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Mean-field theory of high-T, superconductivity: The superexchange mechanism
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We develop the simplest mean-field theory of an extended Hubbard model in the limit of a
large intrasite Coulomb interaction, concentrating on the possibility of superconductivity induced

by the superexchange interaction and weakened by the intersite Coulomb repulsion. We calculate
the critical temperature and the coherence length as a function of filling, as well as the tempera-
ture dependence of the magnetic susceptibility and specific heat. Finally, we comment on the
physics of the insulating state at half filling, and mention the probable eff'ects of fluctuations.

Following the pioneering work of Bednorz and Muller '

and the subsequent discovery of superconductivity above
liquid-nitrogen temperatures in the quarternary com-
pound (Yl „Ba„)2Cu04—y, a number of theoretical
ideas have been proposed to explain this remarkable
discovery. Theoretical arguments based on the conven-
tional electron-phonon mechanism appear to rule out crit-
ical temperatures much larger than 40 K. Consequently,
any other mechanism involving conventional phonons,
such as Bose condensation of bipolarons, will most likely
lead to a smaller T, . What remains is the possibility that
the superconductivity is due to an unconventional mecha-
nism mediated by Coulomb interactions, perhaps
enhanced by the presence of phonons.

One such possibility, discussed by Varma, Schmitt-
Rink, and Abrahams, is pairing due to charge-transfer
excitations (excitons) Cu +0 Cu+0, which dom-
inate for sufficiently small intrasite Coulomb repulsion.
This covalent-metallic picture should be contrasted with
the modest covalency and large intrasite Coulomb repul-
sion characteristic of almost ionic (semi)conductors. The
latter underlies Anderson's resonating valence bond
(RVB) mechanism, in which the superconductivity
occurs as a result of spin correlations induced by superex-
change between electrons on nearest-neighbor Cu sites.

In this paper we further examine this possibility. We
develop a simple mean-field theory of the Hubbard Ham-
iltonian, which describes spin- 2 fermions on a two-
dimensional (2D) square lattice, interacting through in-

trasite (U) and nearest-neighbor (V) Coulomb repulsions:
H= —t g c~;~ +Urn;ln;1

(i,m) i
a

+—g (n; —1)(n; —1),V (1)
(i,m)

where n; c;~~; is the number operator for electrons of
spin cr( = +' 1/2) at site i, n; =g n; is the number densi-
ty, and (i,m) implies unrestricted summation over the
nearest neighbors (of site i )

Our discussion is based on the band-structure calcula-
tions of Mattheis, which suggest that the relevant physics
can be modeled in terms of two-dimensional bands
spanned by the 0 2p and Cu 3d orbitals. It is worth not-
ing that the fermion operators c; in (1) represent elec-
trons localized on the Cu sites. These are the "quasiparti-
cle" operators introduced by Anderson in his theory of
superexchange in transition-metal salts, and have the vir-
tue of eliminating explicit reference to ligand electrons.
Here we will make use of the quasiparticle picture away
from half filling, and we thus rely on the large electron
affinity of the oxygen. The effective interaction parame-
ters t, U, and V can be crudely estimated by extrapolating
Anderson's discussion of transition-metal salts to our case:
We obtain the values t —0.25-0.5 eV, U —3-4 eV, and
V—1-2 eV.

Below we assume the large-U limit, and make use of a
canonical transformation to eliminate states with doubly
occupied sites, ' yielding
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where J 2t /(U —V) is the superexchange interaction.
Here we have introduced the representation of the fer-
mion operators c; (c;t ) acting on states with no double
occupancy, c; b;tf;, in terms of fermions, f; (ft ),
and auxiliary Bose fields, b;(b;t) The latter keep. s track

I

of the occupancy at a given site, with b;~b;
and b;~b; =1 for unoccupied sites. The
double occupancy (which implies that
most unity) is incorporated through the
+g ftj; =1, enforced independent. ly

=0 for occupied
condition of no

g ftf; is at
constraints b;~b;
at each site by
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h(T, S):g(b;tf; if—;~ rb;t+ )/zN
i,m

= 8+(f; if;+ 1)/zN=
i,m

h, represents the pairing of the physical electrons with op-
posite spins on nearest-neighbor sites, while 5 can be in-
terpreted as the amplitude of preexisting pairs.

