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Mean-field theory of the proton glass
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The mixed ferroelectric-antiferroelectric compound (Rb) (NH4)& H2PO4 (RADP) exhibits a

glassy phase which can be modeled as a spin glass. However, the protons whose order and disor-
der are being observed tunnel to a significant degree, making the spin glass an explicitly quantum-
rnechanical one. We solve the mean-field theory of a model for such a system, the Ising spin glass
in a transverse field, by a novel combination of discretized-path-integral methods and replica tech-
niques. The results provide an unambiguous microscopic picture of the effect of tunneling on a
glass transition.

I. INTRODUCTION

From a theoretical standpoint, the glass transition'
has proven equally resistant to the traditional methods
of the solid state and the liquid state. Since glasses are,
in general, topologically disordered (that is, the constitu-
ent molecules are disordered with respect to arrange-
ment in space), lattice-based treatments of solids would
seem to be of little relevance. The integral equations
and diagrammatic approaches of liquid theory are of
course, undaunted by topological disorder. However,
they, too, seem inappropriate when confronted by the
quenched (frozen-in) disorder characteristic of glasses.

An increasingly popular way to sidestep these
difficulties, and one that we will pursue in this paper, is
to consider a class of materials that might be called
glassy crystals. In many of these systems, typified
by K(Br)

&
„(CN), (Ar)

& „(N2)„, and (para-
H2)

&
„(ortho-H2), a crystalline solid is randomly

doped with an impurity which fits neatly into the crystal
lattice, but which possesses a rotational degree of free-
dom not present in the original material. At high
enough temperatures the impurities (CN, N2, and ortho-
H2, respectively) are orientationally disordered, regard-
less of concentration. However, when the concentration
is high enough, there is a critical temperature below
which the systems form an equilibrium orientationally
ordered phase, whereas at lower concentrations, one
finds a glass-transition temperature (T ). Below this T,
an orientationally disordered phase in formed (a so-
called orientational glass) with the disorder frozen in
rather than being thermal.

Even apart from the ill-posed question of whether
such phases are "true" glasses, there are a number of
reasons for looking at glassy crystals yet beyond these
orientational glasses. To begin with, the orientational
glass systems are complex. They inevitably go through
crystal-structure changes in the relevant portions of their
phase diagram, necessitating a coupled treatment of elas-
tic, quadrupolar, and (sometimes) dipolar forces. More-
over, even the simplest model which seems to capture
the universal features of these systems attributes the

glassiness to frustration imposed by the difficulties in or-
dering quadrupoles in three dimensions. Since there is
evidence that glassy behavior may be special in quadru-
polar cases, ' one should at least look at other examples
for comparison purposes.

These comments should certainly not be construed as
a claim that such materials are not relevant to the un-
derstanding of glasses. Indeed, among the many experi-
mental attributes that these substances share with topo-
logical glasses is the presence of two-level systems-
low-temperature behavior consistent with a finite density
of zero-energy excitations and with a dynamics con-
trolled by tunneling. "' If one ever hopes to under-
stand the ubiquity of these two-level systems it would
clearly be helpful to understand tunneling in glassy crys-
tals.

Accordingly, in this paper we will be considering a
rather different kind of glassy crystal —one in which
tunneling is manifestly important but in which the or-
dering is not quadrupolar and the crystal structure does
not undergo dramatic changes. The proton glass, '

RADP, as it is sometimes referred to, is the solid
Rb& (NH4) H2PO~. One can think of it as a solid
solution of the ferroelectric material RbH2PO~ (RDP)
and the antiferroelectric material (NH4)HzPO4 (ADP).
Both of these materials are in the KHzPO4 (KDP) class
of ferroelectric-antiferroelectrics. ' Above a certain tem-
perature (146 K for RDP and 148 K for ADP), ' the
acid (H2) protons are thermally disordered, leading to a
thermally random arrangement of dipoles —a paraelec-
tric phase. Below this temperature, however, the pro-
tons (and hence the dipoles) spontaneously order. For
RDP this order produces a macroscopic electrical
polarization —a ferroelectric phase —but for ADP both
the acid protons and the NH4 ions hydrogen bond to the
PO4's. The resulting perturbed ordered dipolar pattern
has nonzero polarization only on individual sublattices,
so the crystal as a whole has no net moment —an anti-
ferroelectric phase.

