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Metamagnetic behavior of fcc iron
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The Stoner model of itinerant ferromagnetism in combination with self-consistent linear muffin-

tin orbital non-spin-polarized calculations are used for analysis of metamagnetic behavior of fcc
iron. The developed procedure enables one to identify all the possible ferromagnetic phases
(stable, metastable, and unstable) and find the areas of their existence. The results obtained earlier
by Moruzzi and co-workers using the fixed spin-moment method are confirmed. Moreover, it is
found that fcc iron has three (rather than two) difFerent ferromagnetic states stable at the same
volume: the high-spin (HS) state and two low-spin (LS1 and LS2) states. The LS states exist in

the narrow areas within the range of stability of the HS state (rather than outside). The border of
stability of the nonmagnetic phase is also found, and the theoretical explanation of two types of
metamagnetic behavior observed earlier is suggested.

A hypothesis that fcc iron may exist in two diff'erent
magnetic states was first put forward twenty-five years
ago to explain the observed thermodynamics of fcc-bcc
phase transformation in steels. ' It was argued that one
of the states was antiferromagnetic with a moment of 0.5
pz/atom, while the other state was ferromagnetic with a
moment of 2.8 pz/atom. A two-level model was then
explored in a quantitative thermodynamic analysis.

However, for some time there has been neither direct
experimental nor theoretical confirmation of this hy-
pothesis. In the late 1970's, it was shown that the
canonical-band theory in combination with the Stoner
model of itinerant ferromagnetism did predict the ex-
istence of two ferromagnetic states in fcc iron. This ap-
proach also resulted in a simple and physically transpar-
ent explanation of ferromagnetism in transition metals
and its trends throughout the periodic table, in terms of
the density of states (DOS) of nonmagnetic systems. The
idea was further developed in ' using the hybridized
DOS to confirm the existence of two magnetic states in
fcc iron.

In recent years iron has been an object of extensive
study by various efficient first-principles methods of
band-structure and total-energy calculations (see, e.g. ,
Refs. 10 and 15). En this paper we shall not be discuss-

ing the difficulties"' in correctly predicting the ener-
getics of different crystallographic modifications of iron
which are believed to originate from the local spin-
density approximation. Rather, we shall focus on the
iron magnetic behavior.

Kuebler' was the first to report the results of self-
consistent spin-polarized calculations, which confirmed
the existence of two ferromagnetic states in fcc iron: a
low-spin (LS) state with the magnetic moment, m, less
than 0.6@it, and a high-spin (HS) state with m &2pit
separated by discontinuity in the moment versus
Wigner-Seitz radius dependence. Similar results were
later reported in Refs. 12 and 14.

However, in recent papers, ' a somewhat dift'erent be-
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FIG. 1. The Stoner exchange parameter, I =1~ 075Ip as a
function of the Wigner-Seitz radius, s.

havior of ferromagnetic fcc iron has been discovered.
There, a new "fixed spin-moment method" was used
which allowed one to find the ground-state energy of a
constrained system, with a fixed volume (or a Wigner-
Seitz radius, s) and a fixed magnetic moment per atom,
m. The analysis of binding surfaces in the two-
parameter (s, m) space demonstrates a metamagnetic be-
havior of fcc iron: In an interval of s, both nonmagnetic
and ferromagnetic phases are stable. Moreover, the LS
state exists in a narrow area within the range of stability
of the HS state, rather than outside this range, as previ-
ously believed.

In the present paper we show that the Stoner ap-
proach in combination with self-consistent non-spin-
polarized linear muffin-tin orbital (LMTO) calculations
enables one to perform the detailed analysis of ferromag-
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TABLE I. Dependence of magnetic moment (pB/atom) and magnetic energy (mRy) on Stoner parameter (mRy).

