local
random longitudinal fields:

H=—13J,;SISi—Q3 SF— S(E+f)S7. (2.1)
ij i

1

As usual, J;; denotes the infinite-range quenched random
interactions between the pseudospins S7, Q is the tunnel-
ing frequency, whereas E and f; represent the homo-
geneous and random local longitudinal field, respective-
ly, at the site i. The random interactions J;; and fields f;
are independently distributed according to their respec-
tive Gaussian probability densities

D (J;)=2mJ?) "2 exp[ —(J; —Jo)*/(27%)],
D(f))=2aA) " ?exp(—1f2}/A) .

(2.2a)
(2.2b)

In this work we will only consider the symmetric case
Jo=0, which implies [f;],=[/;;1,=0, where [ --- ],
means a random average with respect to both distribu-
tions (2.2). Both J and A depend on the concentration x

|

Brnson ik

where B=1/(kzT), a=1,2, ..., n is the dummy repli-
ca label, and the limit N — o is implied. The m-
component vector H; is defined as H;=(Q,0,...,
E+f).

Our analysis is a generalization of that of Ref. 4 to the
case A0. By carrying out the integrations over J;; and
fi in (2.4), and by subsequently linearizing the quadratic
forms in SZ, through use of the identity

exp (Aa?)=(2m)" 172 f+°°dv exp[ — v+ (20" 2av],
2.5)

J I @0,dfDUD (f)Tr, exp (1B 3 J;S5Sfa+B 3 H,Siq | — 1 l :
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characterizing the composition of the PG as in the case
of Rb,_,(NH,),H,PO,. The simplest concentration
dependence typically has the form

A=4x(1—x)A (2.3)

max

and similar behavior can be assumed for the variance J 2.

The pseudospins S; will be treated as classical m-
component vectors S;=(S}!,S? ...,S) with S!'=57
and S/ =S?. It will be convenient to normalize the S, to
unity, i.e., S;-S;=1. It should perhaps be noted in this
context that for isotropic m-vector models the normali-
zation (S; )2=m is more advantageous, since the freezing
temperature then becomes m independent, and besides
for m — o one recovers the results of the spherical mod-
el.> No such simple correspondence exists, however, in
the transverse Ising case. As shown earlier,* the limit
m — 1 has special significance: namely, if one has solved
the problem for general m with Q£0, as well as A0
for the present case, then for m —1 and Q—0, A—0
one should recover the results of the SK theory.

Several authors have discussed the quantum transverse
Ising glass,'? which is described by model (2.1) without
the random fields, and with S7,S} representing the Pauli
matrices. It should be stressed, however, that in the
usual so-called static approximation the quantum model
leads to precisely the same behavior as the classical one
in the m — 1 limit. Moreover, in the case of a deuterat-
ed PG (i.e.,, Qp <<Qp) on which we will concentrate in
the following sections, the classical m —1 and the quan-
tum model both effectively reduce to the same Ising lim-
it. For Qs£0, quantum spin fluctuations—when treated
in a better approximation—become important at low
temperatures, as shown recently for a short-range PG
model."?

The free energy averaged over the joint probability
distribution D (J;;)D (f;) can be obtained via the well-
known replica formalism for the partition function Z,
ie.,

.1
Fy=—kgT lim —(Z"—1),
N B nl—%n( )

or

(2.4)

iLj,a

[

we find
7N=_%nllmo?1? I E(N/hr)l/zdvaﬂ
X exp [-%Nz vig
B
+NInZ, ]_11 , (2.6)
where
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Z,=Tr, exp(B#,) , (2.7a)

Hy =173 0SS5+ 1A S SES5+ S BS,
a,B a,B a
(2.7b)

with J=V'NJ and B=(Q,0, ..., E).

As usual, we assume that the order of the limits n —0
and N —0 in (2.6) can be interchanged and the integral
thus evaluated by the saddle-point method. The saddle
point occurs at

BanB for a#pB

Vo =BT (S38%), =1 _
a s BJr, for a=B"

(2.8)

Here ( ), means a statistical average weighted over
exp(B#,), and a limit n —0 is implied. The quantities
q.p and r, represent the off-diagonal and diagonal com-
ponents, respectively, of the PG order parameter. In
fact, r, must be a independent, i.e., r,=7.

