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Magneto-optical properties of the competing-anisotropy model system Fe, „Co„C12.
I. Linear birefringence and refractive index
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The concentration-versus-temperature phase diagram of the random antiferromagnetic mixture
with competing spin anisotropies Fei Co Cl& is investigated via spin-correlation functions em-

erging from linear-birefringence and refractive-index measurements. At the upper sharp
paramagnetic-to-antiferromagnetic transition at Tci the initial trigonal symmetry is preserved in

the Ising regime (x &x, =0.28), whereas it becomes orthorhombic in the XF range (x & x, ). In ac-
cordance with random-exchange critical behavior, negative exponents a of the specific heat are in-

ferred for both regimes. Fluctuating symmetry-breaking off-diagonal correlations, (SlS, ), appear
below T&i, preceding the smeared antiferromagnetic to oblique antiferromagnetic (OAF) transition
at Tcz. For 0.35&x &1 these correlations lower the symmetry to monoclinic, where [120]„ is the
easy in-plane spin direction at all temperatures, T & T&i. In the range 0.26&x &0.35, however, an
in-plane spin rotation by +60 occurs at T & T&2, inducing a triclinic OAF phase. This is shown
to originate from an (SlS& )-controlled balance of fourth- and sixth-order magnetocrystalline and
magneto-elastic in-plane anisotropy energy terms. In accordance with an expected first-order na-

ture of this transition, marked hysteresis is observed and twinning may be encountered. This
might explain the microdomain structure deduced previously from neutron scattering data without
invoking random-field effects.

I. INTRODUCTION

In the last few years much interest has been focused
onto mixed antiferromagnetic systems with competing
spin anisotropies, notably those of the Ising-XY type.
Within the Landau theory and mean-field approxima-
tion, ' upper and lower phase transitions (PT's) at Tc~
and Tc2, respectively, are predicted. They are due to
paramagnetic-to-antiferromagnetic (PM-AF) and to anti-
ferromagnetic to oblique antiferromagnetic (AF-OAF)
transitions, respectively. According to the renormaliza-
tion-group theoretical study of Fishman and Aharony,
the corresponding phase boundaries should cross
smoothly in a tetracritical point.

One of the best studied real systems of this kind has
become Fe, „Co C12 with 0&x (1. The Fe spins have
Ising-like symmetry with the easy direction parallel to
the c axis of the rhombohedral lattice, whereas the Co
spins are essentially XY-like within easy planes perpen-
dicular to the c axis. Hence, at low concentrations x,
successive PT's of the spin components parallel (Sl) and
perpendicular (St ) to the c axis are observed. At x )x„
where x, characterizes the tetracritical point, the se-
quence of PT's is inverted. The phase diagram was
thoroughly investigated by Wong and collaborators by
means of ac susceptibility, P', neutron scattering, and,
more recently, magnetic specific heat, c . In zero mag-
netic field the upper PT's are sharp. Cusplike second-
order c peaks at T&j of Fe-rich compounds remind us
of the random-exchange behavior of diamagnetically di-
luted Ising antiferromagnets.

Much emphasis was put into elucidating the nature of
the lower PT's. They appear smeared in P'-versus-T and

neutron scattering measurements, but they are not visi-
ble in the c -versus-T curves. This extreme smearing
was originally explained by random-field effects. An
alternative explanation was found within a
renormalization-group-theoretical random-anisotropy
model by Oku and Igarashi. Both theories are based on
the existence of off-diagonal exchange between axial and
planar spin components, S~I and S~, respectively, which
is allowed by symmetry. Mossbauer-effect studies by
Howes, Price, and Wiltshire, and recent neutron-
scattering data have shown that the moments seem to
be tilted throughout the AF phase prior to the AF-OAF
phase transition. Hence, the smearing extends over the
entire temperature range Tc2 & T & Tc,. This is now be-
lieved to be atypical for a random-field transition,
which usually becomes smeared only in the critical re-
gion, i.e., at T ( Teq where T,q

~ Tc2.
In this paper we shall present further evidence for the

large extension of the smearing range based on linear-
birefringence (LB) measurements. These are well known
to be sensitive to spin-correlation functions, as outlined
already in our preliminary report. ' In particular it
proves possible to detect directly the predicted (S~~S~)
correlations, which start to grow just below Tc& in
agreement with recent neutron results. Hence, on the
time scales of both the optical and the neutron experi-
ments, the axial and planar, respectively, symmetry of
the AF phase is broken prior to the transition into the
OAF phase. This agrees with recent muon-spin™rotation
(@SR) data on a related system, Feo 6Coo 4Ti03, where
the correlation time of the fluctuating spin component
was established to be 10 —10 s."

The OAF phase is expected to be homogeneous in

36 8587 1987 The American Physical Society



8588 W. NITSCHE AND W. KLEEMANN 36

both mean-field' and renormalization-group treatments,
whereas a random-field transition should yield a domain
state. ' Very surprisingly, there is indeed evidence for
the occurrence of microdomains in the OAF state.
From neutron scattering in the near-tetracritical range,
domain sizes of a few hundred angstroms were deduced.
Their origin, if not due to random fields, has remained
unclear up to now. The solution of this puzzle is in our
opinion provided by the weak three-state Potts symme-
try of the in-plane spin component owing to the rhom-
bohedral lattice symmetry. This was neglected in all
considerations ' of the zero-field behavior of
Fe, Co C12 up to now. From our LB data we are able
to determine the easy directions of S~. They correspond
to the three hexagonal ( 120 ) /, directions for
0.35 & x & 1. In the near-tetracritical range, 0.26 & x
& 0.35, however, new easy spin directions occur at
T & T~2. They are deduced from rotations of the optical
Fresnel ellipsoid. Simultaneously, hysteresis character-
izes the LB-versus-T curves in the OAF phase. Analyz-
ing the magnetocrystalline and magneto-elastic interac-
tions of the rhombohedral system up to sixth-order
terms in the spin correlations we can explain both the
initial (120)/, and the final rotated easy directions. The
latter are due to off-diagonal correlations of the type
(S S, ) and (S~S, ), which create new minima of the in-
traplanar anisotropy energy. Necessarily, the system
must decay into twin domains via a first-order
monoclinic-to-triclinic PT. This yields a natural ex-
planation for the domain structure and for the hysteresis
effects observed.