We now proceed with the Hartree-Fock factorization of
(2), which leads to the following BCS-like Hamiltonian:

Hacs =g ((k)ft ft
k, cr

Ig (kz) (A*f p if& 1
+ H.c.),

k

(3)

where z(k) =2[cos(k„a)+cos(k~a)] (a is the lattice
spacing), ((k) = —btz(k) —@+X, and I=4J(1+38)
—V. Both hopping terms —for single electrons and for
pairs —are linear in the concentration of bosons, since
both processes require the presence of a single empty site.
It is important to note that the fully screened Coulomb
repulsion V must appear in the efective interaction I on
equal footing with J, since in this case, in contrast with
BCS theory, both the pairing mechanism and the screen-
ing of V occur on the same frequency scale.

The Hamiltonian (3) is diagonalized by the Bogoliubov
canonical transformation by introducing the quasiparticle
operators, yt, o =u~ft, 1 vlf —t, 1 and yg—&

=ut f t,1-
+vt, ft, 1, in thermal equilibrium ut, and vq can be chosen
as real, and are given by

ut. =[I+((k)/E(k)]/2, vg =[1—g(k)/E(k)]/2,

where E(k) =[( (k)+I A z (k)]'/ is the quasiparticle
energy; without loss of generality we take uk & 0, and
sgn(vt, ) =sgn[z(k)]. The self-consistent equations for the

the Lagrange multipliers, X;. Above, cr; =g,ft z,f,.
and n; =g

fthm;

are the spin and number densities at
site i; the sums over m and m ' again correspond to unre-
stricted sums over nearest neighbors. The first and third
terms in Eq. (2) represent, respectively, the hopping of
electrons, and of pairs of electrons, away from half filling,
while the second term gives rise to the superexchange in-
teraction.

We begin by considering the simplest mean-field theory
of (2), based on two approximations. First of all, the aux-
iliary boson is replaced by a filling-dependent c number,
while the Lagrange multiplier is taken to be uniform
(g; =g). " In this particular case the appropriate pro-
cedure leads to a replacement of

b, ~ b, = b (I —fl/2) '/ = [2$/(I +$) ] '/2 =g'/

(the last equality follows from the mean field form of the
constraint, b +g, (ft f; )/N. =b +n =1), where
n=(n;) —= 1

—8~ 1. This replacement is consistent with
the requirement that the mean-field theory applied to a
fully spin-polarized partially filled band leads to no mass
renormalization. " We note that treating the bosons as c
numbers amounts to assuming the Bose condensation of
the b's. Our second assumption is that, for any value of
the filling, the order parameter takes the form

gap parameter 5 and the chemical potential P(=p —X)
are then obtained from the defining relations,
h=gq z(k)&f t, tft, 1)/z, n =g& (ft, ft, ) =1 —8:

~ z (k)
h

pE(k)
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(4)
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FIG. 1. Critical temperature (T, ) vs b for t/U 0.1, with
t/V=~, 3.0, 2.0 for curves A, B, and C, respectively. Excita-
tion gap (AG) vs 8 for t/U 0. 1 and t/V 3.0 (curve D). Inset:
T=O coherence length vs 8 for T, =0.1 and T, =0.2. The dot-
ted segments of curves A and B denote the non-BCS-like regime
4t+P (b) & I. Curve B' represents T, vs 8 for d-wave-like pair-
ing with t/U 0. 1 and t/V=3. 0.

We can now proceed to a brief discussion of our results.
(I) The critical temperature. T, [obtained by setting

h(T, ) =0 in Eq. (4)], starts out with a finite value
T, (8=0) =J—V/4 (see Fig. 1). Away from half fillin,
T, first increases to a maximum determined by the com-
petition between pair hopping, which is linear in 8, and
the pair breaking due to single-particle hopping, an efect
of order 8 for smally. T, then decreases rapidly until su-
perconductivity is destroyed through the unbinding of
pairs for 8—I/(2zt), where the binding energy I becomes
of the order of the efective bandwidth 2zt6. For higher
values of 8 the gap equation yields nontrivial solutions for
T„not shown in Fig. 1. These solutions are, however, ig-
nored as they are associated with values of [4t+P(8)] (I
for which true bound states split of below the bottom of
the band. The critical temperature in this regime is al-
ways smaller than that for [4t+P(8)] = I and is expected
to be a smoothly decreasing function with increasing 6; its
value is controlled by the center-of-mass degrees of free-
dom of the pairs, and is outside the scope of our BCS-like
mean-field theory.

