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Recent static and dynamical work suggest a close analogy between spin glasses with discontinu-
ous Edwards-Anderson order parameter and structural glasses. The mean-field dynamical spin-
glass theory predicts freezing above the usual thermodynamic transition temperature. Here we use
the approach of Thouless, Anderson, and Palmer for Potts glasses to show that the dynamical ap-
proach locates a thermodynamically metastable glassy state. We also give divergent correlation
lengths as both the static and dynamical transition temperatures are approached. We argue that
the static transition is analogous to an ideal glass transition temperature in the structural glass

problem. We also argue that the static transition temperature can be identified as the temperature
at which the configurational entropy vanishes, i.e., the Kauzmann temperature. Dynamical transi-
tions between the metastable states are discussed. We argue that divergent lifetimes occur near
the Kauzmann temperature.

I. INTRODUCTION

In the recent literature a close analogy between
mean-field theories for spin glasses' with discontinuous
Edwards-Anderson order parameter, qE~, and mean-field
structural glass theories has been noted. Kirkpatrick
and Wolynes (KW) argued that the density-functional
Hamiltonian for liquids and glasses does not have the
re(lection symmetry of Ising spin-glass (SG) models.
They conjectured that the structural glass problem is
more closely related to SG models without reAection
symmetry. In the structural glass problem the analog of
the Edwards-Anderson order parameter' can be
identified as the long-time limit of the density correlation
function. The structure of the density-functional Harn-
iltonian suggest that qEA should be discontinuous at the
ideal glass-transition temperature T~. In the course of
this paper we give arguments to identify T~ with the
Kauzmann temperature. '

KW therefore conjectured that the structural glass
problem should be related to Potts glasses (PG's)
with more than four components and p-spin-interaction
SG models with p )2. " Both of these models are
known to exhibit SG transitions with discontinuous qEA.
Kirkpatrick and Thirumalai' (KT) made this conjecture
more precise. They studied the mean-field p-spin-
interaction (p & 2) SG model. Using both a dynamical
and static approach they were able to show a close for-
mal analogy between this SG model and mean-field
dynamical' ' and static density-functional' theories
for the structural glass. KT identified two distinct tran-
sition temperatures. The first was a consequence of the
dynamical theory and for reasons discussed below we
denote this transition temperature T„. The static or
thermodynamic approach naturally lead to a transition
at Tz & Tz. A connection was, however, established be-
tween the purely dynamical approach and the static ap-
proach. This connection involved some rather subtle
mathematical points. More recent work ' on the PG's

with p &4 found similar behavior. Again, there are two
distinct transition temperatures in the mean-field limit
with the dynamical transition at T~, which is greater
than the usual thermodynamic transition temperature,
which is at Tz.

The main purpose of this paper is to provide a physi-
cal interpretation of the results of KT. We also use
physical arguments to identify divergent correlation
lengths as T~ and T~ are approached. Finally, our re-
sults allow us to make some educated speculations on
the more difficult structural glass problem where the
spatial randomness must be self-generated rather than
put in by hand as in SG models.

To be precise we consider the PG model with more
than four components (p &4). By generalizing the ap-
proach of Thouless, Anderson, and Palmer (TAP) ap-
proach (Refs. I, 22, and 23) for the SK spin-glass model
to the mean-field PG model, the following conclusions
can be drawn. First, the dynamical transition at T~ ac-
tually locates a thermodynamically metastable state. In
the mean-field limit this metastable state has an infinite
lifetime. We argue that this infinite lifetime is a patholo-
gy of the mean-field model and that a sharp transition at
Tz will not occur in a finite-dimensional short-ranged
glass model. Even in a finite-dimensional glass, however,
we believe T„ to be physically significant, since for
T & T~ well-defined metastable states are possible and
transport is at least, in part, activated transport.

In this context it should be noted that the pathologies
of mean-field dynamics in usual first-order phase transi-
tions has been studied previously by Binder and oth-
ers. He also found that dynamical mean-field theories
could locate infinitely-long-lived metastable states.
Binder argued that these states were physically relevant
because in short-ranged models they existed for long
times. Infinitely-long-lived metastable states are possible
in mean-field discontinuous transitions because, in gen-
eral, systems which undergo such transitions have meta-
stable states above their equilibrium transition tempera-
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tures. Further, nucleation is not possible in the strict
mean-field limit because there is no distinction between
bulk and surface free energies. Therefore, if in the
course of its dynamical evolution a correlation function
passes near a local free-energy minimum, then it can be-
come frozen because the activated transport processes
which should allow the correlation function to go to its
true equilibrium or long-time value cannot take place.
This is especially relevant in spin-glass problems because
the natural order parameter describing the glass transi-
tion is given by the long-time limit of the two-spin time
correlation function. As a consequence of this argument
we identify T~ as the temperature where activated trans-
port processes become important.

We also use the TAP approach to investigate the ther-
modynamic transition at Tz. We argue that the transi-
tion at T~ is due to an entropy crisis. We identify a
configurational entropy in the temperature range
Tz & T & T~ and find that it becomes nonextensive at
Tz. For T & Tz this configurational entropy becomes
the PG complexity and it is of O(1), but singular as
T~Tz. An entropy crisis of this sort was first noted by
Simon and emphasized by Kauzmann as a characteris-
tic of structural glass transitions. We therefore conclude
that the PG transition at Tz is similar to that found in
the Gibbs-DiMarzio picture of the structural glass
transition for polymeric systems or in Derrida's
random-energy model. '

The plan of this paper is as follows. In Sec. II the
TAP equations for the PG are given. The formal
equivalence between the TAP approach and the usual re-
plica approach is established. Section II is concluded
with a discussion of two distinct solutions to the TAP
equations. In Sec. III the solutions given in Section II
are discussed in more detail. The TAP free energies are
explicitly given. Correlation lengths near Tz and Tz
are proposed. In Sec. IV we present arguments about
the activated dynamics between T~ and T~. In Sec. V
we summarize our results and make further remarks on
their connection to real glassy systems.

eventual conclusion that the dynamical approach natu-
rally picks out a metastable TAP state in the tempera-
ture range Tz & T & T~. With this in mind, it is not
surprising that the usual replica approach is not ap-
propriate for these temperatures. Our conclusions are
also consistent with the fact that we find that the usual
replica free energy differs from the component-averaged
free energy for T & T~ if the PG is frozen into a meta-
stable state.

An outline of this section is as follows. We first give
the TAP equations for the PG. We then sketch the for-
mal argument that the TAP approach contains the usual
replica approach. Following this we discuss two distinct
solutions to the TAP equations. The first solution in-
volves only replica self-overlap and is appropriate for the
temperature range Tz & T & T„. The second solution is
at the level of one-replica symmetry breaking' and it
describes the usual thermodynamic transition that
occurs at Tz.

