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An even-site block renormalization-group method is applied to the spin-1 and spin-
~

anisotropic
or alternating Heisenberg antiferromagnets. In the spin-1 case it shows an energy gap
=0.368 166 and ground-state energy Eo/NJ =1.449724, which are in good agreement with the re-
cent Monte Carlo results. In the spin- —, case it shows an energy excitation behavior similar to that
in the spin-2 case. Therefore, our study tends to support Haldane's conjecture. In addition, a
possible novel property of the spin-I Heisenberg antiferromagnet has been predicted.

I. INTRODUCTION

Through great effort during the past two decades, the
study of one-dimensional, spin- —,

' magnets has achieved
great success and has borne many interesting results and
spectacular theories, such as the exact analytic (Bethe-
ansatz) calculations, the Kubo-Anderson spin-wave
theory, the Bonner-Fisher finite-chain —extrapolation ap-
proach, and the renormalization-group (RG) method,
etc. Recently, a quite extensive study of quantum
higher-spin chains was stimulated by Haldane's famous
conjecture' which predicts the existence of a radically
different type of (T =0) phase behavior for the class of
integer-spin one-dimensional (1D) Heisenberg-Ising anti-
ferromagnets (AFM's) when compared with the class of
half-odd-integer-spin XXZ chains. For example, an en-
ergy gap opens between the ground state and the first ex-
citation state for the case of integer spin; however, for
the case of half-odd-integer spin the energy gap is always
zero.

Consider the Hamiltonian for the linear antiferromag-
net,
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scaling analysis up to N, =12. They concluded that
their results support Haldane's conjecture with the
consequence that an energy gap opens up when N, ~ ~.

where a is the XXZ anisotropy parameter (a=O corre-
sponds to the XY model, a= 1 to the Heisenberg antifer-
romagnet, and a& 1 to uniaxial Ising-like anisotropy).
Haldane's conjecture can be schematically represented
by the relevant values of the lowest-lying energy levels
(Fig. 1), namely, an energy-gap opens up between the
ground-state singlet and higher excitations for the class
of integer-spin Heisenberg AFM's, whereas the class of
half-odd-integer-spin Heisenberg AFM's has a gapless
spectrum.

Haldane's conjecture suggests the possibility that there
exist some novel quantum effects for higher-spin chains.
It naturally attracts, therefore, the great interest of many
authors. However, the validity of Haldane's prediction
still remains interesting and controversial. It is known
rigorously that a gap is absent for the spin- —,

' chains. Re-
cently, Botet and Jullien calculated the energy gap of
the spin-1 Heisenberg chain by using the finite-chain
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FIT+. 1. Low-lying excitations (schematic) as a function of
anisotropy a for XXZ Heisenberg spin chains, according to the
prediction of Haldane.
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However, this conclusion is open to some doubt since
Bonner and Muller and independently Solyom and Zi-
man seriously questioned it. What raised doubts is that
the spin- —,

' Heisenberg chain, with size N, (12, when

subjected to the same analysis, was found to exhibit be-
havior strikingly similar to the spin-1 Heisenberg chains,
which is in conAict with the known results of the spin- —,

system. Parkinson and Bonner then calculated the en-
ergy gap of a finite spin-1 chain up to N, = 14, but they
concluded that N, is still too small to find conclusive evi-
dence for Haldane's conjecture. Moreover, Bonner and
Muller predicted that if the lengths of the finite cell be-
come as large as N, =30, the asymptotic behavior for the
spin-1 Heisenberg AFM might be found. Very recently,
Nightingale and Blote (NB) successfully obtained the
energy gap of the isotropic finite spin-1 Heisenberg chain
up to N, =32 by using a Monte Carlo calculation. Their
results support Haldane's conjecture by finding an ener-
gy gap in the excitation spectrum when N, ~ oo, the en-
ergy gap 6=0.41 and the ground-state energy
Eo /NJ = 1.4015+0.0005.