Another aim of this work is to investigate the suspect-
ed relationship to the random-exchange PT at the sharp
upper PT in more detail. We analyze both refractive-
index (RI) and, for comparison, magnetic specific-heat
data' c for 0&x &0.27. The cusp observed on c
versus T for x &0 is confirmed, and analysis yields a
critical exponent a ——0. 11. This is close to the value
a= —0.09 found for the diamagnetically diluted system
Fei Zn Fz. Similar conjectures seem to apply to Co-
rich mixtures by analyzing the critical behavior of the
in-plane LB. On dilution by Fe + ions a seems to de-
crease towards negative values in accordance with the
cusplike behavior of c

II. CRYSTALLOGRAPHIC
AND MAGNETIC PROPERTIES

Fe& Co C12 is known to be particularly suitable for
studying the magnetic properties of a mixture of two an-
tiferromagnets with competing spin anisotropies. First
of all it is a system with nearly invariable crystallograph-
ic properties. Both FeCl2 and CoClz crystallize in the
space group R3m (D3d) with nearly identical lattice
constants. The hexagonal lattice vectors xz ~~[100]/, ,

y/, ~~[010]h, and z/, ~~[001]„, along with one of the three
possible Cartesian coordinate frames built up by
x~~[100]h, ye~[120]z, and z~~[001]z, are shown in Fig. l.
Both compounds are antiferromagnets with Neel tem-
peratures T& ——24. 6 K for CoC12 and Tz ——23.4 K for
FeC12, respectively. FeC12 behaves like a 3D Ising sys-
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tern (3D denotes three dimensional) with the easy axis
parallel to [001]„,while CoClz corresponds to a 3D XY
system with the easy plane (001)/, . Strictly speaking,
CoC12 exhibits in-plane easy axes along the equivalent
hexagonal (120)h directions as evidenced first by Wil-
kinson et al. '

III. EXPERIMENTAL PROCEDURE

Single crystals of Fe, „Co C12 were grown by the
Bridgman technique from the anhydrous compounds
FeC12 and CoClz. The concentrations x were probed at
different crystal sections by use of atomic absorption
spectroscopy with an absolute accuracy of Ax =+0.005.
At intermediate x we find the concentrations of Co de-
creasing from the top of the crystal to the bottom tip
with a typical concentration gradient of
Ax/Al =0.012/cm. In order to remove residual strains
the single crystals were annealed for 2 weeks at 200'C in
a HCl atmosphere. For storage the hygroscopic crystals
are kept in paraffin oil to protect them against moisture.
Samples were prepared by cleaving parallel to the c
planes of the extremely soft crystals. The samples used
for LB and RI measurements are thin plates with a
thickness of typically 0. 1 —0.2 mm. The LB as well as
the RI are measured using a sensitive compensation
method as described by Schafer and Kleemann. ' The
sample position is controlled by the help of a polarizing
microscope, and the measurements are restricted by a di-
aphragm to sample areas of about 100)&100 pm in or-
der to avoid smearing of the PT's by macroscopic con-
centration gradients. Two different orientations of the
samples were used in the LB measurements of S~-
ordered samples: An (0) denotes the case where the
crossed polarizers are parallel to [100]h and [120]z, re-
spectively, whereas bn(vr/4) emerges from this orienta-
tion by rotating the sample by an angle 13=sr/4 around
[001]z. [100]z and [120]/, are identified as the optically
neutral directions of orthorhombic single domains,
which are selected microscopically just below Tz, .

X,Xh

FIG. 1. Projection of the Fe + and Co + ions of
Fe& Co C12 within the hexagonal unit cell onto the c plane.
The unit cell consists of three layers of Fe + and Co + ions, re-
spectively, denoted by 0, —,', and —,. The axes of the hexagonal
unit cell are denoted xz, yz, and zI, . The LB calculations are
done within a reference frame denoted x, y, and z (see Appen-
dix A).
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IV. EXPERIMENTAL RESULTS

A. Birefringence measurements

We have measured the LB appearing in the c plane of
Fe, Co CI2 at various concentrations. The intercon-
nection between the LB and one- and two-spin correla-
tion functions is discussed in Appendix A. Furthermore,
as analyzed in detail in Appendix B, the measured LB
signal depends on the angle )33 between the polarizers and
the indicatrix axes of the sample. It will, hence, be
denoted hn (P) in the following. The experimental re-
sults of the LB for concentrations 0.35 & x & 1 on one
hand and for 0.26&x &0.35 on the other hand show
different behavior and will therefore be discussed sepa-
rately.

1. 0.35&+ &1

The LB bn(m. l4) versus T for samples with x =1.0,
0.7, 0.38, and 0.35 is shown in Figs. 2(a) —2(d). In all
cases we find b,n(0) to be zero. This is depicted vicari-

ously for x =0.38 in Fig. 2(c) (curve 3), where small re-
sidual finite values are due to slight errors in adjusting
P=O correctly within a few degrees. The dependence of
bn(vrl4) and of b,n(0), respectively, on spin-correlation
functions can be evaluated using Eqs. (A8) and (A9), to-
gether with (B3) and (B4) of the Appendixes. They give

hn(0)=[R, 4(S,S„)+2(R»—R,2)(S„S~)]Ino,
bn(mI4)=[(R „—R,2)((Sy ) —(S„))

—2R,~(S S, )]In() .

From hn (0)=0 it can be inferred that the single- and
two-ion contributions to both spin-correlation functions,
(S,S ) and (S„S~),are vanishing. In order to under-
stand the meanings of the off-diagonal spin correlation
functions, (S,S„), (S„S ), and (S S, ), we have to
note that Mossbauer investigations of Ito' on systems
with competing spin anisotropies have unambiguously
shown that the spin components of both types of mag-
netic ions order simultaneously at the respective phase
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FIG. 2. Temperature dependence of hn (m/4) for (a) x =1.0, (b) 0.7, (c) 0.38, and (d) 0.35 (curves labeled 1, left-hand scale). The
contribution of the off-diagonal spin-correlation function (S~S, ) to the LB is depicted by the curves labeled 2 for x =0.7, 0.38, and
0.35 (right-hand scale). b,n(0) is shown for x =0.38 [(c) curve 3, left-hand scale]. The PT temperatures as determined by the onset
(Tcl ) and by the lower inflexion point ( TC2) of An, respectively, are indicated by arrows.
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transitions. From that point of view S and S corre-
spond to the respective components of both iron and co-
balt ions, which order, if at all, simultaneously at the
upper phase transition. The same applies to the z com-
ponent, S„which orders at the lower phase transition.
Note that according to the Fresnel ellipsoid calculations
for the space group R3m of paramagnetic Fe& Co Clz
(see Appendix A), S, S, and S, denote the spin com-
ponents along [100]z, [120]„, and [001)h, respectively.
In this context it should be noted that the observability
of LB necessitates single-domain formation, which is
presumed to be due to small inherent residual strain
fields. They unambiguously define the x, y, and z axes of
the experiment.