The replica-symmetric solution of a SK-type is then
obtained by setting all g,4 equal to one another, say,
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Linearizing the quadratic forms ( 3 ,S%)* and 3 (5% )?
in (2.7) by repeated use of formula (2.5) we obtain the
free-energy density

F=min max [%Bj 2(r2—g?)

q9

- —x /2
-5 f d"e dxe I Z(x) (2.10)
s -y 22
Z(x)= fwdyevﬂ Trexp(BH-S) , (2.11)
with H=(Q,0,...,H,) and
H,=H,(x,y)=(T g +M)""*x +J(r —q)""*y +E .

The trace can now be evaluated as an integral over the
m-dimensional solid angle, and after taking the limit
m — 1 we finally have

o —y2/2
Z(x)= f dye‘/z—
— T

with H=[Q>+H,(x,y)*]'/%
The variational conditions 0F/dr =0F/dq =0 now

2 cosh(BH) (2.12)

q=(S8%S%), for all asp . 2.9 yield
J
- gne - gpe 2 M 2 (2.13a)
= —— —— sinh(BH , .
q= f \/2# Z %) f_w ly Ve H sinh(BH) a
—x2%/2 —y22 2 2
o0 e 2 © e y z .
= _— — — h h(BH (2.13b)
r f'wdx Ve Zo) f_wdy Voo [ 7 cosh(BH )+ 3 sinh(BH)

The polarization p =p(E)=

p—fw

—0F/93(BE) is given by

e ~y2/2 Hz
—sinh(BH ),

—x2/2 2 -
"\/zfr z<)fwyvﬂ H

(2.14)

and the dielectric susceptibility in zero field X=0p /
OE | g o by

X=pB(r—gq)

In the following we will only consider the case of zero
external field (E =0). Since by assumption also J,=0 in
(2.2a), the polarization p will be strictly zero at all tem-
peratures.

The behavior of the PG order parameter ¢ and the
dielectric susceptibility X has been obtained numerically
from Egs. (2.13) and (2.15). In Figs. 1 and 2, q(T) and
X(T) are plotted for two different values of the trans-
verse field ), and for five values of the random-field dis-
tribution variance A/J 2. In the absence of any random
fields (A=0), the susceptibility has a cusp at
T =T,(Q).* For Q—0, one has r—1, and ¢ (T), X(T)
reduce to the well-known SK solutions. For a finite
value of A, however, the PG transition is smeared out

(2.15)

-

and the order parameter g remains nonzero at all tem-
peratures. One might argue that the random-field vari-
ance A acts as an effective ordering “field” for the PG
order parameter g without inducing an average polariza-
tion p. This is the main difference between the transition
smearing by a random-field A and a homogeneous field
E.! To further illustrate the onset of the PG state under
the influence of random fields, g is plotted in Fig. 3 as a
function of A at various temperatures above the nominal
freezing temperature.

III. STABILITY LIMIT

It is well-known that in Ising spin-glasses the SK
replica-symmetric solution in generally unstable against
replica-symmetry breaking.>'® In the presence of a
homogeneous external field, a borderline separating the
regions of stable and unstable replica-symmetric solu-
tions can be drawn, known as the AT line.!° As indicat-
ed in Sec. II, the presence of Gaussian random fields in a
PG has similar effects as a homogeneous field, i.e., the
transition is smeared out and a nonzero value of the or-
der parameter q is induced at all temperatures. Howev-
er, the average polarization p is strictly zero in the
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present case. Thus it is not clear how on lowering the
temperature the symmetric solution becomes stable
against replica-symmetry breaking. To answer this ques-
tion, we will in the following consider the simple case of
a deuterated PG, i.e., we will set =0 in (2.1). Further-
more, we will choose the Ising case m =1 and write
S; =S7 ==1 for the remaining pseudospin component.

Following de Almeida and Thouless'® we investigate
the stability of the free-energy density against small
Gaussian fluctuations around the symmetric solution
q.s=q- Thus we write (notice that r =1 now):

4.p=9+8q,5 , (3.1)

where 8q,5 represents small deviations from the replica-
symmetric saddle-point value g =g (A).
From (2.6) the free-energy density is now given by

FIG. 1. Replica-symmetric solutions for (a) proton-glass or-
der parameter ¢ and (b) susceptibility X, plotted vs T/J for
Q/T=0.5 and various values of the random-field variance
A/T2
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FIG. 2. Same as Fig. 1, but for a deuterated PG (Q=0).
The dashed lines represent g and X along the line of stability in
the (7,A) plane (see Fig. 4).
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FIG. 3. PG order parameter g plotted vs A/J 2 for Q/J =1
and various values of T /J above the nominal freezing tempera-

ture T, =J.
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a,B#a B

’