A. The TAP equations

The mean-field PG Hamiltonian is

p —1

H= —g g JSS, .
a=1 ij

(I (j)
(2.1)

P(J;, )= N
2m.J exp

2J
(2.2a)

with N the number of lattice sites. To suppress a fer-
romagnetic transition, one must actually properly fix the
average of J; . ' We will avoid this problem by always
setting the ferromagnetic order parameter equal to zero.
The S,, are Potts variables chosen from the set te,' I with
(l =1,2, . . . ,p) (Ref. 32)

The PG has p components in a (p —1)-dimensional vec-
tor space. The bonds ( J; I are randomly distributed ac-
cording to

1/2

II. TAP APPROACH TO THE PG PROBLEM

Examining the details of KT's calculation' suggests
that the TAP approach will be useful for understanding
the transitions predicted by them. In replica language'
the transition at T~ seems to involve only self-overlap,
q, where a is a replica index. For the temperature
range T~ & T & Tz, KT suggest that this is the only type
of ordering possible. In this context it is useful (cf.
below) to point out that the free energy in the usual re-
plica approach does not explicitly involve q . In the
TAP approach q does play a central role and we will
explicitly derive an effective Hamiltonian for computing
the self-overlap. KT's calculations also show that Tz is
the temperature where overlap between distinct replicas
can occur. For T & Tz and in the thermodynamic limit,
we will find that the TAP approach and the usual replica
approach contain the same physics.

The apparent nonequivalence between the TAP and
replica methods can be understood on the basis of our

e, =I p —a
p+1 —a

0, l&a
p'/2X l, l =a

—I/(p —a), I &a .

1/2

(2.2b)

Some useful identities are

e eh=p5 b
I

1=1
p —1

g e,'e,' =p5&& —1,
a =1

(2.3a)

(2.3b)

(2.3c)

—Pf = — = lim (1/n )max'PF
N n 0

(2.4)

Before giving the TAP equations, we note that the
usual replica approach leads to a free energy per site
given by '
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Here, /3 '=k&T, with kz Boltzmann's constant and T
the temperature, and max denotes maximum. The func-
tion 3 is

(p —1) n — g (q ~)
4 a, 13

(a~P)

and we have assumed an isotropic PG state,

aP g aP

q b~ is the usual replica order parameter,

(2.5c)

(2.5d)

+lnTr & exp + g Ss~q ~

a, a,P
( a~/3)

Here, a, P, . . . =1,2, . . . , n denote replica indices,

/32J2

(2.5a)

(2.5b)

where m, , is the magnetization at site i in the replica e.
It is relevant to note that the free energy given by Eqs.
(2.4) and (2.5) does not explicitly depend on the self-
overlap q

The TAP equations for the PG follow most simply by
generalizing Anderson s argument23 for the SK spin-
glass model. The resulting free energy is

Ã p
PF = —g g ( 1+m, ,e,' )ln

i =1 l = 1

1 +ebm'b
I

pJ jm, ,mj, — g JJ((S;,S b ) T m, , m—+ )( (Sj,sjb ) T
—mj, mjb ),

I,J
ia Ja

l, J
(i &j) (~ &j)

(2.6)

1
(S; Sg)T=5 b+ u b m; (2.7a)

with

Vb = e eb
I I

1=1
(2.7b)

To prove Eq. (2.7a), one needs the sum rules

y &s,.s,.),=p —1 (2.7c)

and

where repeated vector indices (a, b, . . . ) are to be
summed from 1 to p —1. Here, m;, is the magnetization
at site i in a particular TAP state (we suppress the
TAP-state index here). The equal-time site-diagonal spin
correlation function in a TAP state is

g u, b, (S;,S;„)r =p (p —2)m, ,
a, b

(2.7d)

Equation (2.6) clearly reduces to the TAP equation for
the SK model (p =2) and, with Eq. (2.7a), Eq. (2.6) can
be shown to be equivalent to the result of Lage and Er-
zan for the general PG's.

The structure of Eq. (2.6) is easy to understand physi-
cally. The first term is just the usual mean-field entropy
contribution to the PG free energy and the second term
is the standard energy contribution to F in a mean-field
description. The last term in Eq. (2.6) represents the
fact that the spins give a fluctuating mean field on each
other. In usual mean-field theories J; —N ' and the
last term can be neglected. In mean field SG's, however,
Jj scales like N ' and this fluctuation contribution is
needed for consistency.

The equation of state within the TAP approach fol-
lows from

=0= —g e, ln(1+ebm, b) —pg J, m, +/3 g"J,"((S,S b ) &
—m, m b )m, I,

amia I J J

g J,, u, b, ((S,S „) —m, ,m,„) .
2p

(2.8)

We conclude this subsection by noting that, in gen-
eral, the TAP equations have an extensive number
(-e ) of solutions. ' However, almost all of these
solutions are unstable with respect to infinitesimal fluc-
tuations. In order to pick out the physically relevant
stable and metastable (in the usual sense) states, the TAP
solutions should be weighted with their canonical or
Boltzmann weight. Of course, in real systems there can

be no truly sharp dividing line between metastable and
unstable states. However, we can imagine a physical dis-
tinction (which becomes sharper as the mean-field limit
is approached) between these states. In some sections of
this paper we assume that the most important physical
transport mechanisms for long times are associated with
metastable states that have an infinite lifetime in the
mean-field limit.
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B. Equivalence between TAP and standard replica approaches

Z= g exp[ PF(m—')] . (2.9a)

With Eq. (2.8), Eq. (2.9a) can be written as

Z= fDm +5 aIm ]e
—l'F( (2.9b)

where

To prove that Eqs. (2.6) and (2.8) are formally
equivalent to Eqs. (2.4) and (2.5), we generalize the argu-
ments of De Dominicis and Young (DY) to the PG
model. If we denote the TAP states by s, then the parti-
tion function is

dPF
amia

D exp —i m, ,m . d13F

(2.10a)

metastable state) saddle-point evaluation of Eqs. (2.9).
Our procedure here differs from the white average calcu-
lation of De Dominicis et al. The metastable states we
find are locally stable and are similar to the metastable
states considered in usual first-order phase transitions.
These states have infinite lifetimes in the mean-field lim-
it. To distinguish them from other TAP states we will
sometimes call them weighted metastable states.