From Eq. (2) spontaneous ordering along the y axis is
inferred, i.e. , (S ) =(S ) +(6S ) with (S~)&0,
whereas (S ) =0. This is clear from b,n(0)=0, which
according to Eq. (1) on the one hand implies (S„S ) =0,
but on the other hand necessarily requires (S ) =0,
since (S,S„)=0 even in the case of (S, )&0 at low tem-
peratures. The easy-spin direction, S~~[120]&, agrees
with the neutron-scattering results of Wilkinson et al. '

obtained on CoC12. It is seen that any of the LB curves
of Figs. 2(b) —2(d) starts similarly as that of CoClz [Fig.
2(a)] at its respective Tc, (x). This indicates initial in-
plane ordering, (S ) & (S ), below Tc, as expected in
Co-rich crystals, 2-4 and lowering of the symmetry from
trigonal to orthorhombic. This can easily be seen from
the symmetry of the e tensor in the absence of off-
diagonal correlations. This case is realized for pure
CoC12 which lacks any off-diagonal correlations; hence

bn(~/4)=[(R „—R,~)((S') —(S ) )]/no . (3)

Comparing, however, the shapes of the LB curves for
x =0.35, 0.38, and 0.7 with that obtained for x =1, dis-
tinct deviations are found in the low-temperature ranges
(Fig. 2). They are due to the onset of off-diagonal corre-
lations, (S S, ) in shorthand notation, as described by
the second term of Eq. (2). Evidently these contribu-
tions grow smoothly on lowering the temperature and
they are opposite in sign with respect to those described
by Eq. (3). Nonvanishing (S S, ) signifies preferential
directions of the z components of the spins and, hence,
oblique spin ordering within the yz plane. Depending on
the sign of (R, , —R, 2 )R,4, the spin directions within the
antiferromagnetic sublattices refer either to the first and
third, or to the second and fourth, quadrants of the yz-
coordinate frame, respectively. At this point it should
be stressed that the LB is sensitive to both fluctuating
short-range order (precursor effects' ) and static long-
range order. Its time scale is of the order 10 ' s, corre-
sponding to the photon time of flight through correlated
cluster volumes. Hence, it is, in principle, difficult to de-
cide whether the lower PT appears to be smeared or
sharp (see below).

In order to separate the contribution of the off-
diagonal correlations (S S, ) to the LB An(vr/4) from
that of the in-plane ordering at T&„we proceed as fol-
lows. Assuming identical critical behavior of the in-

plane spin-ordering irrespective of x (small actual devia-
tions will be discussed in Sec. V B), we have adapted the
LB b.n(n. /4) obtained for x =1 to those for x =0.35,
0.38, and 0.7 by fitting within 0& t &0. 1 using individual
reduced temperature scales, t =(Tc,—T)/Tc, . The
differences between the fitted and the actual LB*s yield
the (S S, ) terms of bn(m. /4) as given by Eq. (2). These
contributions to the LB are shown as curves 2 in Figs.
2(b) —2(d). Since no well-defined kinks at some sharp or-
dering temperatures are visible as, e.g. , in the RI of
NiO, ' smeared transitions are presumed, tentatively. If
we define their transition temperatures, T&2, by the
respective points of inflexion of the integral LB curves 1

(arrows in Fig. 2), lower PT's occur only for x =0.38
and 0.35 at T~2=8. 3 and 11.3 K, respectively. These
transition temperatures agree with those obtained by
Wong et al. by means of both neutron-scattering and
susceptibility measurements.

The definition of lower smeared PT's at Tc2 seems to
be justified in view of the renormalization-group calcula-
tions of Oku and Igarashi. They reveal a runaway fixed
point, which corresponds to the experimentally found
smeared transitions. Physically the situation is charac-
terized by nonsingular behavior of the free energy, hence
implying the lack of sharp anomalies of both c and
d (n no)/—dT at Tc2 as pointed out in Sec. IV B.

However, in agreement with Mossbauer measure-
ments we obtain ordering of S, even at x =0.7 on the
time scale of our LB experiment, whereas this is not ob-
servable on the time scale of neutron and susceptibility
measurements. As depicted in Fig. 2(b), the contribu-
tion of (S S, ) to the LB is steadily growing below Tc&,
but a point of inflexion is lacking in hn versus T; hence
Tc2&5 K. Finally, it should be noted that (S S, )&0
implies a lowering of the symmetry from initially ortho-
rhombic (see above) to monoclinic. This is evident from
the e tensor [Eq. (A3)] and applies to the entire concen-
tration range considered, either on the time average
( Tcz & T & Tc, ) or statically ( T & Tc2).

2. 0.20&x &0.35

In Fig. 3 the LB-versus-T curves b, n(vr/4) (curves 1)
as well as An(0) (curves 2) are presented for concentra-
tions x =0.305 and 0.29 [Figs. 3(a) and 3(b)] above the
tetracritical point, and for x =0.275, 0.26, and 0.2 [Figs.
3(c)—3(e)] below the tetracritical point. It is seen that
b, n( )0no longer vanishes for 0.26&x &0.35, indicating
that (S,S„) and/or (S S ), respectively, are nonzero in
this concentration range [see Eq. (1)]. Because of
b, n (0)&0, Eq. (2) reads, in its complete form as obtained
from Eqs. (AS) and (B3)

bn(vr/4) =[(R„—R,2)((S ) —(S ) ) 2R,4(SyS, )—
—b, n (0)tan(2a)/2]/[no cos(2a)], (4)

with a being the angle of the principal axes with respect
to [120]& and [100]l,, respectively, as described in Eq.
(A9). A common feature appearing in Figs. 3(a)—3(d) is
the occurrence of hysteresis in both An (m /4) and b, n (0)
at temperatures which we define as the PT temperatures
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T&2 of the lower smeared PT. Thus defined, the TC2
values —T&2