S (a.u. )

P=1.000

E

P= 1.025

E

P=1.050

E

P=1.075

E

Our spin-polarized
calculations

m tot

2.6830
2.7125

63.920
63.668

no solution
2.554 + 1.337

2.505
2.571

+ 3.693
—1.268

2.520
2.589

+ 1.152
—3.918

2.559
2.607

—1.450
—6.611

2.556
2.603

2.494
2.536

netic behavior, identify all the possible magnetic phases,
both stable, metastable, and unstable, and find the areas
of their emergence. Such an analysis, using traditional
spin-polarized calculations, is at present either too
cumbersome and expensive or even impossible, especially
if a metastable energy minimum is too shallow or sta-
tionary unstable states are of interest. We confirm re-
sults of Ref. 15; we also show that fcc iron happens to
have three (rather than two) different stable ferromagnet-
ic states which may, in principle, coexist in a constant
volume regime.

The Stoner model, in its original formulation, postu-
lates that the change of energy upon forming a fer-
romagnetic state with moment m consists of two parts.
The exchange energy contribution is simply ——,

' Im,
where I is the so-called Stoner exchange parameter, a
constant. The kinetic energy term is found by forming
two sub-bands for spin-up and spin-down electrons by
flipping m/2 spin-down d electrons from just below the
nonmagnetic Fermi level into the nonoccupied spin-up
states just above the Fermi level. As previously
shown ' ' ' this procedure corresponds to the first-
order perturbation theory in m /nd (nd is the number of
d electrons per atom). Thus, for a given (even con-
strained) m,

E = —,
' f m'dm' —,'Im 2—

N(m', s)

where N(m, s) is the nonmagnetic DOS averaged be-

BE /Bm =0, (2)

gives, apart from the "trivial" solution, m =0, the cri-
terion of forming a ferromagnetic state:

IN(m, s) =1 .

Let Eq. (3) have a solution, m. Then, the correspond-
ing ferromagnetic state is stable (8 E /Bm &0) if

BN(m, s)/Bm &0,
otherwise, it is unstable (8 E /Bm &0).

However, even if Eq. (3) holds, the ferromagnetic tran-
sition may not occur if E &0. In this case the fer-
romagnetic state is metastable.

As for the nonmagnetic state, m =0, it is stable and
may coexist with a ferromagnetic state only so far as

(BE /Bm ) o)0, (5)

or, equivalently,

6

tween the Fermi levels of spin-up and spin-down d elec-
trons as found from the rigid sub-band shift. The pro-
cedure of "constructing" N( ms) is described elsewhere
(see, e.g. , Ref. 6).

The requirement of stationarity of E
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FIG. 2. The right-hand side of Eq. (8), Wd(s)/I(s), as a
function of the Wigner-Seitz radius, s.

FIG. 3. Solving Eq. (8): The intersections of the left-hand
side, Wd(s)N(m, s) (almost independent of s) with the right-
hand side, Wd(s)/I(s), for each s give all the possible station-
ary ferromagnetic solutions. The broken arrows show unstable
solutions. The solutions shown correspond to s =2.70 a.u.
For explanation of dot-dashed lines here and in Fig. 4, see the
text.
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FIG. 4. Stationary magnetic moment as a function of the
Wigner-Seitz radius. HS, LS1, and LS2 are the stable
branches. The dashed-line branches are unstable. The non-
magnetic state is stable along the s axis up to the point where
the lowest unstable branch begins (2.706 a.u. ).

FIG. 5. Total energy vs s (c.f. Frg. 10 of Ref. 15). Both HS
and LS1 phases have areas of metastability. The LS2 phase is
not resolved in this energy scale (see Fig. 6) ~ NM here refers to
the nonmagnetic phase.

IN(EF ) (1,
where N(E~)=N(0, s) is the nonmagnetic d DOS at the
Fermi level.