.1
F=max lim —
{aqgln—0 1

(3.2)

where Z, is defined by (2.7) with =0, v,z3=BJq,s
(as£B), and v,,=pBJ. Expanding ¥ up to second order
in 8g,5 we have

. 1+
F=Fy+ lim —BJ 2% S X Gupys99a509,5+ 0
n—0n (a,B) (1,8)

(3.3)

with ¥, representing the saddle-point value of the free
energy, and G g, the Hessian matrix

G g ys =0(apiyd)
—(BIX((S,555,85 20— (S,S)0{S,S5)0) -
(3.4)

The symbol (af3) means that the pair «,f3 is to be count-
ed only once, and the averages ( ), are now weighted
over exp(f¥#,), i.e., the saddle-point value of (2.7b) with
Q=0, v,3=PBJq, but As0.

As discussed in detail in Refs. 3 and 10 the problem of
stability reduces to the requirement that all eigenvalues
of the Hessian matrix (3.4) must be positive. In our
case, it is easily shown that the replica-symmetric solu-
tion is stable if

fec dxe“"z/2 h4[BT( A/jz)l/zx]<_i_
R T T

(3.5

The order parameter g is again given by Eq. (2.13a),
which now simplifies to
e

q f Awdx Vs

The borderline of stability is given by the simultane-
ous solution of Eq. (3.6) and the equality in (3.5), and
represents a line in the (7,A) plane as shown in Fig. 4.
It plays a role similar to that of the AT line in spin-
glasses in a homogeneous field, i.e., for all values (T,A)
above the line the replica-symmetric solution is stable.
Below the instability line 7;(A) only a solution with bro-
ken replica symmetry provides a correct description of
the PG state.

Approximate analytic expressions for the PG order
parameter g and the dielectric susceptibility X on the in-
stability line can be derived for the regions of large or
small values of A/J2 For A>>J?, implying T /J <<1
and g — 1, the appropriate expansions of Egs. (3.5) and
(3.6) yield T /J =J /V'A, and thus

—xn _ _
tanh?[BT (g +A/T*)"*x ] .

(3.6)

g=1-XT/TV+ -, 3.7
as well as
XJ=3T/T+O0(T/J)) . (3.8)
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STABLE

UNSTABLE

0 . 1
171
FIG. 4. Phase diagram showing the limit of stability of the
replica-symmetry solution in the presence of a random field
with variance A in the case Q=0. The phase boundary is
analogous to the AT line for an Ising system in a longitudinal
field.

2, i.e., near the transition temper-

Similarly, for A <<J 2, n
=J, we find that A/J 2%%1—2, where

ature in zero field T,
7=1-—T/J, leading to

qu+T327-2+”" 3.9)

XT=1—%74 . (3.10)

The behavior of the order parameter g and the suscep-
tibility X along the entire instability line is shown in
Figs. 2(a) and 2(b) in the form of two dashed lines.
Clearly, only those parts of the solid curves q(T) and
X(T) which lie to the right of the dashed line represent
stable solutions. It should be stressed, however, that
already for small values of the parameter A/J?
the replica-symmetric solutions are stable well below the
nominal freezing temperature T, =J.

One can use Eq. (3.6) to calculate the so-called PG
susce}ptibility, analogous to the spin-glass susceptibility
XSG)

Xpg =722 (3.11)

oA
It is easily shown that Xpg diverges on the instability
line, indicating the onset of replica-symmetry breaking
which occurs for T < T;(A).

IV. LOCAL-FIELD DISTRIBUTION

It has recently been pointed out!* that the distribution
of local magnetic fields in pure and random spin systems
provides useful information about the static thermal
properties. Here we will discuss the local-field distribu-
tion for a PG described by model (2.1), where we will
again limit ourselves to the case =0 and m =1, and
also set E =0.

The total field acting on the ith pseudospin S; contains
in addition to the static random field f; induced by sub-
stitutional impurities a contribution due to the interac-
tion with the other pseudospins, i.e.,
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hi=fi+ 2 i / . 4.1) from which it follows that
The average local-field distribution P () is defined as P(h)= 1 f * dk exp( —ikh)G (k) . 4.4)
21 — o0
=——2P , Pi(h)=(8(h —h;)), (4.2)