When RDP and AD P are mixed as
Rb& (NH4)„H2PO~, one finds a behavior reminiscent
of orientational glasses. At concentrations close enough
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to the pure materials (x &0.22 and x ~ 0.74), ' one con-
tinues to observe an order-disorder transition from the
paraelectric to the ferroelectric and antiferroelectric
states, respectively. However, at intermediate concen-
trations, the transition is replaced by one to a proton
glass state in which the disorder in proton positions be-
comes frozen in. The experimental evidence for there
being such a glass transition is quite impres-
sive ' ' ' in particular, we note the changes in Ra-
man spectra, ' the history dependence of the x-ray-
diffraction studies, ' and especially the observation of
the same kind of Volgel-Fulcher frequency dependence'
of thermal measurements that is found in topological
glasses (and is found here over 16 decades in frequen-

) 15, 18, 19
/ ~

The presence of discrete proton positions and a well-
characterized ferroelectric-antiferroelectric competition
at each lattice site makes this material conceptually a lit-
tle more straightforward than the orientational glass sys-
tems are. Nonetheless, one still has the same kind of
fundamental questions to answer: (1) What is it that
causes there to be a glassy phase instead of a paraelectric
phase? For topological glass the equivalent question
concerns how the solid glass differs from the supercooled
liquid. (2) Is there a thermodynamic transition underly-
ing the glass transition?' If there is, then perhaps the
characteristic dependence of T on the measuring time
scale, as dramatic as it is, can be viewed as simply a per-
turbation.

A third issue, which will particularly occupy our at-
tention in this paper, deals with the significance of quan-
tum fluctuation in glasses. The special relevance of this
question lies in the two facts that one cannot have two-
level tunneling dynamics without quantum tunneling and
that the proton ordering in RADP, as evidenced by the
large shifts in transition temperature upon deuteration of
the pure components (146 ~ 223 K for RDP and 148
~ 235 K for ADP), ' is dominated by tunneling. We
therefore suggest that the proton glass will eventually be
an excellent candidate for a theoretical study of the ori-
gin of two-level systems (possibly even with some of the
methodology presented here). However, the present pa-
per will not be pursuing two-level systems, as such. The
more obvious preliminary question (which we will pur-
sue) is simply what quantum fluctuations do to the sta
bility of the glassy phase —to T and to the range of
glass-forming concentrations.

To try to answer these questions we will be perform-
ing a mean-field calculation on a quantum-mechanical
spin-glass model for the RADP system. Classical spin-
glass models, i.e., models with classical spins situated on
lattice sites interacting with each other via quenched
random bonds, have been discussed extensively in the
literature &z, 2o, 2i so we will limit our discussion of them
to the appropriate places in the text. We do note,
though, that the use of such models instead of random
vertex models renders our study somewhat less applic-
able to details of RADP than one might like. The
reason we have chosen our kind of model is largely be-
cause it makes possible a systematic generalization to a
quantal spin-glass model. While there is considerably

less known about quantum spin glasses than about their
classical counterparts, there is practically nothing known
about quantal vertex models for pure systems (much
less for disordered ones). Besides, our overall goal is less
to mimic the special features of RADP than it is to un-
derstand the glass transition in a well-characterized sys-
tem.

The quantal spin-glass studies that have been per-
formed are mostly for the quantal Heisenberg spin
glass. These studies do raise interesting questions
about the nature of the quantum coherence in the glassy
region, but the proper model for our purposes is really
the transverse Ising spin glass. ' Here, somewhat less
work has been done. Chakrabarti presented an outline
of a mean-field theory but gave no explicit results for the
phase diagram or transition temperature. Moreover, as
pointed out by dos Santos, dos Santos, and Kischinhev-
sky in their renormalization-group study of the zero-
temperature behavior in one and two dimensions,
Chakrabarti's use of the relationship between the d-
dimensional quantal model and a (d + 1)-dimensional
classical model may not be quite correct. We shall re-
turn to this point later.