In the Stoner model, I may be thought of as an adjust-
able parameter. However, from the perturbation-theory
analysis, ' ' ' I can be found in terms of a nonmag-
netic system. From the linear response theory' it fol-
lows that

I = J d r y (r)
~

K(r)
~

dependent of both the volume and crystallographic
modification of the metal. The calculations revealed a
monotonic dependence of I(s) (Fig. 1). Both the mag-
netic energy, Eq. (1), and the equilibrium moment, m [as
found from Eq. (2)], happen to be rather sensitive to the
values of I. In Table I we compare the m's, found with
I =pIO [where Io is the "first-principles" value, Eq. (7),
and P = 1.0, 1.050, and 1.075] for two values of s, with
those obtained in the spin-polarized calculations. One
can see that for p= 1.075 the calculated Stoner magnetic
moments are almost equal to the d-electron components

o«5(EF E, )
I @,(r) ~—

N(EF)
(7)

1 6 E„,[p, m]K(r)=-
5m m =0

Here E,." and g, (r) are, respectively, the d eigenvalues
and wave functions of the nonmagnetic system;
E„,[p, m] is the exchange-correlation functional. In this
case the Stoner model comprises a first-principles
perturbation-theory approach which circum vents the
iterative self-consistency scheme normally used to mini-
mize the total energy with respect to the spin density.

In our calculations the LMTO method ' ' with the
so-called combined correction term ' was used. The
scalar-relativistic calculations for fcc iron on a uniform
mesh of 946 points in the irreducible —,', wedge of the
Brillouin zone were done, with the exchange-correlation
functional of von Barth and Hedin. ' Also, the frozen-
core approximation was used.

The Stoner parameter, I, was calculated from Eq. (7).
It has been believed that I is essentially a constant, in-
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FIG. 6. Magnetic energy, E, of HS, LS1, and LS2 phases.
Bold dots show the borders of stability.
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TABLE II. Magnetic behavior of fcc iron in (s, m) plane.

unstable
NM HS

stable
LS1 LS2

Our work s &2.706 s )2.642
m &2.40

2.704) s & 2. 687
1.40& m &0.75

2.705 &s )2.691
0.23&m &0. 14

Ref. 15 s )2.685 s )2.660
m &2.40

2.685 & s & 2. 670
1.50& m &0.90

no solution

of the spin-polarized results. In order to be able to make
quantitative comparison with the results of Ref. 15, we
have chosen to perform the analysis for 13= 1.075.

As we mentioned above, the magnetic moments corre-
sponding to the stationarity condition, Eq. (2), satisfy the
Stoner equation, Eq. (3). N(m, s) varies inversely as the
width of the d band, Wz(s). Therefore, for illustrative
purposes, it is convenient to rewrite Eq. (3) in the form

8'q(s)
W~(s)N (m, s) =

I(s) (8)

The left-hand side of this equation is almost independent
of s, while the right-hand side decays with s (Fig. 2).
Figure 3 illustrates solving Eq. (8). Intersections of
curve 8&N with horizontal lines 8&/I give for each s
all the stationary solutions. For qualitative analysis, the
8'&N curve may be thought of as unchanging, while,
with increasing s, the horizontal line, according to Fig.
2, goes down producing an m (s) plot. The loci of the
curve with negative slope [Eq. (4)] generate stable solu-
tions, while the positive slope loci give unstable solu-
tions.

Figure 4 shows the m (s) plot for /3=1. 075. The
dashed-line parts of the curve correspond to unstable
ferromagnetic states. One can see that there exist three
stable (one high spin and two low spin) branches:
Preserving the existing terminology and abbreviations,

we call them HS, LS1, and LS2. The nonmagnetic state
is stable [Eqs. (5) and (6) hold] along the s axis up to the
point where the lowest unstable branch begins
(s =2.706).

The energy plots of the nonmagnetic, and the three
ferromagnetic states are shown in Figs. 5 and 6. The
bold dots indicate the borders of stability of the corre-
sponding magnetic states: For s &2.642 no magnetic
(HS) solution exists; LS1 and LS2 exist, respectively, at
2.687 &s & 2.704 and 2.691 &s & 2.705. The three
branches have areas of metastability (E &0 in Fig. 6).
The nonmagnetic state becomes unstable along the bro-
ken line in Fig. 5.