——13.2, 13.8, 13.4, and 11.9 K for
x =0.305, 0.29, 0.275, and 0.26, respectively —again
agree well with those obtained by Wong et al. In Fig.
3(e) hysteresis is absent, thus indicating that no lower PT
occurs for x =0.2 above 5 K, as expected from the
phase diagram. The LB b,n(rr!4) in Figs. 3(a) and 3(b)
starts to grow below Tci, while An(0) still vanishes for
Tcz& T & Tc, . In that temperature range b.n(m. /4) for
x =0.305 and 0.29 is solely due to the first term of Eq.
(4). Similarly, as in the case x )0.35 (Fig. 2), we con-
clude that (S~ )&0, whereas (S„)=0. We note that
again all observations are done on strain-field-selected
single domains, which necessarily have orthorhombic
symmetry like the respective e tensor [Eq. (A3)] in that
temperature range. At this point it should be remarked
that the selection of a single domain can be supported by
a magnetic field applied in the c plane. ' In Fig. 3(f) we
present b n (vr/4) for the sample with x =0.29 for
H = l. 8 kOe (curve 2) and H =0 [curve 1, same as curve
1 of Fig. 3(b)]. This shows that the absolute values of
zero-field LB curves [Figs. 2(a) —2(d) and 3(a)—3(e)] may
be masked by residual multidomain effects. On the oth-
er hand, field-selected domains exhibit more reliable
LB-versus-T curves, notably in the vicinity of T&I. This
is essential for critical-point analysis (see Sec. V B).

The onset of b, n (0)&0 at T & TC2 implies ($,$ ) &0
and/or (S S )&0. Since both (S ) and (S, ) are non-
vanishing owing to (S S, )&0 from hn(n/4) [Eq. (2)],
this necessarily implies also (S„)&0. This, in turn, im-

plies triclinic symmetry for T & TC2 as can be seen from
Eq. (A3) of Appendix A. According to Eqs. (4) and (1),
now all off-diagonal correlation functions —(S S ),
(S S, ), and (S,S, )—contribute to bn (m/4). This
makes a quantitative evaluation particularly difTicult, if
not impossible.

For concentrations x &x, =0.28 a smooth increase of
b, n (m. /4) is observable between Tci and the onset of hys-
teresis denoted as Tc2 [Figs. 3(c) and 3(d)]. We remark
that at T&] spontaneous ordering of S, is expected,
whereas no long-range order of S,S should occur;
hence (S„)= (S ) =0. Presumably in that temperature
range only the first term of Eq. (4) contributes to
An(n/4), indicating strain-induced anisotropic fiuctua-
tions, (S~ )&(S ), and creating monoclinic symmetry
[cf. Eq. (A3)]. In Fig. 3(e) neither An(0) nor b, n(m/4)
for x =0.2 show any hysteresis effect. Within the acces-
sible temperature range this may hint at the absence of a
lower smeared PT in accordance with Wong et al.

Finally we have to remark that both the deviation of
the in-plane spin direction from [120]h and the onset of
hysteresis seem to occur simultaneously at T & TC2. As
will be pointed out in detail in the discussion, we explain
both features by magnetoelastic effects, which accom-
pany the spin ordering and give rise to an
orthorhombic-to-triclinic lattice transformation.

have measured the in-plane refractive index for three
concentrations x =0, 0.2, and 0.27. '

From Eqs. (A6) and (A3) in Appendix A we obtain,
for the average refractive index within the c plane,

Pl i+71'
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At the upper PT only (S, ) is expected to become criti-
cal, and should therefore contribute preponderantly to
the critical part of the magnetic energy. Hence the criti-
cal behavior of d (n no—)/dT should be proportional to
that of the magnetic specific heat. First of all this is
confirmed for pure FeC12 (x =0) as shown in Fig. 4,
where our data are compared with c data of Lanusse
et al. ' Evidently, the short-range correlations, abbrevi-
ated as (S„) and (S ), which certainly enter the ex-
pressions of d ( n no )—/d T and c with different
weights, do not disturb the proportionality over a wide
temperature range. This seems to indicate their minor
importance for x =0.

The magnetic specific heat of the solid solutions was
measured by Ikeda' with an ac-calorimetric method on
samples originating from the same single crystals as used
in our LB and RI measurements. The c data displayed
in Figs. 5 and 6 were obtained from the total specific
heat' after subtraction of the lattice part fitted at high
temperatures to that of CdClz. ' The errors resulting
from that procedure are estimated to be less than 10%%uo.

On the other hand, no correction is applied to the
d(n no)/d—T data presented in Figs. 5 and 6, assuming
a Oat diamagnetic background at low temperatures. It is
noted that both methods yield roughly the same temper-
ature dependences [Figs. 5(a) and 6(a)]. Slight
differences in the peak temperatures, Tci may be traced
back to the concentration gradients within the single

B. Refractive-index measurements and specific heat
10 15 20 25

Temper atur e (K j

30 35

In order to inspect the critical behavior at the upper
phase transition PM-AF for concentrations x &x„we

FIG. 4. Temperature dependence of d(n —no}dT (~ ) and
c (0 } (Ref. 17), respectively, for FeC12 (x =0}.
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crystals supplying different samples to both experiments.
Systematic noise arises in the [d(n —n0)/dT] ve-rsus T-
curves owing to the optical interference method, which
is sensitive to minor displacements of the sample with
respect to the split light beam. " Nevertheless, their
similarity with the c -versus- T curves, notably in the
peak regions, is evident. We also notice good agreement

with recent c data of Wong, albeit obtained on crys-
tals with slightly different concentrations. Plots of both
d (n —n0)/dT [Figs. 5(b) and 6(b)] and c [Figs. 5(c) and
6(c)) versus log, 0 ~

t ~, where t = T/Tc, —1 is the re-
duced temperature, exhibit negative curvatures for

~

t
~

(10 (x =0.2), and
~

t
~

510 '(x =0.27), respec-
tively. This seems to indicate cusplike behavior of the
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FIG. 5. (a) d ( n —n 0 ) /dT ( 1) and c (2) vs T, (b)
d(n —np)/dT vs log, p

~
T/Tc, —1

~

with Tc, =17.78 K, and (c)
c vs log»

~
T/Tc, —1 with Tc~ =18.33 K for Fep, Cop, C12.

FIG. 6. (a) d(n —n0 )!dT (1) and c (2) vs T, (b)
d(n —np)/dT vs log, p ~

T/Tc~ —1
~

with TC, =14.8 K, and (c)
c vs logip

l
T/Tci —1

l
with Tci =15.32 K for Fep 73COO 27C12.
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specific heat, i.e., critical exponents a &0. These are ex-
pected in the 30 random-exchange Ising-model limit.