More recent mean-field studies have actually succeed-
ed in calculating the critical condition for the symmetric
transverse Ising spin glass (i.e., the model corresponding
to x = —,

' in RADP). Unfortunately, the authors either
fail to report a finite-temperature phase diagram or have
been forced to make additional approximations involving
the (imaginary-) time dependence of their quantal for-
malism. Usadel, for example, uses what he terms
the "static approximation, " whereas Walasek and
Lukierska-Walasek use the Bray and Moore ap-
proach of completely ignoring the imaginary time
dependence of the glassy order parameter. In any case,
none of the work is for other than the symmetric model,
so it is impossible to compare it with the experimental
phase diagram for RADP —which gives the transition
temperature as a function of composition (x).

A more detailed study on the transverse Ising spin
glass was, in fact, aimed at precisely the proton glass.
Pire, Tadic, and Blinc ' used replica methods on a vari-
ant of the Sherrington-Kirkpatrick Ising model to cal-
culate a complete phase diagram. As useful as their
work was, though, it should be emphasized that it was
not intended to be any more than a phenomenological
treatment of the quantum mechanics. Quantum Auctua-
tions were explicitly excluded from their computation.
One consequence of this exclusion is that they were not
able to identify the way in which quantum mechanics
modifies the order parameter which signals the glass
transition. This feature, too, will be discussed later.

What we set out to do in this paper is to calculate a
complete diagram for our model of the proton glass and
to do so without making any approximations beyond
those necessary to treat the classical model in mean-field
theory. In particular, we will present a method that al-
lows us to handle the quantum mechanics exactly. To
this end, the remainder of the paper will be organized as
follows: Section II will present our formulation of the
model, discussing in that context our new approach of
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combining replica methods for dealing with the
quenched disorder with discretized path integrals for
representing the quantum mechanics. Section III will
then give our mean-field solution and Sec. IV will con-
clude the paper with some specific comments on the pro-
ton glass and some more general remarks about quan-
tum eff'ects on the glass transition.

II. FORMULATION OF THE MODEL

A. Hamiltonian and the form of the disorder

In the classica/ limit it is possible to make a reason-
ably faithful model of KDP-like solids. ' Each acidic
(mobile) proton is simultaneously hydrogen-bonded to
two phosphates. The proton is thus in a double-well po-
tential, since it can choose to be near either phosphate.
However, experience with hydrogen-bonded solids indi-
cates that the proton positions are correlated not only by
long-range dipolar forces, but also by the fact that such
systems invariably obey the so-called ice rules —which
enforce a local correlation by governing the number of
protons near any one phosphate. Indeed, one way of un-
derstanding why ADP is antiferroelectric when RDP is
ferroelectric is to note that the hydrogen bonding from
the ammoniums in ADP make it difficult to have a fer-
roelectric proton pattern which still satisfies the ice
rules. ' ' Perhaps it is not surprising then, that these
considerations were explicitly included in the first
theoretical treatments of RADP. After it became
clear that it was important to treat the disorder at a
higher level than effective-medium theory, Matsushita
and Matsubara were able to include the ice rules in a
random six-vertex model, given them a phase diagram
with the experimentally correct topology.

An alternative theoretical approach, which turns out
to be not only far more useful for making a quantal
model, but qualitatively correct, as well, is simply to ig-
nore the ice rules. Akhiezer and Spol'nik pointed out
that if one does so, a mixture of hydrogen-bonding fer-
roelectric and antiferroelectric materials could be con-
sidered as an Ising spin glass. The Ising variable corre-
sponds to the two possible proton positions and the pro-
ton positions interact with each other through forces
which are randomly ferromagnetic or antiferromagnetic,
the proportion depending on the relative concentration
of ferroelectric- and antiferroelectric-inducing cations
(Rb and NH4). While such a model is no better at in-

cluding proton tunneling than the vertex model is, it can
easily be generalized. In precisely the same way that one
often includes the quantum mechanics in pure KDP-like
ferroelectrics, ' one just adds a transverse field to the Is-
ing spin glass to make it appropriate to the proton glass.

