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Ferromagnetic resonance in magnetic multilayer structures
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We have calculated the FMR line shape for magnetic multilayer structures of alternating iron
and iron-alloy layers. The model assumes abrupt interfaces and that spins on adjacent layers are
ferromagnetically coupled with an exchange constant 3 l2. The surface magnetic anisotropy fields
are set to zero in our calculations. As 3 &z is increased, satellite lines in the surface impedance
split off from the ferromagnetic resonance main lines of the component materials. The number of
satellites is one more than the number of layered pairs. The position and strength of tkese lines is
found to be dependent on the relative layer thicknesses as well as the interlayer exchange coupling.

INTRODUCTION

The microwave properties of magnetic multilayer
structures have been the subject of much current in-
terest, ' both because of the possibility of practical de-
vices and structures, and because of what the properties
of these structures can reveal about basic magnetic phe-
nomena. The interaction between layers of different
magnetic materials is determined by both the macro-
scopic dipole interaction between layers and the micro-
scopic exchange interactions between dissimilar atoms.
Of these two effects the determination of the exchange
interaction is of more fundamental interest. In this pa-
per we will present a calculation of the microwave fer-
romagnetic resonance (FMR) line shape in a magnetic
multilayer structure where alternate layers of two
different magnetic materials are coupled by the micro-
scopic exchange interaction between the different atoms.
We will assume the incident radiation and the static ap-
plied field are along the z direction and perpendicular to
the layers which extend to infinity in the x and y direc-
tions. In this geometry, the dipole fields modify the
internal static fields by the demagnetization effect, but
the transverse rf fields do not couple by the dipole in-
teraction since the relevant surface poles are located at
infinity. This geometry is approximated by thin layered
structures. We find that the FMR line shape is strongly
influenced by the interlayer exchange coupling. In par-
ticular we find that increasing the interlayer exchange
coupling creates satellite peaks that split off of the FMR
resonances of the component materials. The total num-
ber of FMR peaks is found equal to one more than the
number of layer pairs. The size of the splitting of these
satellite lines and their dependence on film thickness is a
sensitive function of the interlayer exchange coupling
which can be related to the microscopic exchange in-
teraction.
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to represent iron and an iron alloy), where % is the num-
ber of pair layers. The layers extend to infinity in the x-
y plane and the interfaces are assumed to be abrupt.
There is a static external magnetic field in the z direction
and both materials have their static magnetization along
the external field. Identical microwave excitations are
normally incident on the structure from the + z and —z
directions. The internal microwave electric and magnet-
ic fields in each layer are denoted by e; and h;. Because
of the interaction with the spin-wave modes, inside the
magnetic layers there are four allowable circularly po-
larized propagating electromagnetic modes, each with its
own complex propagation vector k. The k vectors for
these modes can be found at each value of the internal
static magnetic field by numerically solving the relevant
dispersion relations, as shown in Fig. 2. Two of the four
values of k correspond to magnetic resonance modes and
the other two to antiresonant modes. In this paper only
the two resonant modes are of interest, since we are cal-
culating FMR line shapes of layered structures. We
therefore take only the active polarization modes for
each direction of propagation. This means that the mi-
crowave properties are reciprocal with respect to the
direction of the incident electromagnetic wave. In an
ordinary dielectric medium there is only one allowable
propagation constant. However, if we include magne-
toelastic motion, there are seven normal modes. Never-
theless, the procedure developed in this paper is still
applicable.

METHOD OF ANALYSIS

We begin by considering the layered structure indicat-
ed in Fig. 1 composed of 2%+ 1 alternate layers of fer-
romagnetic materials 3 and B (with parameters chosen

FICx. 1. Spatial configuration of layered magnetic structure.
Magnetic parameters associated with layers 2 and B are the
same as those of iron and iron alloy, respectively. The layered
structure is symmetrically excited.
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Zip+Zzp.
Setting h1 ——h2 and e1 ——e2 at z =d1 gives us two

equations at the interface. The continuity of e and h

give two equations at each interface while we introduce
four unknowns: the fields h„„ in each layer, where n in-
dicates the particular layer. For n odd it indicates an
iron layer and n even it indicates an iron-alloy layer.
Two more equations at each interface will be introduced
by the spin (magnetization) boundary conditions.

SPIN BOUNDARY CONDITIONS

I.m (K) Re (K)

FIG. 2. Dispersion of the four propagation constants in a
magnetoconductive media. Propagation constants I(:2 and K3,
as displayed in this plot, correspond to the magnetically reso-
nant modes. I( „ the electromagnetic skin depth mode, lies
very close to the vertical axis.