Applying the identity'*

where ( ) is a thermal average. A convenient way to

evaluate P(h), which in the thermodynamic limit be- . ] ~ n
comes equal to [P;(h)];, is by means of the generating (0)= nhlnoTr" Oexp | =B 3 H, ) 4.5)
function a=l
Glk)= 1 S [ explikh;)]y 4.3) which holds for any operator O and replica label (chosen
: as 1) to (4.3), we have
J
G (k)= 313%)— ETr exp [ik lf, + ZJUS], +B(2)ZJ,JS,QSIQ+/32 > fiSia] - (4.6)
Lj) a
By (i,j) we denote all pairs of different sites / and j.
Performing the random averages over the distributions (2.2) we obtain
G (k)= expl — 1T 2+ A)k?] lim — 2 Tr, exp |ikBA zs,a+_/32A S3s, B+ik/3.72% S 515150
j aB ! «a
1
/32'] v E ESIaS/BSJﬂ jB @.7)

l] ) aB

We proceed in close analogy with Ref. 14, the only difference being the presence of the A terms in the exponent of
(4.7). Linearizing the quadratic forms in the exponent by repeated use of formula (2.5), and using the fact that the
trace is site independent, we thus find

G (k)= exp[ — (T 2+ A)k ]"hinof (II/})%‘/N/quaﬁeXp

—3BJN 3 q@a]
(a,B)

X Tr, exp[N[[J’zjz S QuS.Sp

(a,B)=(a, 1)
+ikBT ? [ > QS+, ]+z‘kﬁ’AS1 ] l (4.8)
al#1)
where
QaﬁzgaB+A/.72 . (4.9)

The integrals in (4.8) can be evaluated by the saddle-point method under the same conditions as in Eq. (2.6). Let us
assume that the replica-symmetric solution is applicable. The maximum of the exponent then occurs at g,3 =g, which
is equivalent to Q=0 =q +A/J? where g is given by Eq. (3.6). Applying once more the linearization formula
(2.5), we find

—x2/2

G (k)= exp[ — LT 24+ A)k? ] lim [ axie = Tra exp BUIxV'Q +ikTQ) S S +BlIxV'Q +ik(T2+A)]S,
— o0 a(£1)

(4.10)
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Introducing a new integration variable y =x +ikJ Vo
performing the trace and the n —0 limit, and inserting
the expression for G (k) into (4.4), we obtain the final re-
sult for the local-field probability distribution:
exp[ — 1B A(1—q)]
P(h)= = 2
27 (1—g)V”

Xfwdy €

- cosh(BIyV'Q)
_(hn —JyV'Q )? l

cosh(Bh)

—y2r2

X exp 4.11)

27 %(1—¢q)

For A—0, the local-field distribution (4.11) reduces to
the result of Thomsen et al.'* At high temperatures
P (h) approaches asymptotically a Gaussian distribution
with the variance J 2+ A, which is the sum of the vari-
ances of the local random-field distribution and the
random-exchange distribution, respectively.

In Fig. 5(a), P(h) is displayed for T/J=1.2 and for
several values of the random-field distribution width

03
JP{h)
02+
01+
(a)
[] 1 1 1 1 1 1 1
-4 -2 0 2 _
h/]
u.3
TP(h)
02 F
01+
(b)
0 L | | 1 I 1 |
-4 -2 0 2 b
h/J

FIG. 5. Local-field distribution P (4) plotted vs 4 /J for two
cases: (a) T/J=1.2 and A/J 2= (top to bottom) 0.0, 0.5, 1.0,
1.5, 2.0; (b) A/J?=0.5 and T/J= (top to bottom) 1.5, 1.25,
1.0, 0.75, 0.5.

A/J % Similarly, in Fig. 5(b) the local-field distribution
is plotted for A/J2=0.5 and several values of the rela-
tive temperature. All these cases refer to the region
where the replica-symmetric solution is valid. Notice
that on increasing the value of A or lowering the temper-
ature, P(h) flattens around 4 =0, and subsequently a
double-peak structure of P (h) appears.

It is further interesting to observe that the values of
P(0) evaluated at the instability line 7,(A) are very
nearly located on a straight line, i.e.,

e-1/2

JP(0)=—=—=T/T .
V2
This is indicated in Fig. 6 as a dashed line, which
represents the exact values of P(0) on the line of insta-
bility.

(4.12)

V. DISCUSSION AND CONCLUSIONS

The transverse Ising model with Gaussian random-
exchange interactions and parallel random fields investi-
gated in this paper describes some properties of mixed
hydrogen-bonded ferroelectric-antiferroelectric crystals
such as RADP, which are qualitatively different from
magnetic spin glasses:

(i) The cusp in the dielectric susceptibility is rounded
off, reflecting the random-field smearing of the proton
glass transition.

(i) The pseudo-spin-glass order parameter remains
finite at temperatures far above the nominal freezing
temperature.