To carry out the average over the random bonds in
Eq. (2.9b), we introduce an integral representation of the
6 function,

Dm = +dm.. .
i, a

and 6 normalizes the 6 function,

b, Im I
= Det F

m; m b

(2.9c)

(2.9d)

and we introduce Grassman variables (r), 71*) to write
r

b. [m] = f DrlDrl'exp g g,*, gib . (2.10b)
"d PF

It is important to note that we weight each TAP state
with its canonical weight. As a consequence, the meta-
stable states we find are due to a restricted (around the

I

In using Eq. (2.10b) we assume that the absolute value
sign in Eq. (2.9d) is not important due to the canonical
weight in Eq. (2.9b). Since the average should be per-
formed over lnZ, we introduce n replicas and consider

3 F Q2 FZ"= Dm D Dg Dq exp —i m, , + q,*, g b
— F

i, a, a ™ia i,j ~ ia~ jb
a, b, a

(2.1 1)

with a= 1,2, . . . , n the replica index and F =F t m
With Eq. (2.2a) the average, [ ], over the disorder is easily performed. We will evaluate the resulting expression by

saddle-point techniques. To this end we introduce the order parameters

ap a p1
qab = ~ g mia mib

1

(2.12a)

(2.12b)

gp 1 ~ ~ ~ g pg,b
=—~im ia ibN (2.12c)

1
ab —

N la lb (2.12d)

In [Z"] we constrain x =(q, q, g, n) to have fixed values x =(q, q, g, n) and then integrate over all possible constrained
values. Introducing an integral representation of the constraint and integrating over the Cxrassman variables, neglect-
ing 1/N corrections, yields

[Z"]= f Dx D e~'
2&

(2.13a)

Here,

& =C+ln Dm D 2'
and,

1 Ie, eb
e Det

p(1+e,'m, )

ap—1 snab (2.13b)
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1L = ——g ln
p a, i

1+eb mb ——g e,'(m, +im, )ln(l+ebmb ) i—g (A. ~&m, mp+A&~&im, im ~z+Az~zim, mg),
p a, ~ a, p

Q, b

(2.13c)

where I is the unit matrix in replica space. Note that Eq. (2.13b) involves only a single-site integration. In Eq.
(2.13b), C is given by

C=
2 p

a, b

—ap- pa
q abq ba

&
~ ap- pa, ~ —ap- pa, —ap- pa —ap- pa+q abq bQ +2g Qbq bQ +R abg ba Qb bQ

+P X l (~ b q b) (~ b 'q b)(g b b)l+ g(~ b'q b+~y q b+~ bg oh+~ b b)
a, a, b a,p

Q, b

(2.13d)

The next step in showing the equivalence between the
TAP and replica approaches involves the saddle-point
evaluation of Eq. (2.13a). Variation with respect to the
A. 's yields (from now on we drop the tildes)

q,g=(m, mb ), q, &~ (im, im——~&), g,g=(im, m i)b.
(2.14a)

e'e'

p ( (1+e'm, )

1
CX

Qb Q b + Qbc c
p

(2.14e)

To prove that Eq. (2.14d) is a saddle-point condition,
one needs the inverse identity,

Here and below ( ) denotes an average with a weight
given by the integrand of the integral in Eq. (2.13b).
Following DY the remaining variations give

and

ip, , —:m, +im,

Defining the new integration variables,

(2.158)

qQb gab 2 2 qQb

bgbqb~@(~bqb
(2.14b)

(2.14c)

(2.14d)
I

1
X, = —y e,'ln(1+ebmb ),

p
(2.15b)

and using Eqs. (2.14) in Eqs. (2.13) and assuming an iso-
tropic PCz phase yields

(p —1) g (1—2q ) — g (q ~)
a a,p

(a~p)

+ln DXD exp ip, ipPq P — ip, ,X, —— ln
1+ebmb

(2.16)

with mb implicitly given by Eq. (2.15b). We next prove
that Eq. (2.16) is identical to Eq. (2.5a). With the identi-
ty

1
exp ——g ln

p

1+ebmb = +exp pe,'X,
I a

(2.17)

the X integral in Eq. (2.16) forces ip, = Ie,' I. If we use
this and Eq. (2.3b), then the self-overlap terms in Eq.
(2.16) are seen to cancel and the remaining terms are just
Eq. (2.5a).

We remark that two results were obtained in this sub-
section. We showed that the TAP equations for the PC&

are consistent with the usual replica approach. More
importantly, we have also derived an effective Hamil-

tonian for computing self-overlap, q, as well as replica
overlap, q +P.

C. Locally stable solutions of the TAP equation

In this subsection we discuss two distinct locally stable
solutions of our previous equations. In our explicit cal-
culations we are interested in PG transitions with p ~ 4,
where the glass transition is known to be discontinuous.
In order to control the discontinuity we choose p =4+@,
e«1, so that at the glass transition q —O(e) and an
order-parameter expansion is possible. It will be clear
that our conclusions are independent of this restriction.

The first solution occurs at a temperature we denote
by T„. At and below Tz there is only self-overlap,

q =q, and no replica overlap q +P=O. Note that this
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is the case of maximally broken replica symmetry. We
show that T~ coincides with the glass-transition temper-
ature predicted by the dynamical theory. ' The second
solution occurs at a temperature Tz & T~. It coincides
with the usual replica-based transition temperature. For
this case there is one-replica symmetry breaking (1-RSB).
The n replicas are broken into n/x clusters of x repli-
cas. The replicas within cluster i overlap with weight
qa(i)P(i) qa(&)a(i) q, while q

(')~ =0 for p+j The frac-
tion of replicas that overlap is given by 1 —x.

To construct an equation of state which is valid for
both cases we start with the definition

and,

L= —~ g P,P~q ~—giP, X,
a,P, a a, a

1——g ln
~ a, I

1+ebmb

with m, (X) given by

X, = —g e, ln[1+ eb mb (X )] .
1

(2.18d)

(2.18e)

q.b~=q ~5.b=(m. mg),
with

(( ))=—f DPDXe ( ),
where Q is the normalizing factor,

(2.18a)

(2.18b)

Define the self-overlap by

aa
q =q&

and the replica overlap by

qo if a&P but a, Psmith cluster,
aP

0 otherwise .

(2.19a)

(2.19b)

0= DpDXe (2.18c)
Using the 1-RSB scheme described above, the equation
of state for self-overlap is

q,'b ——q&5,b
———f DH, DX'm, (X')mb(X')exp 1 x —1

exp(&» ) DX2 exp(& ~2)
2pq p

(2.20a)

where

1 20= DH2exp — g H, 2
2pqp

DX2 exp (2.20b)

with

g (XJ H„) ——g ln—
2C' q&

—qo, p

1+eb mb (X')
(2.20c)

The equation of state for two replicas (say 1 and 2) in the same cluster is

qab q05ab f DH, DX'DX m, (X')mb(X )exp
Q

1 2 x —2
exp(&»+&») DX3exp(& /3)

2pqp
(2.21)

Self-consistently, one also finds q,b"~'J' ——0 for i&j We.
note that the Eqs. (2.20) and (2.21) can be derived
without replicas by using the cavity approach.