At the interfaces, Maxwell's equations give us the con-
dition that the tangential components of the microwave
e and h fields must be continuous. We express the fields
at each internal interface in terms of the component con-
tribution from the modes propagating to the left and the
right. This allows us to express the field at the second
interface of that layer by multiplying by the phase factor
e'"", where d is the film thickness. At the left-hand-side
vacuum interface, for example, the total external field e
and h is given in terms of the amplitudes of the right
(+ ) and left ( —) traveling waves in the first layer (cir-
cularly polarized in the magnetically active sense) as

E, = —JNNS1. S2, (5)

where JNN is the nearest-neighbor exchange interaction
parameter and S1 and S2 are the spin-moment variables
at two sites each located across the interface. Using
semiclassical approximations to Eq. (5), we may write

s M M 1 2
1 2

(6)

At a free surface it is known that the magnetization
must satisfy the boundary condition

2A BM
M X +T,„,f——0,

/M/' &q

where M is the total magnetization, A is the exchange
stiffness constant, q is a coordinate vector normal to the
surface, and T,„,f is the torque induced by a surface mag-
netic anisotropy field H, . At an interface between two
films, T,„,f can also result from the exchange coupling
between the atoms of the two different materials. If the
microscopic exchange coupling between the atoms of
layer 1 and 2 is given by

ho(z =0)= g (h+,„+h,„)=h, (z =0),
@=1,2

eo(z =0)= g (Z,„h i+„—Z,„h,„):—e, (z =0),
@=1,2

(la)

(lb)

The prime is to denote that a molecular-field approxima-
tion has been applied to Eq. (6). A, 2 is defined in terms
of JNN as

l'k& d& $'k) d]
h, (z =di)= g (hi+e '" '+h, „e '" '),

P

(2a)

ei(z =di)= g (Z&„hi+e '" ' —Zi„hi„e '" '),

where the sum is over the two magnetically resonant k
values. The characteristic impedances Z,„can be found
from the corresponding k values by Zi„ick,„/4m.o-—.

At the second interface (z =d, ) the field in layer 1 is
given as

The constant a is the distance between the two spin mo-
ments across the interface. For most cases of interest it
may be taken as the lattice constant of either layer. The
assumption is that both layers have the same crystal
structure. The brackets represent both spin orientation
and thermodynamic averages.

The surface torque due to the interlayer exchange is
then

(2b)

and the fields in layer 2 at the same interface (z =di )

are

h~(z =d, )= g (h~+e '" '+h2„e '" '),
P

e2(z =d, )= g (Z2„h2+„e '" ' Z2„hq„e '" ') . —
P

(3a)

(3b)

It is noted that k1„&k2„, since the two adjacent layers
are chosen to be magnetically different. Hence,

1
T,„,f——M, X — VE,'

1

A 12

M M 1XM2.
1 2

The boundary condition for M1 is

A1 BM, A 12

2 ~1X + M1XM2+M1X Hs =
aq iV, m,
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and a similar equation holds for M2 at the interface. H,
may represent any other source of surface magnetic an-
isotropy field. ' If we separate the magnetization into a
static magnetization in the z direction and a small trans-
verse microwave component (m), it may be possible to
linearize Eq. (9). Hence, we may write

Bm,
+E,mi ——A i2 rn)—

Bq

M2

M 1

(10)

where the second term represents the interaction of the
microwave field with the surface anisotropy field. '

Clearly, Eq. (10) only aff'ects the dynamic components of
the magnetization. We have assumed that the static
components of M] and M2 are collinear and parallel to z,
since the exchange coupling is ferromagnetic. Hence-
forth, we will set K, =0.

Except for the front and back surfaces of the struc-
ture, there are two of these equations for each
interface —one giving the effect of the exchange pinning

I

1 ——5k1

4 2'" (12)

2 C
2

6p2 ——
277(7 CO

(13)

we have two more equations relating the fields at each
internal interface (only one extra equation is gained from
the front and back surfaces). For example, at the inter-
face between layers 1 and 2 (n= 1 and 2) we have the
equation

of the magnetization in the first layer by the magnetiza-
tion of the second layer, and the other giving the pinning
of the second layer through interaction with the first lay-
er. Since the rf magnetization can be related to the rf
fields by

m„„=—Q„„h„„,
with

M2= 21z g Q1&(h &ze
'" '+h &&e

'" ') — g Qz„(hz+„e '" '+hz„e '" '), (14)
P 1 p

and the other spinning boundary at the common interface is given as

I)= A1z g Qz„(hz+„e '" '+hz„e '" ') — g Q,„(h 1+„e
'" '+h 1„e '" ') . (15)