(iii) The average local-field distribution determining
the magnetic-resonance line shape is temperature depen-
dent and changes from a single-peaked structure to a

A/T1=00

03F

TP(0)
02 -
01+
/
/
/
/
1 1
0 05 10 177

FIG. 6. Zero-field value of the distribution P (k) plotted vs
T /7 in the region where the replica-symmetric solution is val-
id, for various values of A/J 2, as indicated. The dashed line
connects values of P(0) corresponding to T and A on the line

of instability (see Fig. 4), and appears to be a nearly straight
line.
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double-peaked structure far above the nominal freezing
temperature if the random field is strong enough.

(iv) There is a large isotope effect in the dielectric
response of the system and in the nominal transition
temperature on replacing hydrogen by deuterium, i.e.,
on changing the tunneling integral Q.

Compared to magnetic systems there is a basic
difference in the origin of the random fields. In proton
glasses the random fields are generated by the substitu-
tional disorder, i.e, they are due to the microscopic
properties of the interactions in the systems and not gen-
erated by external fields as in dilute magnetic systems.

In our treatment we have assumed infinite-range in-
teractions of SK type. We have obtained the spin-glass
order parameter and the static dielectric susceptibility
within a replica-symmetric theory both for a nonzero
tunneling frequency (£25£0), and for vanishing . This
latter case is appropriate for the deuterated samples,
where tunneling is severely reduced.

The main effect of random fields is the smearing of the
SK type of transition and the extension of the validity of
the replica-symmetric solution for all temperatures and
concentrations [A ~x (1—x)] above the line of instabili-
ty T,(A), where the proton-glass susceptibility Xpg
diverges. For Q=0 we have explicitly calculated the
line of instability T;(A) which plays a role similar to the
de Almeida—Thouless line in the case of magnetic
glasses in the presence of homogeneous external parallel
fields. This line separates the replica-symmetric phase
from the phase with broken replica symmetry. The
crossing of this line is thus connected with a phase tran-
sition which persists in the presence of random fields.

A number of the features discussed above can be
verified experimentally. The existence of a static ran-
dom field induced by the substitutional disorder of the
ND; (or Rb*) ions has been verified in RADP by ob-
serving the asymmetric®’Rb 1— —1 quadrupole per-
turbed NMR Iline shapes.” The random-field distribution
deduced from the room-temperature line shape data is
indeed a Gaussian.” At lower temperatures the line
shape significantly changed demonstrating that the total
field acting on a given lattice site indeed contains, in ad-
dition to the static random field induced by substitution-
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al disorder, still another contribution due to the interac-
tions with the other pseudospins. The change from a
single-peaked average local-field distribution to a
double-peaked distribution predicted by the above model
has been as well observed by *Rb and O—D--- O
deuteron line-shape data at lower temperatures which
are, however, still higher than the nominal glass transi-
tion temperature.!> The same effect has been seen as
well by TI>* EPR line-shape data in doped RADP.!!

The rounding of the cusp in the dielectric susceptibili-
ty has been observed experimentally by several authors.'®
Some evidence that the order parameter is nonzero far
above the maximum in the dielectric susceptibility has
been derived from Brillouin scattering data.'” Recent
NMR line-shape'® measurements allowed for a quantita-
tive determination of the order parameter g at tempera-
tures which are much higher than the nominal glass
transition temperature. From the ND; deuteron NMR
linewidth data in deuterated RADP sample with
x =0.44, for instance, the high-temperature tail of the g
versus temperature curve has been obtained. The experi-
mental g values vary from ¢ =0.03 at 293 K to ¢ =0.18
at 161 K. The observed temperature dependence of ¢
can be fitted to the one predicted by Eq. (3.6) if one as-
sumes that A=0.5J2 and J=90 K. These values of A
and J were independently obtained by fitting the experi-
mentally observed *’Rbl——1 NMR line shape’ for
c||Hy to P(h) as given by expression (4.11).

Isotope effects on replacing hydrogen by deuterium
have been observed as well. Whereas in KH,PO,-type
systems the ferroelectric or antiferroelectric transition
temperature shifts on deuteration by a factor
T.(D)/T,(H)=1.4 to 1.9 the corresponding isotope
shifts in the maxima of the dielectric constant in proton,
respectively, deuteron glasses!® lie in the range
Te(D)/Tg(H)=3to 4.

We may thus conclude that the above model indeed
describes some properties of mixed hydrogen-
bonded ferro- and  antiferroelectrics of  the
Rb,_,(NH,),H,PO,type and that the predicted
random-field smearing of the proton-glass transition has
been verified experimentally.
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