Next, we specialize these equations to the transitions
at T„and Tz described above. If there is only self-
overlap, then qo ——0 and Eq. (2.20) reduces to

q.'b(qp ——0) =q)5ab ———f DX'm. (X')mb(X')e

g (X,') ——g ln
2pq& a

1+ebmb(X')

(2.22c)

One also finds q, b
——0, as is required for consistency.

Note that the n ~0 limit was never used and that the
parameter x does not appear in this solution.

At the transition denoted by Tz, one finds

(2.22a) q,b(qo=q, )=q, 5,b= DH, m (H, )m„(H, )e

with

DX 'e

where

(2.22b) with

O'= DH e

(2.23a)

(2.23b)
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where

1 gH„——g ln
X

2pq) p

1+ebmb(H )

different types of free energy. There is the free energy
calculated with the usual replica approach or by Eq.
(2.9a). For the frozen state, q +~=0, and Eqs. (2.4) and
(2.5) yield

(2.23c) /3f = = —+(p —1)—lnp .PF
1V 4

(3.3)

One also finds

a(i)p(j ) q, ifi =j,
0 if i&j (2.23d)

III. TAP FREE ENERGIES

which is required for consistency. Again, the n ~0 limit
was not needed. Here, x appears and we note that Eqs.
(2.22) and (2.23) are identical at x =1. Further, x is the
break point in the usual description of the PG transition
and, at T~, x = 1.

This is just the usual paramagnetic-phase free energy. A
more physical free energy which can also be readily cal-
culated is the weighted-average —over all TAP
components —TAP free energy. Denoting this free en-
ergy F, one has

Pf= = —QF(m, )P, .PF P
S

(3.4a)

Here, F(m, ) is the free energy in a particular TAP state
and is given by Eq. (2.6) and P, is the canonical proba-
bility to be in that state:

In this section the two solutions discussed in Sec. II
are considered in more detail. In particular, we concen-
trate on the free energies, component-averaged free ener-
gies, and the complexities for these states.

P =
S

—pF(m )

e
—PF(m, )

e

—PF(m, )

ez (3.4b)

A. Frozen state

2 3 3

q =pq+ (p —4) — (5p —13)+O(p ) .
2 3

(3.1a)

Equation (3.1a) is most easily derived by taking the q
derivative of the right-hand side of Eq. (2.22a) and then
integrating the resulting expression. Near T~ we find
1 —p —O(e ), q —e. For small e=p —4, Eq. (3.1a) is
consistently

0=(p —1)q+ —
q ——'q2 7 3

2
(3.1b)

This equation (for 0&e «1) first has a physical non-
trivial solution at

=1+—,I, e +O(e ) . (3.2a)

The Edwards-Anderson order parameter at T~ is

The state described by Eqs. (2.22) will be dubbed the
frozen state because it is the state into which the dynam-
ical theory seems to freeze. It could also be called the
diagonal saddle-point state.

For small q, Eqs. (2.22) yield the equation of state
(q &

——q)

=F—TI =F—TS, . (3.5)

Here, I &0 is usually called the complexity, but we will
argue that for the PG it is more appropriately called the
configurational entropy, S„for T~ & T & T~. In the SK
model I is of O(1) and F =F to within 1/N correction,
so that it is not necessary to distinguish between these
two free energies. Physically, I can be related to the ad-
ditional information needed to specify a particular TAP
state. For the physical interpretation of our results, it is
crucial that both sides of Eq. (3.5) be evaluated near
identical saddle points. Otherwise, it would not be
correct to use Eq. (3.5) as an equality. This condition is
satisfied due to the equivalence of Eqs. (2.16) and (2.4).
Using Eq. (3.5), we will be able to identify the solution
degeneracy of the weighted metastable states for
Tz & T & T~. The solution degeneracy can also be cal-
culated directly.

F can be calculated directly by using the formalism
given in Sec. II. An equivalent procedure is as follows.
To leading order in N, Eqs. (2.6) and (2.8) are

F and F can be related to one another with Eq. (3.4b).
One finds

F=F+k~T QP, lnP,
S

q(T =T„)= +O(e ) .
28

(3.2b) PF = —g g (1+m,,e,')ln
i I

1+eh m, b
I

If we take into account that the dynamical theory was
for a soft-spin PG model, then we find that Eqs. (3.1)
comprise the equation of state found in the dynamical
approach to the PG problem. ' The dynamical theory
predicts a glass-transition temperature given by Eq.
(3.2a) and an Edwards-Anderson order parameter given
by Eq. (3.2b). Also note that Eq. (3.1b) gives
q =q(T=T„)+O((T„—T)'~ ).

In this state we need to distinguish between two

—P g J,"m,,m, — (p —1)(1—q) (3.6a)
l) J

(i (j)

0= —g e, ln(1+ebm, b ) —P g J, m, —pm, , (1—q) .
P

1

J

(3.6b)
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Using Eq. (3.6b) to eliminate the multisite term in Eq.
(3.6a) yields

/3F= g—g 1+
1+ebm b

I

——p(p —1)(1—q ) .N 2 (3.6c)

I

Pf = = —g 1+ ln
N p, 2

1+ebmbI

(p —1)(1—q ) .2

4
(3.6d)

Before explicitly evaluating f, to O(q ), we give two
exact identities which are useful in understanding the
physics for T~ & T & T~. The first identity is

= ~(p —1)q —~ y & m'&
Bq 2 2

and the second identity is

(3.7a)

In Sec. II we effectively derived a distribution for the
magnetizations on a site i. Averaging over this distribu-
tion yields

Note that Eqs. (3.1), (3.7), and (3.9) are all consistent.
With Eq. (3.9) we can interpret the frozen state pre-

dicted by the dynamical theory in the temperature range
Tz & T & T„. We write Eq. (3.9) as

Pf = —lnp — (p —1)+o(gf ) .
4

(3.10)

The first two terms in Eq. (3.10) are just the
paramagnetic-phase (PM) free energy given by Eq. (3.3),
and 5(/3f ) is the free energy required for the self-overlap
ordering for T & T~. With Eqs. (3.9) and (3.1), o(/3f )

can be evaluated, and one finds that, for T'& T & T~,
5(/3f ) &0. This implies that in this temperature range
the frozen state is thermodynamically metastable. At
T', 5(/3f )=0, and in the next subsection this tempera-
ture is shown to be equal to Tz, the temperature where
replica overlap can occur. Also note from Eqs. (3.10),
(3.3), and (3.5) that 6(Pf ) is equal to the configurational
entropy. T' = T~ is also the temperature where the
configurational entropy becomes zero. A continuation
of the frozen phase to T & T' would lead to an unphysi-
cal, negative value of S, .