P 2 jf

By collecting all of the terms in the internal fields (h —
+,„)

on the right-hand side, we may summarize the boundary
condition equations simply as

[fl, =[a]p[~l, (16)

where p indicates the particular surface in question. Ex-
cept for p =0 and p =2N + 1 (the first and last surfaces),
[f]~ is a (4X 1) column vector matrix in which all the
elements are equal to zero; [a] is a (4X8) matrix whose
matrix elements are the coefficients multiplying the
internal field variables h &„and h 2„. For example,

(a»), =e ''' '. For the other matrix elements the
reader is referred to Eqs. (2), (3), (14), and (15). [h],
is an (8 X 1) column vector with elements
h,+, , h, , h, 2, h, 2, h2+, , h2 ),h2+2, h22. It is clear that
[a]o„[a]zN+1 are (3X8) matrices, since there are three
boundary conditions at the first and last surfaces. At ei-
ther surface there is only one spin boundary condition.
Clearly,

[F]= [ ~ l[I ] (18)

where

[F]=

[flo
[f]1

[f]2N+ 1

h p ep, and hl, eL are the surface magnetic and electric
fields at first and last surfaces, respectively. However,
[h]o and [h]zN+1 are still (8X 1) column matrices.

We can now put all of the boundary equations into
one compact matrix and that is

hp

eL

lo
[f]o= eo [flzN+ I ~L

0

(17)

and

[h]ZN+1
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[A)=
[a]i

[a)2~

[&)z~+ i

b» ——cz2/6,

b, 2 = —C,2/

b2, ———c2, /6,
b22 =c» /b, ,

5 =C11C22 C12C21

ep C12

The [ A ] matrix is nondiagonal of dimensionality
[4(2N) + 6]X [8(2N+2)]. The [F] and [h] matrices are
column matrices with dimensionalities [4(2N +6) ]X 1

and [8(2N+2)]X1, respectively. [F] may be referred
to as the "excitation" matrix, since it contains the in-
cident field amplitudes. [h] contains all internal field
amplitudes. Equation (17) is an ordinary matrix equa-
tion which occurs often in linear circuit analysis. The
matrix [ A ] may be viewed as the "grand" transfer func-
tion of the system.

The object of this calculation is to express ep and hp
in terms of eL and hL. For the case of no exchange cou-
pling between layers the relationship between the two
sets of surface fields is straightforward. This relation-
ship is simply represented by a 2X2 matrix. From this
2&2 matrix it may be possible to calculate the surface
impedance, Z„at the two surfaces. For the case of ex-
change coupling between layers the complication arises
from the fact that the [a] matrices are nonsquare ma-
trices, since the internal fields in two adjacent layers are
now coupled to each other. We show here in this paper
that indeed the relationship between the two sets of sur-
face fields is still represented by a 2&2 matrix similar to
Ref. 5. Clearly, once this relationship is established we
can simply take over all of the algebraic steps used in
Ref. 5 to obtain Z, .

To solve this system of linear equations by matrix in-
version is excessively unwieldy. We have adopted a
form of Gaussian elimination to eliminate the variables
of each layer in turn. Using the four equations at inter-
face 1 —2, for example, we can eliminate the variables
h —+

,„ from the three equations for the front surface. We
then have three equations for ep and hp in terms of h 2„.
Using the equations for the next interface we can then
eliminate h2„ in terms of h3„. When we reach the last
interface we have six equations in terms of ep hp hL,
eI, and h z&+,„. This allows us to construct a transmis-
sion matrix so that given ep h p we can find eI, hL.

We may express the electromagnetic fields at the first
surface in terms of fields at the last surface by writing

Furthermore, since the electromagnetic response of the
layered structure is reciprocal with respect to the direc-
tion of the incident microwave excitation, we also re-
quire that

6=1 . (21)

The matrix elements c»,c,2, . . . , b22 are a complicated
function of A1, 312,g, H, . . . . The essential point here
is that even for exchange coupling between layers, it may
be possible to express the microwave fields at the two
outer surfaces by a simple 2&2 matrix with the special
constraint that the determinant of the matrix is equal to
one. The ratio of the electric to magnetic fields gives the
surface impedance of the sample. The real part of the
surface impedance is related to the sample FMR ab-
sorption.