Our model, then, is the following. The Hamiltonian is
taken to be

(2. 1)

where [J k I refers to the set of quenched random-
coupling constants bet ween all the neighboring sites

(j,k) on our lattice, IC is the single-site tunneling in-
tegral, and

1

0
0 1

are Pauli spin matrices. In any given realization of the
set I J k I, the partition function is

—pA'(
I J ~ I )g([Jk])=T« (2.2)

However, to calculate the ensemble average of any quan-
tity the whole thermal average must be averaged over
the quenched disorder (including the normalization).
Hence the relevant free energy for our purposes is the
quenched average of the logarithm of g,

j3F=1—ng . (2.3)

P(J k ) =(2rrb, )
' exp[ —(J~k —Jo ) l(2b, )] . (2.4b)

In a slight departure from the previous papers, though,
we make the specific connection to the proton glass by
associating ferroelectric and antiferroelectric bonds (re-
spectively) with +J and —J coupling constants and by
letting 1 —x and x be the concentrations of these bonds.
Equating the means and variances of our Gaussian dis-
tribution, Eq. (2.4b), with that of the +J binary distribu-
tion then requires

—Jo ——(2x —1)J, b, =4x(1 —x)J (2.5)

As an aside, we note that the previous work, which
had a site rather than bond-based mapping, ends up with
almost the same expressions (the only diff'erence being a
factor of 2 in 5 ). Nonetheless, the site mapping sets the
bonds between ferroelectric and antiferroelectric sites to
zero —which means that it is not a frustrated model.
Although neither the level of treatment discussed here
nor that in the literature is sufficient to see the conse-
quences of this fact, ' one would not expect a realistic
nonfrustrated model to even produce a glassy phase.

To this point, the only difference between our model
and the one considered previously is that we choose not
to assume an infinitely weak, infinitely-long-ranged in-
teraction between spins. That is, we will be developing a
mean-field theory for the short-ranged Hamiltonian, Eq.
(2.1), rather than taking the Sherrington-Kirkpatrick ap-
proach and assuming that an infinite-ranged model au-

Here and henceforth, the overbar refers to an average
over a quenched distribution of J k's.

This probability distribution should, strictly speaking,
be correlated in accordance with the ice rules, but con-
sistent with our whole philosophy of using an Ising rep-
resentation, we shall assume each bond is governed by
an independent probability distribution P(J z ). Follow-
ing Akhiezer and Spol'nik, and Pire, Tadic, and
Blinc, ' we further take this distribution to be Gaussian
with a mean Jo and variance 5 chosen to reflect the rela-
tive concentrations 1 —x and x of ferroelectric and anti-
ferroelectric cations (respectively),

PF= I —. f lng( IJ « I ) g [P(J„)dJ ], (2 4a).
(~, k )
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B. Discretized-path-integral representation

The presence of tunneling, and the requisite noncom-
mutativity of operators in the Hamiltonian, creates a po-
tentially difficult technical problem. Fortunately, it is
straightforward to treat transverse Ising systems
rigorously by the simple expedient of writing the prob-
lem in a discretized-path-integral language. How this
can be done has been reviewed extensively in the litera-
ture, so we will not belabor it here. Briefly, however,
one takes the partition function, Eq. (2.2), and repeated-
ly inserts complete sets of states. The net result is that
the position of any one proton, which we can represent
as a (scalar) Ising variable p at each of the N sites,

1 0
0, P=+1; 1, P= —1

now can take on many different values p(1), . . . ,p(P) at
each site. In effect it becomes a P-dimensional vector p
whose components are all +1. The partition function
for the Hamiltonian of Eq. (2.1) is then reduced to a
trace over these vector p's of a (now) classical effective
Hamiltonian

Q(IJkl)=X ge»
Pl Pgr (Jk )

+g p, .a.p, +NPc
J

(2.6)

tomatically generates mean-field behavior. Still, neither
this feature nor the bond mapping are all that novel.
What our main methodological contribution is is the in-
troduction of discretized path integrals to the problem.

of Eq. (2.6). Clearly, as the uncertainty decreases, the
correlation between the t components must increase; in
the classical limit all the components have identical
values, making C and 7 both 1. Conversely, as quantum
fluctuations increase, the different t copies ought to be-
come progressively less correlated.