The results of our analysis agree both qualitatively
and quantitatively with the data obtained by the fixed
spin-moment method and reported Ref. 15. We com-
pare the two sets of data in Table II.

It was shown in Ref. 15 that two types of metamag-
netic behavior are possible. As one can see in Fig. 7
(taken from Ref. 15), the lowest ferromagnetic branch
may either (i) begin immediately from the point where
the nonmagnetic phase loses stability (Ni, V) or (ii) after a
gap in magnetic moment (Co,Fe). It follows from our
analysis that the type of the behavior depends on wheth-
er the slope of N(m, s) at m ~0 is positive or negative.
From the Taylor expansion around EF,

N(m, s) =N(E+)(1+am ) when m ~0,
N" (E~ ) 3 N'(E~ )

24 N (E~ )3 N (E~ )~ N (Ep )

where N(Ez), N'(Ez), and N"(Ez) are the nonmagnetic
d DOS at EI; and its first and second derivatives.

CD+2-
E

Co(fcc)

Fe(fcc)
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r Q&Or FM
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FIG. 7. Two types of metamagnetic behavior (Ref. 15). (i)
The LS branch begins at the loss of stability point of the non-
magnetic state (Ni, V). (ii) A gap exists between the nonmag-
netic and ferromagnetic solutions (Fe,Co).

FIG. 8. Theoretical explanation of situations (i) and (ii) of
Fig. 7. FM represents ferromagnetic.
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FIG. 9. The high-resolution d DOS for NM phase. See the
explanation in the text.

somewhere around the unmarked arrow. We, however,
were unable to achieve such a shift by introducing "per-
turbations" into the computational procedure, such as
increasing the number of points in the irreducible wedge
of the Brillouin zone or the number of basis orbitals.
We, therefore, believe that the observed behavior is
meaningful and the results are reliable.

In conclusion, we would like to once again stress that
the Stoner model in combination with reliable nonmag-
netic calculations enables one to perform a simple and
detailed analysis of ferromagnetic behavior. Such an
analysis is at present very difficult or even impossible us-
ing the spin-polarized calculations. The Stoner ap-
proach also may be used as a preliminary analysis in a
complex spin-polarized problem.

Thus, case (i) is realized when tz & 0; otherwise (a & 0),
case (ii) takes place. This is illustrated in Fig. 8. It is
obvious that, due to the complex shape of N (E), a priori
prediction of the type of metamagnetic behavior is virtu-
ally impossible.

Finally, in Fig. 9 the d DOS for nonmagnetic fcc iron
is shown. One can see that the Fermi level, EF, falls on
the slope of the high-energy side of the tiny peak. In or-
der to produce N(m, s) of the dot-dash line of Fig. 3 and
hence the magnetic behavior of the dot-dash line of Fig.
4, EF would have to be shifted by about 15 mRy to
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It should be pointed out that although the solutions of Eq. (3)
[or Eq. (8)] are sensitive to the values of I, the main features
of the ferromagnetic "spectrum" are not. As one can see
from Fig. 3, the possible solutions of Eq. (8) (intersections
with the horizontal line 8'd/I) are, in fact, functions of
8d /I, rather than s. This means that an ad hoc change of I
will simply change the s interval of metamagnetic solutions.
The Wigner-Seitz radius s corresponding to each solution
and the s interval of their coexistence will then scale as
(Io/I)' ' since Wd scales as s '. Otherwise the spectrum of
ferromagnetic solutions remains virtually unchanged. Dras-
tic changes in this spectrum would arise only if the "wig-
gles" on 1V(m, s) [or W„N(m, s)) at small m could be de-
formed, smoothed out, or eliminated altogether. We have
been unable to do that by introducing computational "per-
turbations" mentioned at the end of this paper.