We note that the finite value of T, at 6 =0 is an artifact
of our mean-field approximation. First, unlike the gap pa-
rameter 6 the physical order parameter 6, = Bh vanishes
for 6=0, even within this simple mean-field theory. More
importantly, true of-diagonal long-range order implies
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long-range coherence of the Bose fields b in

h(T, S) =g(bPf; if; ~~ th)+~)/zN,
i,m

which is clearly absent at 6=0 due to the "incompressibil-
ity" constraint, b;tb;+g ftJ; =1. Close to half filling
T, is determined by the Bose fluctuations. These can be
very crudely incorporated into our mean-field theory by
explicitly accounting for the thermal depletion of the b
condensate, in which case A(T, b) a:bo (T,B)h(T,b) (bo is
the b condensate fraction). Thus, near 8=0, T, is limited
by the condensation temperature of the bosons, T~E

86 J6 Q v 3 in 3D, whereas v —i in 2D; with in-
creasing b, T, (8') is expected to reach a maximum for
8 ( I/2zt. This point of view is, however, too naive: The
of-diagonal long-range order of the superconducting state
is associated with a particular value of a single phase vari-
able, namely, that of the physical order parameter
t3.(T,S), rather than two phases (one of the superconduct-
ing gap and one of the b condensate) as implied by the
above mean-field picture. These two points of view are
reconciled by a precise treatment of the double occupancy
constraint, which in turn restores the gauge symmetry
with respect to one combination of the phases.

The above discussion applies to the regime in which (a)
J is sufficiently large that T, is nonzero, and (b) the
BCS-like pairing theory is valid, i.e., 4t+P(8) ) I. We
note that the results are extremely sensitive to small
changes in the parameters. In fact, for the most realistic
estimates quoted above, we find that the second condition
is not satisfied, thus requiring a treatment of the crossover
between Cooper (i.e. , BCS-like) pairing and Bose conden-
sation, a regime outside the scope of this paper. More im-
portantly, for the (t and U) parameter values discussed
above we find that superconductivity survives only for un-
realistically small values of V, suggesting that even within
the mean-field theory help from another attractive in-
teraction (e.g. , phonons) may be required to fully stablize
the superexchange mechanism. For the sake of illustra-
tion, in the figures we have chosen parameter values con-
sistent with both (a) and (b) for the range of fillings
specified in the captions.

(2) Coherence length. The absence of coherence in the
insulating phase is further substantiated by a calculation
of the T=O coherence length gc based on the usual
derivation of the Ginzburg-Landau free energy. As seen
in Fig. 1, (0 vanishes at half filling, as expected in the case
of the incompressible (Fo =ee) Fermi liquid' implied by
our mean-field theory. Note that go is a measure of the
correlation between diferent pairs but that, in the con-
trast to BCS theory, it does not coincide with the extent of
a single pair (here taken to be of the order of the lattice
spacing).

(3) Excitation spectrum and tunneling density of
states. At half filling, our mean-field theory gives a reali-
zation of state discussed by Anderson. The Bogoliubov
quasiparticle excitations define a "pseudo-Fermi surface"
E(k) =Id

~
z(k)

~

=0 across which r(k) changes sign. In
close agreement with Anderson's ideas, the low-lying ex-
cited states with a fixed avera e number of particles are of
the form

~

k', s', k, s)=ykt, .y, ~
G) (s,s'=0, 1), and cor-
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FIG. 2. Specific heat vs T for t/U 0.1, and t/V 3 Ofor.
6' 0, 0.05, 0.2. Dotted lines represent normal behavior with
a-0.

respond to the gapless excitations of a Fermi liquid. The
nature of the excitations can be further understood by
considering the effect of an arbitrary external potential on

~
G). More precisely, the coherence factors associated

with the coupling of these excitations to external density
(or charge) and spin fluctuations are (uk, vk+vk, uk) and
(u„vk —

vk uk .), respectively. Since at half filling vk
= sgn [z(k) ) u& = ~ I/ J2, it is easy to see that whenever k
and k' are "on the same or opposite sides of the pseudo-
Fermi surface" [i.e., sgnr(k) sgnr(k') or sgnz(k)
= —sgn(k')] the states

~

k', s';k, s) represent spinless
charge excitations or chargeless spin excitations, respec-
tively. The fact that some excited states carry charge even
in the limit of infinite U is easily understood since within
our mean-field theory the double occupancy constraint is
only satisfied on the average, rather than independently at
each site. A proper treatment of the constraints will elim-
inate all charge fluctuations, but in that case the precise
nature of the spin excitations remains to be determined.
We have also calculated the single-particle density of
states, which is gapless for b 0 as expected. Away from
8=0 an excitation gap, Oo I/3.