A somewhat more familiar interpretation of Eq. (2.6)
is derived by explicitly writing out the sums over t

P

pj pk g pj(t)pk(t)

P

p, a.p, =a g p, (t)p (t+1) .
(2.9)

In this light one recognizes that the t index can be con-
strued as labeling another direction in space beyond
those of the physical lattice. As long as one is at zero
temperature (so that the coupling constant a is finite
P~ ao), this perspective affords us an easy way to see
that a d-dimensional quantal system is equivalent to a
(d +1)-dimensional classical system. However, there
is another restriction on this interpretation besides the
limitation to zero temperature. In a quenched disor-
dered model, such as ours, the disorder is present only in
the physical directions —and there is no reason why the
resulting "striped disorder" model should be in the same
universality class as an isotropically disordered mod-
el. ' In fact, in our application, and we suspect in oth-
er quantal glass problems, the t index will end up com-
ing into the glass order parameter in a way fundamental-
ly different from that of the space indices.

(a), , —:a5«, , a—:—,
' lncoth(PK/P),

c =——,
' In[cosh(PK/P) sinh(/3K/P)], p(P + 1)=—p(1) .

This mapping is exact in the limit P~ oo, but a useful
physical interpretation obtains if we consider any finite
P. In a sense, the physical reason for introducing multi-
ple copies of each p is to represent the quantal Auctua-
tions (uncertainty) by a statistical average over the
values at different t's. Hence the relative magnitude of
the quantal fluctuations ought to be described by the
correlation function

C. Replica approach and definition
of the order parameters

Even without quantum mechanics, treating quenched
disorder requires coming to grips with the average of a
logarithm, as shown in Eqs. (2.3) and (2.4). The stan-
dard technique that we shall use for doing so is to use
the formal identity

&(t, , t, ) = (p(t, )p(t, ) )

and the appropriate susceptibility

(2.7) lnQ = lim
n 0

aQ"
dn

(2.10)

P
g=p ' g C(t, , t, )

which turns the free energy into a manageable average
over a product of n partition functions,

' d~, ' d7)C 7])72
0 0

(2.8) nf3F = lim Q" . —
n~0 Bn

where we have defined

r= lim (t/P)—
(rewriting C accordingly) and the angular brackets
represent the thermal average subject to the Hamiltonian

If we represent this product by defining n independent
replicas of each spin p (a= I, . . . , n), we obtain a trace
over all the spin replicas of a product of Boltzmann fac-
tors, one for each set of replicated spins o;. From Eq.
(2.6),
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Q"=g g . g exp —P g &( [p ) )

I N
a= 1

a= 1

g p .ap +nNPc.

(2. 1 1)

The quenched average can now be performed using
Eqs. (2.4) and (2.10), leaving us with the desired free en-
ergy

PF= —lim g g exp( —Pgf' )
n~0 Bn

1 n
&N

(2.12)

where the effective Hamiltonian is given by

a

+g g p, .a p, +nNPc . (2.13)

=(nNP) g &p&(t) )
j,a, t

(2.14)

[Technically, we also need an order parameter for sub
Iattice magnetization if we wish to look at the onset of
antiferroelectric order, but it is easy to show from Eq.
(2.5) that our Hamiltonian is symmetric about x = —,

' ex-

cept for the replacement of J by —J. Hence, the
paraelectric-antiferroelectric boundary is precisely that
of the paraelectric-ferroelectric boundary with x re-
placed by 1 —x.)

A more interesting question is what we have to look at
to observe the glass transition. In classical spin glasses,
one commonly looks at the Edwards-Anderson order pa-
rameter ' for an arbitrary site j,

Thus, the proton-glass problem has been turned, without
approximation, into an ordinary classical spin problem,
but each spin variable p that we started with now ap-
pears as nP copies —n for the disorder and P for the
quantum mechanics.

Of course, the end result of the calculation will not be
the free energy per se. What we really want are the or-
der parameters. For the purposes of distinguishing the
ferroelectric from the paraelectric phase, it suffices to
look at the magnetization

Nm=N-' y &o;)

where the last average is performed with respect to the
(classical limit of the) efFective Hamiltonian, Eq. (2.13).
This quantity certainly satisfies the minimum require-
ments for a glass order parameter: In the paraelectric
phase (above T ), q vanishes because the thermal average
of any spin is zero for any realization of the random cou-
plings J &. There is no net magnetization in the glassy
phase (below T ) either, but then q is finite since the
magnetization of any given spin does not vanish until
the quenched average is performed.