The major advantage of our approach over previous
calculations is that since we successively eliminate vari-
ables using the boundary conditions at each interface, we
never have to work with a system with more than seven
linear equations. Adding additional layers increases the
computation time only linearly, rather than by Nf as in
matrix inversion approaches.

RESULTS

Q)—=H —4',
y

(22)

where H is the external magnetic field applied normal to
the layer plane, m is the operating frequency,
y=ge/2mc, and 4m-M is the saturation magnetization.
We have ignored magnetic anisotropy fields in Eq. (22).

For our calculations we have selected parameters for
the two magnetic materials appropriate for iron A and
an iron alloy 8 with parameters as shown in Table I.

Figure 3 illustrates, for a five layer system, the effect
of increasing the interlayer interaction A, 2. With no in-

terlayer interaction, only two peaks are observed in the
FMR surface impedance, at exactly the same fields that
they would be found in the corresponding single layers.
For the excitation of FMR in a single layer the reso-
nance condition is given by Kittel as

hp

and vice versa

C21 C22
(19)

TABLE I. Magnetic parameters associated with layers A

and B. The operating frequency (f) is 35 GHz, and A, is the
Landau-Liftshitz damping parameter.

eL

hL

b11 b12 ep

b21 b22 hp
(20)

4aM
Layer (kG) ( 10 erg/cm) ( 10 Hz) ( 10 mho/cm)

where conservation of energy requires that

A

B
21.5
21.0

1.91
1.91

2.09
2.09

5.8
5 ' 8
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FIG. 3. Re(Z, ) is plotted as a function of the external mag-
netic field, H. The operating frequency is 35 GHz and N=2,
where N is the number of pair layers. The thickness of the

0
iron and iron-alloy layers are 80 A.

O. I 0.2
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FIG. 4. The field position of the peaks in Re(Z, ) as a func-
tion of the interlayer coupling A». The frequency is 35 GHz,

0
N=2, and the layer thicknesses are 80 A.

For a single layer of iron H =33461 Oe assuming f= 35
GHz, 4~M=21.5 kG, and g=2.09, which are parame-
ters appropriate for iron (see Table I). In Table I the
above parameters correspond to layer A. For layer B
we have assumed 4~M=21.0 kG and all other parame-
ters the same as those of iron. For layer B Eq. (22) gives
H =32961 Oe. Thus, we have chosen layers 3 and B to
be very similar except for their respective values of 4aM.
From a material preparation point of view it may be ad-
vantageous to prepare layered structures consisting of
layers with nearly similar chemical compositions and
crystal structures.

As the interlayer interaction is increased to 0.2
erg/cm a satellite peak appears near the high-field (iron)
resonance. The splitting between the satellite peak and
the main iron peak increases with increasing interaction
strength. Simultaneously, the low-field (iron-alloy) peak
is pushed to lower fields. The addition of only a single
extra peak is understood, since under symmetrical exci-
tation the environment of the two outside iron layers
and the two iron-alloy layers is identical. We identify
the extra peak as due to the resonance of electrons in the
center iron layer.

We can characterize the spectral peaks by three pa-
rameters: the FMR field (Ho ), the peak height
[Re(Z, )],„, and the FMR linewidth (bH) defined as the
full width of the resonance peak at half the maximum
height (FWHM). The effect of the interaction parameter
A &z on the five layer system is summarized in Figs. 4
and 5, which show the variation of the resonance field
and peak height as a function of A, z (the FMR b,H is
not a strong function of the coupling parameter). The
position of the iron-alloy related peak is observed to

move rapidly to lower fields and decrease in size as 3 &z

is increased. The major iron-related peak shifts only
slightly to lower fields and becomes larger. The size of
the satellite peak tracks very closely with the size of the
iron-alloy peak, but its shift to lower frequencies is not
so pronounced. The appearance of the satellite is a dis-

x
O
E

CL

L

I.O 2.0
A, s (ergs/cms)

FIG. 5. Peak value of Re(Z, ) is plotted as a function of
A, z. The solid, dashed, and dot-dashed lines correspond to the
same resonances as in Fig. 4, and all other parameters are as in
that figure.
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tinctive indication of interlayer exchange coupling, and
fi ld shift is a measure of the strength of the coup ing.

The close correspondence between the peak eig s
the satellite and iron-alloy peaks can distinguish satellite
peaks caused by interlayer coupling and features that
may be caused by surface anisotropy fields, as discussed
below.