We conclude this subsection by calculating the PG
susceptibility' and identifying a divergent correlation
length near T~ . Defining the susceptibility matrix by

d'/3f p (p —1)(1—p) — (p —1)(p —4)qp
Bg 2

To prove these identities, one needs

(3.7b)

/3X.b
= & ~;.~jb & 7. —m;. m, b

the PG susceptibility is given by

XPG ———g X,'bX'b, .
I,J
a, b

(3.11a)

(3.11b)

(m.xb &=pqo. b (3.8a)
Following the technique developed by Bray and Moore
for the SK spin-glass model yields

and

&X,Xdf &=/ q&,d&f &+o,d(/ q)'&f &

v,d, ( m, f &
—5,d (pq )

(pq)'

—(p )'q(m, m, &, (3.8b)

P(p —1) p —1 —b
+PG

p
where

p a'Pf
Bq

(3.11c)

(3.11d)

where

1f—= —g ln(1+ebmb) . (3.8c)

12 24(p —1)(p —4)q'+ (p —1)(5p —13)

+O(q') . (3.9)

Equations (3.8) can be obtained by integration by parts.
Equation (3.7a) indicates that r)/3f IBq =0 yields an
equation of state consistent with Eqs. (2.22). This should
be contrasted with Eq. (3.3) which does not depend on q.

If we evaluate the averages in Eq. (3.7b) to O(q ),
then, by integration over q, the free energy, f, to 0 (q ),
can be easily obtained,

/3f = —lnp —~(p —1)+ (p —1)(1—p)q4 4

with the second-derivative term in Eq. (3.11d) given by
Eq. (3.7b). Now, if we use that T„ is defined by when
[cf. Eq. (3.7a)] "r)/3f ldq =0 first has a nontrivial solution,
then it is clear that T~ actually denotes a spinodal point
or a limit of metastability. It then follows, in gen-
eral, that b, ( T~T„)~0 and that XPG( T~T„)
diverges. This can be explicitly confirmed with the solu-
tion given by Eqs. (3.2). Further, for small e, Eqs. (3.2)
yield b, (T~T~ ) —(T„—T)' . If we assume a square-
gradient term in the effective q Hamiltonian, then this,
in turn, indicates a divergent correlation length near T~
given by

(3.11e)

The exponent —,
' is usual for a correlation length near a

mean-field spinodal.
Finally, we mention that our conclusion that the

frozen state is only thermodynamically metastable is
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consistent with the general results of van Hemmen.
van Hemmen's arguments indicate that the
configurational entropy (cf. below) given by Eqs. (3.3),
(3.5), and (3.10) can only be extensive if the self-overlap
or frozen state is metastable.

B. The PG state

We call the true thermodynamic phase for T & TK the
PG state. This phase has been discussed before in the

literature. ' ' Here we make some connections between
this state and the frozen state and between the usual re-
plica approach and the TAP approach. We also define a
divergent correlation length near TK.

For the PG state, which is the equilibrium state for
T & TK, F and F can be shown to be equal except for
N ' terms. With 1-RSB, Eqs. (2.4) and (2.5), or the gen-
eralization of Eq. (3.6d), give the free energy

2 2

Pf = —lnp — (p —1)— (p —1)(1—p)(1 —x )q + (p —1)(p —4)(1 —x )q — (p —l)(1 —x ) q4 4 12 6
4 4

24 (p —1)(1—x )(5p —13)+(1—x )0[q', (1—X)q ] . (3.12)

Equation (3.12) is valid to 0 (e ) with q —0 (e),
p= 1+0(e ), and for TK-T, and we show that
1 —x =1—T/TK. The equation of state follows from
d/3f ldq =0, or by expanding Eqs. (2.23) in powers of q,

Here we have assumed that 1 —x&0. Note that near TK
we will find 1 —x~0 and Eq. (3.13a) reduces to Eq.
(3.1b). This was noted before in Section II. The equa-
tion for x follows from r)13f ldx =0,

3 2 7 4
1 —x=

3 q ——(1 —p)q ——q
q 2 4 24 (3.13b)

with 0 &x & 1. Note that the right-hand side (rhs) of Eq.
(3.13b) is ——5(f3f ) in Eq. (3.10), and that Eq. (3.13b)
first has a physical solution at 1 —x — o(13f ) =0. —
Denoting this transition temperature by TK, one finds

2
kB TK E

J 42
=1+ +0(e') . (3.14a)

0=(p —l)q+ —
q ——', q —(1—x)q +0(e, e (1—x)) .

2 3

(3.13a)

I= —ks QP, lnP, . (3.16)

In SG's it is known that the average number of states
with weight P between P and P +dP is f (P)dP, with'

(3.17a)

The complexity is then'

A physical interpretation of this will be given below.
Secondly, note that f in the PG state is greater than the
continuation of the PM-state free energy. This is usual
in SG's. ' Technically, it arises because the space of or-
der parameters Iq ~~I is of dimension (n/2)(n —1),
which is negative as n ~0. As a consequence, the dom-
inant saddle point in the evaluation of the partition func-
tion is a local maximum. This should be contrasted with
the frozen state discussed in the first part of this section.
The space of order parameters Iq I is of positive di-
mension and the true equilibrium state is a minimum
with respect to the variation of these parameters.

To gain further insight into this phase transition, we
examine the complexity given by Eq. (3.5),

The order parameter at TK is

(3.14b)

dp P PlnP= 1 — 1 —x
kB 0

(3.17b)

Note that TK & Tz here, and to all orders in e this must
be the case. This follows since by definition T~ occurs
when Eq. (3.13a), at x =1, or Eq. (3.1b) first has a solu-
tion at any order in e. Tz occurs when both Eqs. (3.13)
(and their generalization to higher order in e) are
satisfied.

With Eqs. (3.13) the free energy in the PC& state near
TK is

Pf = —lnp —~(p —1)+—,'(p —1)(1—x )'q', (3.15)
4

with 1 —x —1 —T/TK. Several features of this free ener-

gy should be noted. First, although q
~~ jumps discon-

tinuously at Tx, the free energy given by Eq. (3.15) pre-
dicts no latent heat and a discontinuous specific heat.

with itj the digamma function. Near T=Tx, or x=1,
one finds that I is singular,

I
kB

1

1 —T/TK
(3.17c)

This, in turn, implies that the effective number of
relevant states, K', is exponentially large near TK,

TKK*(T & Tx ) =exp(Ilk& ) =exp (3.17d)
TK

Equation (3.17d) indicates that near Tx the number of
possible states into which the system can freeze is ex-
ponentially large. This is probably why there is no la-
tent heat at TK. There are so many states to freeze into,
that the system is in a statistical sense equally disordered
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at TK and TK .
We can also use Eq. (3.17d) to identify a divergent

correlation length, gx, near Tz, and to identify T~ as a
"Kauzmann" temperature for the PG. The argument is
as follows. In the mean-field limit the system appears to
freeze into a thermodynamically metastable state at Tz.
We conjecture that in a finite-dimensional PG, the PG
will not freeze at Tz, but instead T„wiH denote a tem-
perature where nontrivial locally stable metastable states
are first possible and the long-time dynamics is deter-
mined by activated transport processes. With this, we
can use Eq. (3.5) to define a configurational entropy for
T & T„. From Eqs. (3.5) and (3.10), S, near Tz is pro-
portional to

(3.18a)

The number of states into which the system can make
activated transitions is then extensive and is proportional
to

5,
K *

( T~ T~+ ) =exp
k~

(3.18b)

At TK the number of possible states becomes nonexten-
sive and the system undergoes an ideal-glass transition.
This scenario is similar to the structural glass-transition
picture of Gibbs and Di Marzio and Tz is the
Kauzmann temperature.