Significant differences between the "optical" and the
caloric specific heat data are only remarked for x =0.27,
where the c curve exhibits an enhancement of its high-
temperature tail with respect to that of d(n n—o)ldT
[Fig. 6(a)]. This might hint at Co +-induced strong con-
tributions of noncritical correlations (S„& and (S» & to
the specific heat. They destroy the simple proportionali-
ty of c and d (n no—) ldT for x Sx, . It should be not-
ed that neither c nor d(n —no)ldT indicate any clear-
cut contribution due to the AF-OAF phase transition,
which is expected at Tc2-13.3 K for x =0.27. This
confirms that this transition appears to be smeared ' '

without showing critical behavior.

V. DISCUSSION

+D' [S~~(i)S~~(j)—S (i)S (j)/2] . (6)

The nearest-neighbor exchange constants J and the an-
isotropy constants D according to Wong et al. are
J =4.24 K and D =1.29 K for FeC12, and J =12.11 K
and D = —6.44 K for CoC12, respectively. However, no
explanation for the in-plane easy directions ( 120&„ in
the case of CoC12 is given by Eq. (6).

In the following it will be shown that this requires
higher-order terms than those included in Eq. (6) within
a phenomenological theory of magnetocrystalline aniso-
tropy and magneto-elastic coupling. Following the pro-
cedure given by Callen and Callen, ' the free energy F of
the system can be written as

A. Intraplanar anisotropy and domain formation F =F +&,+(&,&+(A. & .

As outlined in Sec. IVA the birefringence measure-
ments on Fe1 Co Clz are compatible with in-plane spin
directions along (120&i, for concentration 0.35(x (1.
For concentrations 0.26 & x & 0.35 the in-plane spin
directions deviate from ( 120 &z as has been pointed out
in the preceding section as well as in our previous pa-
per. ' In order to explain these results we have to con-
sider the origin of the anisotropy for both compounds,
FeC12 and CoClz. We remember that FeClz is a good ex-
ample for a 3D Ising antiferromagnet with the easy axis
being the trigonal c axis. On the other hand, CoClz is a
good example for a 30 xy antiferromagnet with easy
axes along the hexagonal (120&z directions, as was first
observed by Wilkinson et al. ' A crystal-field approach
to describe the anisotropy of both FeC12 and CoC12 was
chosen by Lines. ' On projecting an isotropic exchange
Hamiltonian onto the ground states of Fe + and Co +,
respectively, in a trigonal crystal field, and including
spin-orbit coupling, Lines obtained the following Hamil-
tonian,

In this relation F, &„(&,&, and (&, & denote the
magnetic free energy obtained from Eq. (6), the elastic
energy, the ensemble average of the magneto-elastic en-
ergy, and that of the fourth- and sixth-order magneto-
crystalline energy, respectively. The elastic and
magneto-elastic contributions are given by the general
formula

JV, + (&, &
= g ( —,'c&&.ex'erg' BI&.ez'Sx' ),—

K, 1, 1', I

where c», eK', B», and SK' are the symmetry-adaptedr r, I r r, &

elastic constants, strains, magneto-elastic coupling con-
stants, and spin-correlation functions, respectively. The
sums are taken over the n-dimensional (E =1, . . . , n)
irreducible representations I, where l and t" refer to the
corresponding set of basis functions. After a lengthy,
but straightforward calculation following the procedure
of Ref. 20 one obtains the following expression for the
space group R 3m:

I ,'[B)((S) &
—(Sq & )+—2Bq (S4 &] +(Bt (S6 &+Bq(S) &) I

C11 C12

C44

B4
—,'[B,((S, &

—(S, &)+B,(S &]'+ B,(S,&+ (S, &

'2

(9)

where we have introduced the elastic constants c; in
conventional Voigt notation and abbreviated the corre-
sponding B». by B, . Furthermore, we have used the
shorthand notations SI ——S, S2 Sy& S3 Sz 7 S4 SySz
S5 ——S,S, and S6 ——S Sy. In the above expression the
strains were eliminated under the constraint of vanishing
stress. Moreover, we have neglected the elastic con-
stants c13 and c,4 for the following reason. FeC12 and
CoClz, respectively, consist of covalently bonded layers
which are weakly coupled prevalently by van der Waals
forces along the c axis. Therefore, coupling between

interplanar strain and shear, e„and e „respectively,
and in-plane stress, o. and o.

yy
is expected to be negli-

gible. Unfortunately, to our knowledge only the elastic
constants c33 c44, and c11 —c,2 of FeC12 have been deter-
mined, ' but not c13 and c,4 of either FeC12 or CoC12.
Treating the spins as classical vectors with
S„=Ssing cosP, S =S sing sing, and S, =S cosg in a
spherical reference frame, and omitting the angular
brackets denoting thermal averages of the spin functions
from now on, Eq. (9) may be written as
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&,+&&,)=— S4
( ,'B,—sin 8+ —,'Bz sin 28+BiBz sin OcosOsin3$)

C11 —C12

4

( —,'Bz sin"8+ —,'B4 sin 28+BzB4 sin OcosOsin3$) .
C44

(10)

By use of the results of Fieschi and Fumi the fourth- and sixth-order terms of the magnetocrystalline energy of
trigonal systems can be evaluated similarly as in the case of hexagonal systems as

&&, ) =Ko+K, sin 8+Kz sin 8+Kz sin 8+K~ cosOsin Osin3$+K5 sin Ocos6$+0 ( cosO, cos 8),

with six anisotropy constants Xo, E, , K2, K3, E4, and
K~. The last term of Eq. (11) denotes sixth-order contri-
butions containing factors cosO and cos 0, respectively.
These are assumed to be negligible in comparison with
the fourth-order K4 term. In order to determine the in-
plane spin directions only the fourth-order term with the
anisotropy constant K4 and the sixth-order term with

K5 are important. Note that the first of these two terms
vanishes for 8=90', i.e. , in the case that &S, ) =0.

We obtain the in-plane spin directions by minimizing
both the magnetocrystalline and the magneto-elastic en-
ergy with respect to P, according to

d
(&~., )+~,+&~.))=0.