Among very recent research reports we find that Botet
and Jullien and Glaus and Schneider claim to support
Haldane's conjecture by using the finite-size scaling cal-
culations; however, Solyom ' and Chui and Ma pro-
posed that the phase diagrams of the spin-1 Heisenberg
AFM are in disagreement with Haldane's conjecture.
Therefore the validity of Haldane's conjecture still
remains an open problem. We also notice that there are
many methods adopted to study the linear quantum
higher-spin magnets; however, very few use the RG
method to treat the problem.

As a matter of fact, Fields, Bonner, and Blote'
(FBB) have studied the energy spectrum of the linear
spin- —,

' anisotropic and alternating AFM's by using the
block-RG (BRG) approaches, but the results they ob-
tained are not very good. A suitable example of using
the BRG method to treat the higher-spin (S & —,

'
)

Heisenberg chains does not yet exist. ' Although the
well-known BRG method is not always reliable, we still
think it is worth trying to use it to deal with this prob-
lem for the following reasons. First, in spite of the fact
that the results of the FBB method for the spin- —,

'

Heisenberg chains are not quantitatively accurate, they
are qualitatively correct; second, we find that if we use
an even BRG method, it does not keep the uniform
chain unchanged, so that the uniform spin- —,

' Heisenberg
chain shows a small energy gap instead of being gapless
(5=0.151 by Fields' ). We expect for this reason that
this even BRG will give a meaningful energy gap, if it
exists, for the spin-1 Heisenberg chain due to symmetry
breaking of the original uniform chain. The third reason
is that this even BRG method can uniformly describe
the energy-spectrum behavior of higher-spin chains ei-
ther for anisotropic or alternating AFM's. It is proved
by our calculations that we can get a quite reasonable
energy spectrum for higher-spin cases and, therefore,
give a global picture of the energy-spectrum behavior of
Haldane's conjecture.

In this study we find such an even BRG approach

which can obtain the qualitatively good spectrum excita-
tions for the one-dimensional (1D), spin-1 and spin- —, an-

isotropic or dirnerized Heisenberg chains. For the spin-1
case our results for energy-gap and ground-state energies
are in good agreement with the Monte Carlo results of
NB. We also find some new anisotropic and alternating
spectrum behavior, including a possible novel property
of the spin-1 Heisenberg chains. For spin- —„which is a
nontrivial case compared to the spin- —,

' case, we find that
the spectrum excitation behavior is similar to that in the
spin- —,

' case, and differs radically from the spin-1 case.
Therefore, our result tends to support Haldane's conjec-
ture.

The paper is organized as follows. Section II de-
scribes the method in the spin-1 case. Section III gives a
brief report on the study in the spin- —', case. Section IV
is devoted to the conclusion and discussion.

II. THE SPIN-1 CASE

N/2

+J, g (S"„S"„,+S;,S;, , + S;,S;, , ),
i =1

(2)

where S, S, and S' are spin operators, J, and J2 are
the interacting constants, and a=J /J, indicates the
anisotropic parameter; the alternating parameter is

p =J2 /J
&

and N is the number of the total sites of the
spin chain. The BRG calculations can be naturally di-
vided into two classes; one chooses N, to be odd- or
even-number sites. The odd-BRG method always
preserves the invariance with respect to the labeling of
J, and Jz, while the uniform limit of J& ——J2 is always
found to be an unstable fixed point of the spin systems;
hence it makes it impossible to calculate the energy gap.
However, the even-BRG method will change the original
uniform chain into an alternating one, and this kind of
syrnrnetry breaking is observed to be weak for the half-
odd-integer-spin chains since the uniform spin- —, chain is
known to be gapless. We find, however, that the above
symmetry breaking is stronger for the spin-1 chains since
a significant energy gap has been observed.

In the process of symmetry breaking we have to con-
sider the arbitrary possibilities of two kinds of dimerized
chains (see Fig. 2); therefore we must symmetrize them

The essence of the quantum BRG method is that the
original lattice is divided into blocks of spins and the
original Hamiltonian of interest is divided into intra-
block and interblock parts. The eigenvalues and eigen-
vectors of the intrablock Hamiltonian can be calculated
exactly. A given number of low-lying eigenstates are re-
tained to write the interblock interaction; such iterations
are continued until a "fixed point" is reached. We use
N, to indicate the number of spins grouped in one block,
and the number of the energy levels retained at each
iteration step is indicated by NI.