A divergent correlation length can be identified by us-
ing X—V-L, "=the volume of systems. On the TK+ side
of the transition, we can then equate Eqs. (3.17d) and
(3.18b) to define a length scale below which the system
behaves as though it were frozen. Defining gz in this
way yields

(3.19)

This agrees with the scaling ansatz of Gross, Kanter,
and Sompolinsky.

IV DROPLETS" AND ACTIVATED TRANSITIONS
IN THE POTTS GLASS

The existence of infinitely many metastable states for
the infinite-ranged Potts glass between T„and 1K sug-
gests some interesting dynamical consequences for the
more realistic finite-ranged Potts system. A complete
analysis of the dynamics of the finit-ranged model has
several complications. The most important complication
is the diversity of states below T~. This diversity will
probably be important in giving the nonexponential re-
laxations characteristic of glasses and viscous Auids. '
In addition, the finite-range model will exhibit critical
fluctuation effects, at least near T~, but perhaps below
this temperature as well. Because of these dual complex-
ities we will limit ourselves to a qualitative and some-
what speculative discussion of activated dynamics in a
very-long-ranged Potts glass. A forrnal analysis along

these lines would require an extension of instanton tech-
niques to random systems. Although some work along
those lines exists, ' ' it does not seem directly applicable
here. The role of droplets and activated transitions in
the ordered phase of Ising spin glasses has recently been
emphasized by Huse and Fisher. The differing mean-
field-theory structure of the Potts glass leads us to a
rather different discussion, although there may eventual-
ly be many points in common.

The dynamics in between T„and TK resembles that
of nucleation for ordinary first-order transitions. There
are several differences, however. First there are many
order parameters: The magnetization at each lattice site
is given by a probability distribution. There can be tran-
sitions between the paramagnetic state, m =0, and any
ordered state, or between the ordered states. Another
difference from usual first-order transitions is that the
dynamical theory' ' ' suggests that one is initially forced
to be in one of the ordered states despite their higher
free energy. The free energy of the totality of the meta-
stable states contains a configurational entropy and is, in
fact, equal to the free energy of the paramagnetic solu-
tion.

In the analogy to first-order transitions, T~ acts like a
spinodal temperature. In the infinite-range model
the nucleation barriers are infinite below this tempera-
ture. Thus the metastable states have an infinite lifetime
and would, in fact, be "experimentally" observed.
Therefore, for the infinite-range system, T„ is a dynami-
cal transition' ' ' from ergodic to nonergodic behavior.
For a long- but finite-range model the barriers below T~
are finite. The divergent susceptibility at T~
[Xpo-(T —T„) '

) implies that the barriers vanish at
T~. The interface between two different metastable
states should diverge as g„-(T„—T) ' . Nucleation
clusters near T„will be quite noncompact. In fact, the
spinodal cannot be a sharp line for these short-range
models, and no strict divergences would occur because it
is meaningless to talk of barriers less than k&T since
there would be no separation of time scales. We note
that Hall and Wolynes have already argued that, in
three-dimensional structural glasses at the point where
aperiodic solutions of the density-functional equations
begin to exist, the barriers are only of size k~ T since the
distance between minima of a structural glass is of the
order of the thermal vibrations in a single minimum.
This is in accord with our interpretation of T~ as a
quasispinodal in the Potts glass.

The slowing down of density fluctuations in dense
liquids as predicted by mode-coupling theory' ' near
"T~" is also connected with this pseudospinodal behav-
ior. 3 A local stability analysis (in the "glass" phase) of
the dynamical nonlinear integral equation describing the
structural "glass" transition' ' has the same form as
the dynamical equations describing a mean-field spinodal
of an ordinary first-order phase transition as studied by
Binder. On the liquid side of the transition the dynam-
ical glass theories are complicated by non-Markovian
effects. The transition in both cases is smoothed out by
activated transport.

Considerably below T~, activated dynamics is dom-
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inant. A single TAP state s lifetime is determined by nu-
cleation of a cluster of sufficient size within which may
be found any of the different TAP states. Naively, we
would argue that this cluster would be compact because
there is no divergent susceptibility below T„according
to mean-field theory. This differs from the usual mean-
field Ising glass, which is critical for all temperatures at
which TAP solutions exist. The mean-field theory thus
indicates that the surface tension cr is finite. (This is a
delicate point where the randomness may play a role:
some of the TAP states may match more perfectly than
others with the state under consideration. They would
have lower surface (perhaps vanishing) tensions and bar-
riers. ) This observation may be related to the fact that
the Potts glass is less frustrated than the Ising glass.
This point is also consistent with the fact that the frozen
state, where there is no replica overlap, is not frustrated
in the usual sense.

The nucleation picture gives an estimate for a typical
lifetime of the TAP state. Here we concentrate on tran-
sitions between different "ordered" TAP states. We
note, however, that the transition to the paramagnetic
state is in some sense equivalent to all the possible tran-
sitions to the different TAP states because the difference
between the paramagnetic-state free energy and the
component-averaged free energy is just the
configurational entropy of all the weighted metastable
states. Since different TAP states have roughly the same
free energy per unit volume, the nucleation cluster forms
because of the configurational entropy arising from the
fact that any of the TAP states may be in the cluster,
leading to escape from the original TAP state. Thus, for
a cluster of radius R there is a volume free energy of the
form Fb„&k —Ts,R "/d, where s, is the configurational en-

tropy per unit volume and d is the spatial dimensionali-
ty. The surface free energy is -crR" ' according to
mean-field theory (but could scale as a lower power of R
if there is more frustration than indicated by mean-field
theory). A Cahn-Hilliard argument gives a nucleation
cluster of size R *-(d —1)o /Ts, and an activation free
energy of —Ts, R * —( T —T~ )

' . Thus the rate of
transitions per unit volume is proportional to

exp[ cr[(d ——1)o./Ts, ]
'

I .

Also note that in the present theory the driving force of
the cluster is entropic.