Inserting Eqs. (10) and (11) into Eq. (12) we obtain

SB B SB2B41 3
3 K4-

C11 —C12
sin 8 cosO cos3$

c44

(12)

—6K5 sin 8 sin6$ =0 . (13)

In the limit &S, ) =0, equivalent to 8=90, Eq. (13)
reduces to

6K5 sin6$=0 .
Depending on the sign of the anisotropy constant K&, we
obtain the easy directions in the c-plane

30', 90', 150, . . . , for K5 & 0,
0', 60, 120, . . . , for K5 &0 ~

(14b)
(14c)

Hence, in the case & S, ) =0, only the sixth-order term of
the magnetocrystalline energy gives rise to in-plane spin
anisotropy. Experimentally we obtain, for x &x, and at
T & Tci, the in-plane spin direction [120]i„ indicating
/=90'. Therefore the anisotropy constant K5 must be
positive in order to describe the experimental results. It
is easily verified that the in-plane anisotropy energy,
E;„„„yields a minimum at 8=/=90'. Using the P-
dependent part of H, + & H, & + & H, ) according to
Eqs. (10) and (11),

S B1B3 4 B2B4—S
C11 —C12

&& sin 8 cosO sin3$+ K~ sin 8 cos6$,

one obtains E;„„,(8=/=90 )= —K5. Note that only
three different in-plane directions, described by pairs of

azimuthal angles, /=90 and 270', 30' and 210, or 150'
and 330, respectively, can be distinguished in an antifer-
rornagnet owing to the staggering of its magnetization.
One of these may be selected by virtue of favorably
directed internal strains, as detected, e.g. , by well-defined
LB. It defines what henceforth will be denoted as
[120]I, or y direction, which enters, e.g., the crystal opti-
cal calculation in Appendix A.

The OAF phase is characterized by & S, )&0 or
8&90', respectively. Hence, both terms in Eq. (15) have
to be inspected in order to determine the minimum of
E;„„,. It is seen that only the angles P given by Eq.
(14a) satisfy the condition (13), irrespective of the values
of 0 and of the coefficients involved. Experimentally, we
find /=90 for 0.35&x &0.7 at all temperatures below
Tci (Sec. IV A; Fig. 2). Hence, the energy minimum
remains determined by the negative last term in Eq. (15),
as in the case 0=90'. Consequently the first term must
be either negative, as well, or positive, but smaller than

~
K~ sin 8 cos6$

~

. A decision on this question is
brought about by the experimental observation that P
deviates from 90 for 0.26 &x &0.35 and at T & Tcz (Sec.
IV A; Fig. 3). This seems to indicate that the minimum
at /=90 disappears by virtue of a growing positive con-
tribution due to the first term in Eq. (15). At the same
time the adjacent minima, at /=30 and 150, respec-
tively, become more pronounced and provoke spin reori-
entation (see below) giving rise to b n(0)&0 (Fig. 3).

These conjectures are based on the assumption that
the coefficients of the angular functions in Eq. (15) are
essentially independent of x. This applies to K5 and to
the factor in large parentheses, which also comes out to
be positive, since 90' & 8 & 180 . Hence, the driving
force giving rise to the spectacular rotation of the aniso-
tropy axes must be connected with the increasing z or-
dering of the spins on increasing the concentration of
Fe + ions. This effect is indeed dramatic in the near-
tetracritical range, 0.26 &x &0.35, as evidenced by the 6
values obtained from Mossbauer measurements at low
temperatures. On the contrary, only weak variations
with x are found for 0~90' in the range 0.35&x &1.
Roughly speaking, it is the factor cosO of the first term
in Eq. (15), which determines the minimum of E;„„,to
change from /=90 to 30', 150, or even 270' at a cer-
tain threshold value 0=80. From the Mossbauer data
of the angular direction of the molecular exchange field
of Fe1 Co C12, we estimate an approximate value,
Oo-130, which is obtained at x & 0.35.

The mechanism of the spin reorientation into new
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equilibrium positions, /&90, is connected with hys-
teresis as shown in Figs. 3(a)—3(d). For example, in the
case of x =0.305 [Fig. 3(a)] the sample must be cooled
to below a temperature T, -0.85TC2 in order to observe
nonvanishing b,n(0). This might be connected with me-
tastability of the /=90' state with respect to the abso-
lute minima of E;„„,occurring at /=30' and 150'. As
usual in first-order phase transitions, there exists a lower
transition temperature, T, , where the metastability of
the high-temperature phase gets lost and the transition
must occur. For symm. etry reasons the occurrence of
domains of either orientation, /=30 and 150', are ex-
pected. /=270' domains are less probable owing to
enhanced energy barriers arising at P =210 and —30',
respectively. If the domains are distributed in equal pro-
portions, b, n(0) should virtually vanish. This situation
may be encountered in the vicinity of T, . At low tem-
peratures, however, one of the new spin directions seems
to dominate by virtue of residual strain fields with favor-
able directions. Then we find considerable, albeit
sample-dependent b,n(0), signals, and an appreciable de-
crease of bn(n/4) (Fig. 3). On heating, on the other
hand, the new domain distribution remains stable up to
an upper metastability limit, TC2. At this temperature,
where (S, ) is virtually vanishing and the minima at
both /=30' (or 150') and 90' become equivalent again
[see Eq. (15)], the initial selection mechanism of the or-
thorhombic domains becomes active and favors the orig-
inal /=90 domain. In this context the reproducibility
of LB measurements on once selected sample sections
should be kept in mind.

The above-described mechanism is suggested to apply
to the OAF phase occurring at both x & x, and x &x, .
In the latter case in-plane ordering is absent at tempera-
tures TC2 & T & T~, . However, strain-induced anisotrop-
ic fiuctuations are observed [Figs. 3(c) and 3(d)], which
unambiguously define the initial /=90' direction. The
transition into the /&90' domains should then proceed
as in the case x & x, . It should be stressed that this tran-
sition necessarily leads to a mixture of equivalent
domains, unless one type of them is selected by
symmetry-breaking strains. Such a multidomain mixture
was found by Wong et al. from neutron scattering on
an x =0.295 system. Domain sizes of a fev hundred
angstroms were estimated. Moreover, they also found
hysteresis, albeit less clear than in our LB data (Fig. 3),
in the range 0.29(x &0.35. In agreement with our
present interpretation, Wong et al. qualitatively pro-
posed magneto-elastic interactions to be the origin of
these effects.