The Hamiltonian of the anisotropic and dimerized
Heisenberg chain can be described as

N/2
H =J, g (S2;,S2;+S2;,S~(+aS~;,S2;)
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FIG. 2. Two types of mapping in the even BRG procedure,
where J&, J&, Jl„J»,J2„and J» are the coupling constants.

where

/[ K +(K2 +8D2 )1/2]

in order to preserve the symmetry of the Hamiltonian;
namely

R (J, ) = —,
'

(J'„+J', b ), R (J2 ) = —,
'

(J2, +J~q ), (3)

where R (J& ) and R (J2) are symmetrized renormalized
coupling constants. This even BRG will keep the dimer
as a stable point. We can then calculate the energy gap
at the fixed point for dift'erent anisotropy parameters.

The ground-state energy can be found by using the
well-known formula'

m »]
lim C("~/4"= g E~ ~/4

m =1
(4)

where C'"' is the nth RG constant term and Eo ' is the
nth ground-state energy.

In practice, the simplest way of performing a BRG
calculation is to group four spins into one block and re-
tain the lowest-energy levels in each RG transformation
step, i.e., N, =4 and NI ——2.

For the two-site block the block Hamiltonian is

H, =K,S S +-,'DI(S+, 'S-, '+S-, 'S+, ') —h'(S|'+Sl')
~

(sa)

The four-site block Hamiltonian is

H4 ——K)(s)S2+$3S4)+ ,'D)(s+s~—+S)s+~

+S3S~ +S3S~ )

+K,(S;S;)+ ,'D, (S+, S,—+S,—
S+, —)

—h(S;+S2+S3+S4) . (8)

The eigenproblem of the Hamiltonian (8) is easy to solve,
which tells us that a singlet

I

s & and a triplet
I

r+1 &,
I

ro & occupies the lowest energy among the total
81 eigenstates.

In order to carry out the block RG calculation, we
have to find out the mapping relation between the origi-
nal Hamiltonian H4 (a four-site block Hamiltonian) and
the renormalized Hamiltonian H2. For the zero-order
renormalization transformation, from (6) we have

E, +)——A —D' —h',
Er =~ K

(9)
E, , = ~ —D'+~',
E, = A ,'[K'+(K'+8D')'"]——

Solving Eq. (9) we get the following recursion relation:

2 = —,'[q+(t) —8g)'~ ],
D'= A —g,

and the interaction between blocks is K'= 3 —E
0

(10)

V,2=K~S,2S~, + 2D2(S, 2S~, +S,~S—2) ) . (Sb)

where 3 is the renormalization-group constant and
where S—=S +iS, K, D, and h are interaction con-
stants, and D/K =a is the anisotropy parameter. In the
Heisenberg case (K =D, h =0) the block Hamiltonian
(5a) has the eigenstates which include a singlet, a triplet,
and a quintet with the lowest-energy levels

q=4(+E, E, ,
—

$=2$+E, (E, E, ) . —
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0 &2/3 0 0

and the representation of SL 2 in the new basis is

0 00
00 X) 0

SL2= 0 0 g 0
0 0 0

In order to obtain the first-order BRG result, we have to
check the operator representation of S and S' in the
basis of the new truncated lowest eigenstate

I

t+1 ),
I

to ), and
I

s ), whether they only differ from each other
by a constant. The result shows that this is true only in
an approximate meaning. For example, in case of K =D
the representation of S" in the new basis is

either in the anisotropic or the alternating case. We find
that the energy-excitation behavior of the model in these
two cases is different, which matches Haldane's conjec-
ture; namely, in the spin- —,

' case there is no energy gap
between the ground state and the first excitation state;
however, in the spin-1 case a significant energy gap is
observed (see Sec. IV). Now, can we say that our result
supports Haldane's conjecture~ The answer is not yet.
We notice that in the spin- —,

' case the model has duality
symmetry and it might suppress the energy gap. There-
fore, it is better to check the nontrivial spin- —, case
which has no duality symmetry by using the same ap-
proach if it behaves like the spin- —,

' case. However, the
entire calculation is very lengthy. For lack of space we
only give a brief summary here.