~ p~/(I d, +b t )'t,
opens at the true Fermi surface, which no longer coincides
with the "pseudo-Fermi surface. " An important quantity,
accessible in tunneling experiments, is the ratio Q,o/T„
which we find to increase with 8 from zero to a value of
order of unity for b —I/(2zt).

(4) Magnetic susceptibility and speciftc heat. The spin
susceptibility and specific heat were calculated from the
expressions appropriate for a gas of noninteracting quasi-
particles (for illustration we show plots of the specific heat
in Fig. 2). In the "normal state" (i.e., 5 0), by increas-
ing 8 from zero at a fixed temperature T, we find a cross-
over from localized spins fluctuations (at b 0), to a
Boltzmann gas with eff'ective mass m,g- 1/b for
b ( T/2zt, and finally to a degenerate noninteracting Fer-
mi gas when 2zt8 —T. Consistent with the discussion
above, for finite d and 8 =0, the thermodynamics is essen-
tially that expected of a Fermi liquid with an eff'ective
mass m*(b =0) a:(I/3,a ) ', and crosses over to that of a
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collection of localized spins for T & T, (b' 0). In the su-
perconducting state (d, AO, b&0), the physics is qualita-
tively similar to that at half filling (for haO), with the as-
sociated Fermi-liquid-like behavior for both susceptibility
and specific heat. The exponential falloA associated with
the gap in the excitation spectrum is visible only at the
lowest temperatures, since within the mean-field theory
for most fillings T, & Ag. We further note that for
reasonable values of the parameters the eff'ective band-
width defined by the spin excitations, of order zIh, , does
not imply an appreciable enhancement of either
Sommerfeld's y or the magnetic susceptibility, as one
might have expected near a Mott metal-insulator transi-
tion.

Above we have discussed the simple mean-field theory
of high-T, superconductivity based on the high U/t limit
of an extended Hubbard model. A number of important
problems remain open. We have ignored the antiferro-
magnetic long-range order predicted by the model at half
filling. This is sensible only provided the antiferromagne-
tism is destroyed for sufficiently small 6. The interplay
between superconductivity and antiferromagnetism will
be considered in a further publication. ' We have also not
addressed the crucial problem of the stability of our
mean-field theory with respect to fluctuations, a point par-
ticularly worrisome in two dimensions. Order parameter
fluctuations, thermal phonons, ' as well as inelastic
electron-electron scattering, should lead to a decrease of
T, . Since the excitation gap is most likely not drastically
affected, the ratio QG/T, will also be increased in the
direction of better agreement with experiment. ' Finally,
as already mentioned above, a correct treatment of the
(auxiliary) boson fluctuations is crucial in enforcing the
"no double occupancy" constraint, which in turn deter-

mines the nature of the physics close to half filling. It is,
in fact, not clear that a systematic treatment of the Hub-
bard model with purely repulsive interactions can lead to
a stable superconducting state. We expect, however, that
phonons or another exclusively attractive interaction act-
ing together with the superexchange mechanism will lead
to a superconducting state, qualitatively similar to that
described by the above mean-field theory. In the final
stages of writing, we received a paper by Baskaran, Zou,
and Anderson' which overlaps considerably with the
present work, and reaches similar conclusions.

Note added. We have also considered the possibility of
d-wave pairing with an order parameter proportional to
d (k) =2[cos(k„a ) —cos(k~a )], the only representation
consistent with the nearest-neighbor hopping assumed
above. (We note that odd parity pairing does not occur in
this model. ) The resulting T, (8) is indicated in Fig. I as
curve B'. We note that for finite 6, T,"& T,', for a large
range of fillings, in contrast to an independent calculation
of Kotliar. ' The latter author ignored the pair hopping
term which is important for the stabilization of the s-
wave-like state. Kotliar makes, however, the important
observation that, since the s- and d-wave-like states are
degenerate at 8=0 (at least in the absence of phonons), a
mixed state will lead to a gap in the excitation spectrum.
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