However, they also invoked the random-field mecha-
nism first proposed by Mukamel. By virtue of off-
diagonal exchange coupling [cf. Eq. (Al)] those spin
components ordering at the PM-AF transition are ex-
pected to generate local random fields, which act on the
spin component that orders at the AF-OAF transition.
By cooling under these random fields this PT becomes
smeared and should result in a domain state. ' Alterna-
tively, however, the smearing of the lower PT's in both
Fei Co C12 and Fe, Co Br2 was explained within a
random anisotropy model by Oku and Igarashi. They

concluded that random fields very probably do not play
a prominent role at the lower PT's. Our present investi-
gations have, moreover, shown that even the develop-
ment of a domain state does not require the existence of
random fields. By using macroscopic symmetry argu-
ments we find that a domain state necessarily emerges in
virtue of magneto-elastic and magnetocrystalline interac-
tion involving off-diagonal spin-spin correlations. It
must, hence, be concluded that contrary to former
expectations the competing anisotropy system
Fe i Co C12 is not a good candidate to investigate
random-field effects. Analyzing new c and neutron-
scattering data Wong recently drew the same con-
clusion. In agreement with our interpretation of the LB
results and with recent pSR data, " the broad smearing
of the lower PT's over the entire range Tc2 & T & Tg] on
time scales shorter than about 10 s, was taken as un-
typical for random-field transitions. Minor effects due to
random fields, however, cannot be excluded either.

B. Random-exchange behavior

As discussed above, the upper PT's are characterized
by the ordering of one spin components, which simul-
taneously establishes fluctuating perpendicular correla-
tions. It is, hence, interesting to investigate possible
consequences on the critical behavior. In the range
x &x, reliable data of both d (n no)—/dT [Fig. 6(b)] and
c [Fig. 6(c)] are available for x =0.27. From the c
data we obtain a= —0. 11+0.01 within the reduced tem-
perature range 0.03&

~

t
~

&0.003, where Tc, =15.32 K.
This is similar to the results obtained for the diluted an-
tiferromagnet FeQ 6ZnQ 4F2 with a = —0.09+0.005. The
close resemblance of the critical exponents a suggests
that FeQ 73CoQ 27C12 may be considered a random-
exchange system at Tc, , as also conjectured by Wong
from the cusplike shapes of his c data. Off-diagonal
correlations, (S~~S~ ), hence, do not seem to change the
critical exponent a expected for the random-exchange
3D dimensional Ising model. However, they seem to
modify the amplitude ratio, whose value A /A' —1 [Fig.
6(c)] differs appreciably from that expected,
A/A'-0. 6. The situation is similar for x=0.2 [Fig.
5(c)], where cusplike behavior of c, however, is only
observable for t & 10, very probably preceded by
pure-to-random crossover at larger

~

t
~

. Owing to the
scarcity and the poor quality of the data in the cusp
range, the value of a o. could not reliably be extracted.
This is unfortunate, since very probably in this case,
lacking any transition into the OAF phase at low tem-
peratures, the resemblance with a random-exchange sys-
tem should even be more certain than the near-
tetracritical case x =0.27.

For concentrations above the tetracritical point,
x &x„we have attempted to investigate the critical be-
havior at the upper PT by use of in-plane LB data.
These proved to be at least 1 order of magnitude more
accurate than RI data taken on the same sample, as ex-
pected. ' Within a single domain the critical behavior at
T & Tci is given by
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bn~ /t /~, (16)

VI. CONCLUSION

with 13=2—a —p, which a and 1( are the specific-heat
and the crossover exponents, respectively.

First of all we have determined the critical behavior of
the pure system, CoClz. Both natural, i.e., strain-
selected [Fig. 2(a)], and magnetic-field-induced (see Sec.
IV A) orthorhombic single domains yield identical
values, /3=0. 81+0.02, on fitting their LB data within
the range 0. 1&

~

t
~

&0.004 to the relation (16). Evi-
dently a small intraplanar magnetic field (here:
0&H &0. 18 T) does not affect the critical behavior of
this system, similarly as experienced on the cubic anti-
ferromagnet KNiF3. As outlined in Sec. IV A the
main purpose of applying a finite field is to conveniently
produce excellent single domains.

Disregarding its small three-state Potts anisotropy,
CoC12 is believed to belong to the 3D XY universability
class. By use of the corresponding exponents
a= —0.0079+0.003 and /=1. 175 (crossover from 3D
XY to 3D Ising) one calculates P=0.833+0.003. In-
serting an experimental value, /=1. 17+0.02, obtained
by Rohrer and Gerber, one finds P=0.82+0.02. Both
values agree satisfactorily with our experimental result,
thus confirming the prevalent XY symmetry of the spins
of CoClz.

In the mixed systems, x, & x & 1, perfect single
domains are much less probable in naturally strained
samples than in the pure system. As shown for x =0.29
in Fig. 3(f), the rounding of the LB near Tc, (curve 1) is
essentially removed on application of an in-plane field,
H=0. 18 T (curve 2). On closer inspecting the critical
data, however, the analysis according to relation (16) is
still hampered by residual rounding in the range

~

t
~

&0.02. Moreover, the onset of off-diagonal correla-
tions just below Tg& systematically deforms the curva-
ture of the LB curve compared to that which would be
solely due to the intraplanar spin ordering (see Sec.
IV A). This must be kept in mind when discussing our
result on the x =0.29 sample. We obtain 0.87 &P &0.90
from LB data within 0. 1& t

~

&0.02, slightly varying
with the field direction, 0 & / & 90'.

Despite the scatter of the data an increase of P with
respect to that of pure CoClz is quite obvious. This
seems to indicate a decrease of a toward more negative
values in accordance with Harris's criterion and with
the observations on diluted 3D Ising systems. Unfor-
tunately a quantitative analysis is not possible at present,
since, to the best of our knowledge, neither a, nor g
have been predicted theoretically for the random-
exchange 3D xy model.

(x, =0.28) and XY-type Si ordering at x & x, .
Fluctuating correlations of Si (S~~ ) occurring for

x &x, (x &x, ) just below Tc, indicate an unusually large
precursor range, Tcz & T & Tc„prior to the AF-OAF
transition at TC2. This is a consequence of symmetry-
allowed off-diagonal spin-spin coupling, which manifests
itself by easily distinguishable contributions to the LB.
Evidence was also derived from neutron-scattering, '

Mossbauer, and (on a related system) @SR (Ref. 11)
data.