The forms of the two-site and four-site block Hamil-
tonians are the same as expressed in (5a) and (5b). Here
we use the technique of solving an eigenproblem for a
general 2&&2 symmetric matrix. Suppose we have a ma-
trix as

where

A, =(t+1IS; it+1),
~i=«o Is; I

to

A, =(s iS' is),
n=(s Is;

(13)

A C
C 8

It is well known that its eigenvalues x+ and the eigen-
states are

x+ ——
—,
'

} & +B+[(A —B)'+4C']'"},
(14)

We get k&
——A, z ——0, A, =O. 505 502, and 0=0.715 897,

which approximately correspond to —,
' and &2/3

=0.816496 6, respectively.

III. SPIN-~ CASE

We use the above even BRG approach to calculate the
energy spectrum of the model (2) with spin- —,

' and spin-1

1/[C'+(x —a )']'"

By using the above technique we can solve the eigen-
problem exactly for the two-site block Hamiltonian in
the S = —,

' case and get the following four states (one
singlet and one triplet) with the lowest energies (for sim-

plicity we omitted the prime for each renormalized cou-
pling constant)

E, +, = ——,'K ——,'v'p —h,

&3D (
I

——'„-,' &+
I

—,', ——', & )

F, , = ——,
' K ——,

' &p, +h,

—,'D(
I

-,', ——,
' &+

I

—
—,', -,') )

o& —I/[»(K+D)(v) ] (,~—,
, )2' 2 2'2

E, = ——,'K+D ——,'V'v,

(15)

I
s ) = I/[A, —2(K —D)(A, )'~']'"

-,'D(
I

-'„——,') —
I

——,', —,') )

( —D ——,'&X)( I, , —. , &

where

p =K2+24D2, v =4(K +D)2+ 9D ~,

A, =4(K D)'+9D' . — (16)

For the four-site block Hamiltonian we use the numeri-
cal method to obtain the energy spectrum and find that
the lowest-energy levels are one singlet and one triplet
too. Therefore, we truncate all the other energy levels
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except for these two lowest-energy levels during the
renormalization-group transformation.

The zero-order renormalization-group transformation
is

E, , =A ,'E ——ivp+h,
E, =A ——,'K —,'&v+—D,

E, = A ——,'K ,'&A, —D—. —

1.2-

For the first-order BRG calculation we have to find
out the operator presentation of the two-site operator
S+,S,S' and the four-site operator S+',S ', S' in the
new basis of truncated eigenstates

I
t+1),

I
to), and

I
s ), whether they are diff'erent from each other by only

a constant. The result shows the positive answer. For
example, for the operators S& 4 and S &'2, we have the fol-
lowing representation:

CL

o.e-

0.4-

S&' z

1,4

0 0 0
0 —q 0 0
0 0 0 +(
0 0 +g 0

(18)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

J,jJ, ()
1.4 1.5

where g'=0. 5, g'=1. 118034 for the two-site operator
S 2; g=0. 525655 and /=1. 017335 for the four-site
operator S& 4. Therefore, they are almost proportional
to each other. We choose the proportional coefficient
between these two presentations as

p,=(g+ g') /(g'+ g'), (19)

Using the above result we have calculated the energy ex-
citation of the anisotropic Heisenberg model in the
spin- —, case, and we get a very similar picture if we com-
pare it with the spin- —,

' case.