A divergent activation energy is one of the charac-
teristics of glassy behavior. Adams and Czibbs ob-
tained such a divergence based on the Gibbs —Di Marzio
entropy crisis by a different argument. We note that a
relaxation time r-exp[A /(T —TK) ] is consistent with
the behavior of three-dimensional structural glasses.
Indeed, it may be used to fit transport as well as the
Vogel-Fulcher law.

The dynamic picture near T~ only makes sense if the
drops are large compared with the correlation length gx.
Since g'x. diverges like (T —Tx) ", the picture should
break down for d &2 and be marginal in two dimen-
sions.

An unusual aspect of using the many-state nucleation

analogy for activated dynamics is that the growth of a
nucleation cluster should be very slow. Once a critical
cluster is formed, it must have a particular TAP state in
it. Thus there is no free-energy driving force for growth.
This might support an argument that the relevant time
scale is not determined by the maximum of the droplet
free energy but by the radius at which the droplet free
energy crosses zero. This would give essentially the
same scaling form, however. Multiple nucleation events
may thus be important in the complete dynamics in the
temperature region Tz & T & T~. We conclude by not-
ing that the nucleation picture may also be complicated
by the lack of time-scale separation caused by the unusu-
al growth mechanism.

V. DISCUSSION

The Potts glass has many of the features that are con-
nected with glassy phenomena in general and the liquid-
glass transition in particular. One motivation for this
analogy has been the connections ' between the
aperiodic crystal-liquid transition starting from theories
of freezing' and the mode-coupling dynamic
theories, ' ' both of which are based on translational
order parameters. Similarly qualitative analogies be-
tween plastic crystals and their glass transitions also
bring to mind this connection. Theories of the low-
temperature properties of glasses have also indicated a
relationship between disordered quadupolar systems
(which have the same properties as the Potts system) and
orientational glasses. Another route to the connection
is through a liquid-glass transition associated with
bond-orientational order.

In this paper we have sought to explore and interpret
more fully the nature of the transitions in the Potts glass
in the mean-field limit. A major finding is that there are
a great number of points of contact with the theory of
first-order transitions. Two temperatures —T~ and
Tz —appear in the theory. ' ' The first is associated
with the appearance of well-defined free-energy minima,
the latter with their ultimate thermodynamic stability.

The phenomena at Tz indicate a change of transport
mechanism. Such a change cannot be a sharp phase
transition in a finite-range system, but there may well be
vestiges in the details of correlation functions. For ex-
ample, in the long-range limit one expects noticeable pla-
teaus in time correlation function to appear near T„and
perhaps pseudospinodal behavior, ' ' e.g., the fast part
of the decay of the correlations should get slower as one
approaches T~ from below. In the naive static
theories' of the structural glass transition, which are
based on density-functional theory or a self-consistent
phonon description, T„ is the limit of stability of the
glassy state. We expect that it is the transition at T~
which is located by some' ' of the dynamical
theories' ' of the structural glass transition. These
theories use self-consistent perturbation expansions to
generate nonlinear equations describing dynamical corre-
lation functions in dense simple liquids. In general,
there are two sources of the nonlinearities in these equa-
tions. The first source is of purely dynamical origin and
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arises even if the underlying free energy is quadratic.
The second source of nonlinearities is from a nontrivial
free energy which in some' ' of these theories is impli-
citly given by density-functional theory. It is important
to note that the final one-loop results have the same
structure, even if only the first source of nonlinearities is
taken into account. ' However, the more complete
theories' ' are needed to make connections with static
theories' of the glass transition.

Recently, higher-order dynamical theories ' have
claimed to avoid the transition at Tz. For the case' '

where only a quadratic free energy is used, this seems
reasonable because there is no underlying spinodal point
in the mean-field limit. For the case where there is a
mean-field spinodal point, this is a bit perplexing since
this theory does not contain activated transitions
which seem to be the natural source of rounding of the
transition. Still, because the barriers vanish at Tz there
could be a remnant of these phenomena in a perturbative
calculation.

The transition at Tz is truly thermodynamic and
should be robust. This transition, first found by Gross
et al. , we now see is connected with a configurational
entropy crisis like that of structural glasses. This entro-
py crisis is somewhat more subtle than in other models
such as the Gibbs —Di Marzio model since there is still
a great deal of disorder in the glassy phase. Also, fur-
ther instabilities may be encountered at lower tempera-
tures " that may be associated with secondary relaxa-
tions. The similarity of the PG to the random-energy
model ' also is consistent with the entropy crisis.

A very crude droplet argument gives a dramatic
Vogel-Fulcher —like slowing down as the transition at Tz
is approached. Thus it may be very difFicult to get very

close to the transition in the laboratory, and in practical
experiments the glass transition will appear kinetic in
origin.

More dynamic studies of plastic crystals which may be
closer to the Potts system microscopically would be
valuable here. Angell has emphasized the distinction
between "strong" and "fragile" systems both for plastic
crystals and liquid-glass transitions. The mean-field
theory may be a useful guide here.

The transition at Tz is quite unusual and is associated
with a diverging length. Certainly the relevance of scal-
ing and renormalization-group ideas needs to be exam-
ined at this transition, although the inability to approach
close to the transition may make mean-field theories
more accurate. Arguments based on a combination of
mean-field ideas and renormalization-group ideas may
also be helpful in understanding the role of the laborato-
ry time scale in determining glassy phenomena. Studies
of glass transitions in confined geometries or in molec-
ular clusters might also be of some interest in observ-
ing the effects of this length scale.

ACKNOWLEDGMENTS

One of us (T.R.K.) would like to thank D. Thirumalai
for useful discussions on many aspects of this work. We
are also pleased to acknowledge discussions with Y. Fu,
U. Mohanty, J. R. Schrieffer, and J. P. Sethna. This
work was supported by the National Science Foundation
through Grants No. DMR-86-07605, No. CHE-84-
18619, and No. PHY-82-17853, supplemented by funds
from the National Aeronautics and Space Administra-
tion. P.G.W. also acknowledges support from the J. S.
Guggenheim Foundation and T.R.K. acknowledges sup-
port from the Presidential Young Investigator Program.

'Permanent address: Department of Physics and Astronomy
and Institute for Physical Science and Technology, Universi-
ty of Maryland, College Park, MD 20742.

tPermanent address: Noyes Laboratory, University of Illinois
at Urbana-Champaign, Urbana, IL 61801.

For a recent review of spin glasses, see K. Binder and A. P.
Young, Rev. Mod. Phys. 58, 801 (1986).

For a recent review of structural glasses, see J. Jackie, Rep.
Prog. Phys. 49, 171 (1986).

T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. A 35, 3072
(1987).

4F. Simon, Z. Anorg. Algemine. Chem. 203, 217 (1931).
5W. Kauzmann, Chem. Rev. 43, 219 (1948).
D. Elderfield and D. Sherrington, J. Phys. C 16, L497 (1983);

16, L971 (1983); 16, L1169 (1983); D. Elderfield, J. Phys. A
17, L517 (1984).