The smeared nature of the PT at TC2, expected for
0.25&x &0.40, is confirmed by the smooth variation
with T of the respective spin component and, for
x & 0.27, by the absence of any anomaly at Tc2 in
d(n n0)ldT —versus T. Fe +-rich mixtures, 0.26&x
&0.305, moreover, exhibit hysteresis, and a rotation of
the intraplanar spin direction at T & TC2. This is due to
enhanced S~~ correlations giving rise to first-order transi-
tions into triclinic twin domains on cooling, and thus
contrasts with the continuous orthorhombic-to-
monoclinic transformation found for 0.35&x &1. Cal-
culations of the intraplanar anisotropy involving magne-
tocrystalline and magneto-elastic interactions up to sixth
order reveal that the intraplanar spin directions may
indeed be controlled by (S~~Si ). At a certain threshold
value spontaneous rotations by +60 do arise. On one
hand this behavior proves the relevance of higher-order
spin correlations to the model system Fe, ,Co C12 (only
second-order contributions were considered up to
now ' ). On the other hand, a natural explanation is
found for the occurrence of a microdomain structure in
the OAF phase without invoking random-field effects. '

Random-field effects arise more clearly, if an external
field is applied along the c axis, as has recently been
demonstrated by Wong. Very interesting phenomena
concerning the H-T phase diagram, critical behavior at
Tc,(H), and field-induced metastability have been ex-
plored for Fe, Co Clz by ourselves using the Faraday
rotation technique, and will be published separately. '
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APPENDIX A: SPIN CORRELATIONS
AND CRYSTAL OPTICS

The phase diagram of the random-anisotropy system
Fe& Co C12 has been confirmed by measurements of
the optical birefringence and of the refractive index. In
agreement with specific-heat data, evidence is found of
the random-exchange nature of the sharp upper phase
transition at Tc,. Negative critical exponents, a, seem
to emerge for both Ising-type S~~ ordering at x &x,

Since the works of LeGall et al. and Smolenskii
et al. it is well known that the optical refractive in-
dices and the corresponding linear optical birefringence
are sensitive to spin-correlation functions. According to
Borovik-Romanov et al. , one may consider the depen-
dence of the electrical energy of the radiation per unit
volume on the spin correlations according to
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I,J =x,y, z
e,, E,E, + —,

'

1, I', y, 5=x,y, z
(Ri~s(sfs, )E,E ) (Al)

In this relation e, represents the optical permittivity tensor components, E; the electric field of the radiation, R,
the magneto-optic tensor components, and (S&s& ) the spin-correlation functions, respectively. Single-ion (l =1 ) as
well as two-ion (I&1') contributions are included. In the following we shall omit the indices I, l' for sake of brevity.
In the particular case of the space group R 3m ( =D3~ ) seven independent magneto-optic tensor components exist.
Using the shorthand notations xx = 1, yy =2, zz =3, yz =4, xz =5, and xy =6, we obtain via

Bcc) 1

BE,.BE,. 'J 2 BE,BE.

the following relation between the permittivity tensor components and the spin-correlation functions:

(A2)

E1 Co

EP —6o

Eg

E6

0

0

R3

R4i —R4i

R33

0 R44

0 0 0 0 R44 4R 4)

0 0 0 0 R)4/2 R)) —R )2

R )) R )2 R )3 R )4

R(2 R)] R)3 —R)4
&s,')
(s,')
(s')

(s,s, )
(s,s. )
(s„s, )

(A3)

We have chosen a coordinate system with x~~[100]~,
ye~[120]i„and z~~[001]h, and e, =n, and e, =n, are re-
lated to the ordinary and extraordinary refractive indices
of the paramagnetic phase, n, and n„respectively. The
propagation of light in a crystal is described by the
Fresnel ellipsoid given by

1
(e, —e2)An, 2 =

no

—2R,4(S S, ) ]/cos(2a) .

[(R„—R „)((s,') —&s„') )
no

(A8)

xEx= 1 (A4)

where we have denoted the permittivity tensor by e and
the space vector by x=(x,y, z). Accommodated to the
experimental situation, where only the in-plane refrac-
tive indices and birefringence, respectively, can be mea-
sured owing to the layered structure of our samples, we
confine our calculation to the x-y plane approximately
described by

The angle a is given by

R )~(s,s ) +2(R )) —R )2)(S Sy )

(R „—R,2)((S ) —(S„)) —2R,4(S S, )

(A9)

APPENDIX B: BIREFRINGENCE MEASUREMENTS

(x y)
&xx &xy

(A5)

2

3'3' +[ 2 + (( ~ )2]1/2 (A6)

They are rotated by the angle u with respect to the crys-
tallographic x and y axes, respectively, according to

From this relation we obtain the principal axes, e', 2, of
the Fresnel ellipsoid given by

The birefringence was measured using a sensitive com-
pensation method as described by Schafer and
Kleemann. ' In Fig. 7 the arrangement of the optical
components and the orientation of their principal axes
within planes perpendicular to the light propagation are
shown.

In the usual case, P=sr/4, the compensation condition
is y, = —g„where y, and g, are the phase retardations
of the compensator and of the sample, respectively. It is
obtained by nulling the intensity component I at the
modulator frequency, m, using lock-in technique. ' In

tan(2a) = 26xy

&xx —
~yy

(A7)
t(/2

We are now able to express the in-plane birefringence
with respect to the principal axes by spin-correlation
functions on inserting (A3) into (A6) and (A7), and ob-
tain

POL AR I Z ER COMPENSATOR ANALYZER

MODULATOR SAMPLE

FICs. 7. Scheme of the setup for measuring the LB (see text).
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the general case, p&rr/4, this condition no longer
denotes go= —y, . Using the Jones-matrix formalism a
straightforward calculation yields

I„=—,'IoJ, (y )sin(rot) cos(4P)sin

which yields y, = —y, in the limit p=m/4.
Within the context of our present investigation (see

Secs. III and IV) we are interested in the following two
cases.

(a) If the principal axes of the sample are only slightly
turned with respect to those of the compensator, i.e.,

p-m /4 and a && n. /4, we obtain
0's+ cos
2

sing C p, = —[1—tan (2a)/2]tp, . (B3)

+ sing, sin(2p) cosqr, (B1)

In this formula y is the phase amplitude of the photo-
elastic modulator operating at co=2m X50 kHz. J, (y )

is the first Bessel function. The compensation condition
I =0 now reads

Keeping in mind the relation y, =2m.lan»/A, , where l
and A, are the sample thickness and the light wavelength,
respectively, Eq. (B3) describes the quantity denoted as
b, n(m. /4) in Secs. II and III. It may be evaluated by in-
serting the relations (A8) and (A9).

(b) If the principal axes are slightly turned with
respect to those of the polarizer and analyzer, respective-
ly, i.e. P-0 and a && m /4, we obtain

sing, sin(2P)
y, =arctan

cos (p, /2)+ cos(4p) sin (y, /2)
p, = —[tan(2a)]p, . (B4)

(B2)
This case refers to the quantity defined as b,n(0) and
may be evaluated as described above.
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