IV. RESULTS AND DISCUSSION

For the spin-1 chains, Fig. 3 shows the energy gap 6
between the ground-state and excitation spectrum of the
spin-1 XXZ Heisenberg AFM, as a function of anisotro-
py parameter a. At a=1, we obtain the ground-state
energy Eo /1VJ = 1.449 742 and the energy gap
6=0.368 166, both of which are in good agreement with
the Monte Carlo result of NB. We can also see that Fig.
3 agrees with Haldane's picture (see Fig. 1). The
a & a

&

——O. 4 region presents the gapless (Kosterlitz-
Thouless) phase, and a new phase appears for
a 1 & a & a2 ——1.135 31, which encompasses the Hiesen-
berg point a=1. This novel phase has a nondegenerate
ground state and an energy gap to the excited-state con-

where g' and g' are the values in (18) for the case of the
two-site operator, and g, g are the values in (18) for the
case of four-site operator. Once we know p, it is easy to
obtain the first-order BRG result. For example, we can
write the renormalized coupling constants as

K'=P,E, D'=P +D .

FIG. 3. Energy gap vs anisotropy a for the spin-1 Heisen-
berg AFM.

XY —like Heisenberg point Weak Ising —like Strong Ising —like

FIG. 4. Lowest-energy levels split when the anisotropy a
changes (schematic).

tinuum. a ~ a2 presents a double ground-state region. It
is interesting to point out that the transition point
a2 ——1.135 31 is very close to the finite-size scaling result
of Botet and Jullien, az ——1. 18. One difterent feature of
the energy spectrum shown in Fig. 3 which diA'ers from
Fig. 1 is that the locations of the first-excited energy lev-
el for the a~a2 region are different from each other.
According to our result, it has a shift compared with
that shov n in Fig. 1. In Fig. 3 for the 1 &a &a2 region
the upper curve indicates the degenerated second-excited
energy level; however, the low curve presents the first-
excited energy level. In the region for a &a2 the upper
curve indicates the degenerated first-excited energy level,
and the ground state is double degenerated, as before
mentioned. The situation can be seen from Fig. 4 when
the anisotropy parameter a varies from an LY-like point
to a strong Ising-like point, where the degeneracy of the
lowest-energy levels, namely one singlet and one triplet,
split accordingly. However, the major behavior of the
energy spectrum remains just the same as in Fig. l.

As for the alternating spin-1 Heisenberg chain, our re-
sult (see Fig. 5) also shows that there is a radical
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FIG. 5. Energy gap vs alternating parameter y for the spin-
1 Heisenberg AFM.

FIG. 6. Energy gap vs anisotropy e for the spin- —' Heisen-

berg AFM.

difference between the spin- —,
' and spin-1 chains. Instead

of a smooth decrease of the energy gap when the alter-
nating parameter y goes to uniform point 1 in the spin- —,

case, there is an abrupt jump of the finite energy gap,
5=0.368 166, when y changes from y = 1 —t to y = 1

for the spin-1 AFM chain. We also found that the
width 5=(y+e) —(y —e) depends on the tolerance that
we used to truncate the iteration sequence. This means
a measurable energy gap will be observed if the chain
shows slight nonuniformity. If this is true, there would
be many applications of it. Hence, the other experimen-
tal or theoretical checking of this novel property is high-

ly desirable; the study of using the quantum Monte Car-
lo method to verify this novel property is in progress.

Figure 6 shows the energy spectrum of the spin- —,
' an-

isotropic Heisenberg AFM, which indeed has the similar
behavior as in the spin- —,

' case. When a&1 there are
some noises which are indeed caused by the method it-
self.

Finally, we would like to make a comment about our
even-BRG method that has been shown to be able to
give a fairly good description for the higher-spin spec-
trum of the Heisenberg AFM and gives Haldane's
famous conjecture positive support. It is obvious that

- for the purpose of studying higher-spin problems the
finite-size scaling method is a powerful and reliable
method, but the RG method is also an important and

efficient candidate. The reason is that the RG method
extracts the physical information of the spin systems
from both the energy levels and wave functions of the
spin systems; however, the finite-size scaling method
looks for the information only from the energy spec-
trum. Therefore if one can use the RG method more
cleverly, one really can obtain more information with
less effort.

As a matter of fact, the above method can be extended
to treat a series of other spin models in the higher-spin
case, such as the Lai-Suthland model, the integrable
model, ' and the pure biquadratic model, etc. , which can
be formulated in a unified form. ' The possible novel
phase-transition properties of these higher-spin systems
are extremely interesting to us, and the relevant research
is ongoing.
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