As we add layers to the structure the spectra become
pro ressively more complex. Furthermore, t er the FMR
lines become progressively weaker. In order to identify
the peak position more exactly we have calculated the
derivative of the surface impedance with field (dR /dH).
Figure 6 shows the derivative spectra for an 11 layer sys-
tem. When A&2

——0.2 we see four satellite peaks: two
associated with the iron resonance at 33 175 G and two
associated with the iron-alloy resonance which has been
pushed down to 31 880 G. The dependence of the reso-
nance fields Ho with the coupling parameter A &2 is
shown in Fig. 7. In this configuration there are three
different distinct environments for both the iron and
iron-alloy layers. The general rule is that the number of
satellite peaks is one less than the number of layer pairs.
We illustrate this in Fig. 8, which shows the position
and oscillator strength of the peaks in the spectrum as a
function of adding layer pairs with the interaction pa-
rameter fixed at A, 2 ——0.2. We note that the satellite
peaks enter the spectra between the major peaks, alter-
nately close to the iron peak and the iron-alloy peak.

It is also interesting to study the effect of film thick-
ness on the spectral line shapes. Beginning with five lay-
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FIG. 7. Dispersion of the FMR resonances as a function of
A in a system with N=5. Layer thicknesses are fixed at 80[2 1n a sys em
A.
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FIG. 6. The derivative of FMR absorption is plotted as a
function of H for an 11 layer system (N=5). All other param-
eters are as in Fig. 4.

FIG. 8. FMR resonance positions and peak heights are ex-
hibited as a function of H for various N values. =0.2 and
the layer thicknesses are 80 A. The highest field peak has been
reduced in height by a factor of 2 for display purposes.
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FIG. 9. The FMR resonance fields are plotted as a function
of layer thickness of layers A (iron, bottom scale) and 8 (iron
alloy, top scale). N=2, A» ——0.2, and the thickness of the lay-

0

er not varied is fixed at 80 A.

FICx. 10. The peak highs and widths of the FMR resonances
as a function of iron-layer thickness for a five-layer system
(N=2). The iron-alloy layer is 80 A and A l2 ——0.2.

ers with thicknesses of both the iron and iron-alloy lay-
ers at 80 A, Fig. 9 shows how the peak positions shift
with the thickness of the iron and iron-alloy layers. It is
notable that the position of the satellite peak is a strong
function of the iron layer thickness, but is insensitive to
the thickness of the iron-alloy layers. The low-field peak
associated with resonance in the iron-alloy layer is sensi-
tive to the layer thicknesses of both materials, but the
iron-alloy layer thickness has a greater effect.

Figure 10 shows the dependence on the thickness of
the iron layers of peak height and width. What is not-
able here is the strong dependence on the iron-layer
thickness of both the peak height and width of the two
iron-related lines.

The calculations here were all carried out assuming no
surface anisotropy fields [K, =0 in Eq. (9)]. If surface
anisotropy fields are taken into account, satellite peaks
may result even when A &z

——0. Since surface anisotropy
fields are strongly related to interface impurities, it is
likely that satellite lines that have been seen thus far in
experiments" are connected with surface anisotropy.
The predictions given for the dependence of the spectra
on layer thickness and the number of layers should make
it possible to distinguish the effect of interlayer exchange
coupling. If the effect of A &2 can be demonstrated in
lattices with mixed materials it will be a unique oppor-
tunity to measure exchange constants between different
materials.

CONCLUSION

We have calculated the FMR line shape for symmetri-
cal rf excitation of magnetic multilayer structures. The
layer components of the multilayer were chosen to be
ferromagnetic with their static magnetizations aligned
with the external field perpendicular to the layers. The
layers were assumed to be uniform with abrupt inter-
faces and coupled by the exchange potential between
atoms of adjoining layers. In the geometry chosen there
is no coupling between layers through the magnetic di-
pole interaction of the rf magnetization. The surface an-
isotropy fields were set to zero.

We find that the surface impedance shows FMR line
shapes that are very sensitive to the exchange coupling
between the layers. As the coupling parameter A, 2 is

increased, satellite lines'are split off the FMR resonance
peaks of the component materials. The total number of
peaks in the spectra is one more than the number of lay-
er pairs, and the field positions of both the major reso-
nance peaks and the satellites is a strong function of
A &2. The peak positions, widths, and oscillator strength
are also found to depend sensitively on the relative layer
thicknesses.
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