7E. J. S. Lage and A. Erzan, J. Phys. C 16, L873 (1983); E. J. S.
Lage and J. M. Nunes da Silva, ibid. 17, L593 (1984).

D. J. Gross, I. Kantor, and H. Sompolinsky, Phys. Rev. Lett.
55, 304 (1985).

B. Derrida, Phys. Rev. B 24, 2613 (1981).
D. J. Gross and M. Mezard, Nucl. Phys. B240, 431 (1984).

~ ~E. Gardner, Nucl. Phys. 8257, [FS14],747 (1985).
' T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. Lett. 58,

2091 (1987); Phys. Rev. B 36, 5388 (1987).
E. Leutheusser, Phys. Rev. A 29, 2765 (1984).

' U. Bengtzelius, W. Gotze, and A. Sjolander, J. Phys. C 17,
5915 (1984).
T. R. Kirkpatrick, Phys. Rev. A 31, 939 (1985).
S. P. Das, G. F. Mazenko, S. Ramaswamy, and J. J. Toner,
Phys. Rev. Lett. 54, .118 (1985).

See also W. Gotze, Z. Phys. B 56, 139 (1984); 60, 195 (1985);
U. Bengtzelius and L. Sjolander, J. Chem. Phys. 84, 1744
(1986).

'sFor a review, see W. CJotze, in Proceedings of the NATO Ad
vanced Study Institute on Amorphous and Liquid Materials,
edited by E. Luschen, G. Jacucci, and G. Fitsch (Reidel,
Dordrecht, 1986).
Y. Singh, J. P. Stoessel, and P. G. Wolynes, Phys. Rev. Lett.
54, 1059 (1985). Similar results are obtained with self-
consistent phonon theories of glass stability [see J. P.
Stoessel and P. CJ. Wolynes, J. Chem. Phys. 80, 4502 (1984)].
In order to make the connection between the dynamical and
static theories, KT needed to divide the static equation of
state by 1 —x and then set x =1~ The motivation for this is
given in Sec. III.

'T. R. Kirkpatrick and D. Thirurnalai (unpublished).
D. J. Thouless, P. W. Anderson, and R. G. Palmer, Philos.



8564 T. R. KIRKPATRICK AND P. G. WOLYNES 36

Mag. 35, 593 (1977).
P. W. Anderson, in Ill-Condensed Matter, edited by R. Bali-
an, R. Maynard, and G. Toulouse (North-Holland, Amster-
dam, 1979), p. 159.

~4Indeed, the usual rigorous definition of metastable states is
that these states have an infinite lifetime in the mean-field
limit [see O. Penrose and J. L. Lebowitz, in Studies in Sta
tistical Mechanics, Volume VII, edited by E. W. Montroll
and J. L. Lebowitz (North-Holland, Amsterdam, 1979), p.
293].
K. Binder, Phys. Rev. B 8, 3423 (1973); C. Billotet and K.
Binder, Z. Phys. B 32, 195 (1979), and references therein.
R. B. Griffiths, C. Y. Wang, and J. S. Langer, Phys. Rev. 149,
301 (1966); O. Penrose and J. L. Lebowitz, J. Stat. Phys. 3,
211 (1971).
For a general discussion of complexities in spin glasses, see
R. G. Palmer, Adv. Phys. 31, 669 (1982).
J. H. Gibbs and E. A. Di Marzio, J. Chem. Phys. 28, 373
(1958).
G. Parisi, Phys. Rev. Lett. 23, 1754 (1979); J. Phys. A 13,
L115; 13, L1887 (1980).
For a review of the regular Potts model, see F. Y. Wu, Rev.
Mod. Phys. 54, 235 (1982).
D. Elderfield and D. Sherrington, J. Phys. C 16, L971 (1983).
R. K. D. Zia and D. J. Wallace, J. Phys. A 8, 1495 (1975).
C. De Dominicis, M. Gabay, T. Garel, and H. Orland, J.
Phys. (Paris) 41, 923 (1980).

34C. De Dominicis and A. P. Young, J. Phys. A 16, 2063
(1983).
M. Mezard, G. Parisi, and M. A. Virasoro, Europhys. Lett.
1, 77 (1986).
T. R. Kirkpatrick (unpublished).
A. J ~ Bray and M. A. Moore, J. Phys. C 12, L441 (1979).

3sJ. L. van Hemmen, in Proceedings of the Heidelberg Colloqui
um on Spin Glasses, Vol. 192 of Lecture Notes in Physics,
edited by J. L. van Hernmen and I. Morgenstern (Springer,
Berlin, 1983), p. 203.

M. Mezard, G. Parisi, N. Sourlas, G. Toulouse, and M.
Virasoro, J. Phys. 45, 843 (1984).
G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979).

"'J. L. Cardy and A. J. McKane, Nnc. Phys. B257, [FS14], 383
(1985).
D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601
(1986); Phys. Rev. B 35, 6841 (1987)~

43R. Hall and P. G. Wolynes, J. Chem. Phys. 86, 2943 (1987).
44I. Kanter, J. Phys. C 20, L257 (1987).
45For a review of the dynamics of first-order phase transitions,

see J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase
Transitions and Critical Phenomena, edited by C. Domb and
J. L. Lebowitz (Academic, New York, 1983), Vol. 8, p. 269.

46U. Mohanty (unpublished) has investigated nucleation of a
general Erhenfest second-order transition. His arguments
lead to a similar but different result for the rate of nu-

cleation.
47G. Adams and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

C. A. Angell, A. Dworkin, P. Figuiere, A. Fuchs, and H.
Szwarc, J. Chim. Phys. 82, 773 (1985).
J. P. Sethna and K. S. Chow, Phase Transitions 5, 317 (1985).
R. Kree, L. A. Turski, and A. Zippelius, Phys. Rev. Lett. 58,
1656 (1987).

5~B. Chu, F. J. Schoenes, and M. E. Fisher, Phys. Rev. 185,
219 (1969)~ See also D. W. Herrman, W. Klein, and D.
Stauffer, Phys. Rev. Lett. 49, 1262 (1982).
S. P. Das and G. F. Mazenko, Phys. Rev. A 34, 2265 (1986)~

W. Gotze and L. Sjogren, Z. Phys. B 65, 415 (1987).
s4C. A. Angell, in Proceedings of the Workshop on Relaxation

Effects in Disordered Systems, edited by K. Ngai and T. K.
Lee (McGregor and Werner, New York, 1985).

D. D. Awschalom and J. Warnock, Phys. Rev. B 35, 6779
(1987).
R. S. Berry, J. Jellinck, and G. Natanson, Chem. Phys. Lett.
107, 227 (1984). See also, M. R. Hoare, Ann. N.Y. Acad.
Sci. 279, 186 (1976).