Still, to be an experimentally interpretable order pa-
rameter, the quantity q would have to specify on what
time scale the experiments were to be conducted. Unfor-
tunately, there is no unanimity as to how one should
make such a specification. Some aspects of the relation-
ship between the various definitions of q and the multi-

ple time scales characteristic of glasses have been dis-
cussed in the literature, but even these aspects are
largely concerned with q within the glassy phase—
which we cannot study in mean-field theory without
breaking replica symmetry. Since we lack a scheme
which tells us how to break replica symmetry quantum
mechanically, we will have to be content here with sim-
ply locating a T without commenting on the detailed
dynamics of the glass. Our results should probably be
taken to mean as much (or as little) as those of the rest
of the spin-glass literature in this regard. We do note,
however, that for RADP itself, Courtens, Huard, and
Vacher' suggest that they have actually measured q at
Brillouin scattering frequencies ( —3X 10' Hz).

Our quantum mechanical equivalent of the classical
Edwards-Anderson order parameter is clearly

(2. 15)

As with the classical version, we can use also replica
techniques to rewrite this q as a thermal average under
an effective Hamiltonian. The quantity which is to be
subjected to the quenched average is

g&')~= rT( 'oe ~ ) Tr(o,'e )Q ([Jik ] ),
but the partition function for a given realization, Eq.
(2.2), obeys the relation

Q (I Jil, ))= lim Q" (IJ k I)
n —2

= lim g g exp —P g &( [p I )
n~0

tt —2 a=1Pl I N

with the argument of the exponent defined by Eq. (2.11).
Moreover, by first inserting the appropriate generating
field into the Hamiltonian, Eq. (2.1), then converting it
to path-integral form

P

Ph, cr'~(Ph IP) g p, (t),

which, via replica methods, can be rewritten as

q =q ~= &p, p~) (a~p),
and finally differentiating with respect to the field, it is
easy to confirm that
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Tr(o. 'e ~
) = lim

h ~0
J

~Q([J,k l )

B(Ph, ) n —1

P1
n —1

I N

=P ' g g g p" '(t)exp[ —P&( Ip" '] )],

since we can arbitrarily assign the replica label (n —1) to
this set of spins. Thus, combining these expressions,

P
(cr') = limP g g g p". ](t)it"(t')

t, t'=1
P 1 Py- —pV= —pV] —pV2, (3.1a)

mean-field theory that has already been proven useful in
the pure (transverse Ising) limit of our problem. The
general strategy is to consider the spin-spin interaction
terms,

n

Xexp —P g A(Ip I)
a=1

—PV, = g (t JO~P)XP' Pk (3.1b)

and taking the quenched averaged required by Eq. (2.15)
enables us to write the desired form for the quantal
Edwards-Anderson order parameter

—PV~= g
a

as a perturbation on the single-site Hamiltonian,

(3.1c)

P
q= P p t p~t a+

t, t'=1
X P

=[Nn(n —1]] ' x x p ' x p, (t]pt]t')) .

j =1 a, f3 t, t'=1
(a+P)

(2.16)

Here, the average is understood to be taken with respect
to the eff'ective Hamiltonian given in Eq. (2.13). In writ-
ing Eq. (2.16), we used both the fact that we could rela-
bel replicas (n —1) and (n) as some a and P, and the re-
striction to unbroken replica symmetry in order to note
that all n (n —1) pairs of a~P give identical answers.
To take care of the normalization of the average, we also
used the special feature that replica-derived effective
Hamiltonians have of vanishing in the n ~0 limit.

The special form of the order parameter constitutes
one of the principal results of this paper. In particular,
it is hard to miss the fact that our expression has a
structure similar to that of the literature order parame-
ters for both the quantal Heisenberg model and the
transverse Ising model. ' In path-integral terms one
can understand this structure fairly easily. Classically,
one often interprets the correlation between replicas o.
and ]t3 to be a measure of the "overlap" between any two
of the many local free-energy minima present in a
glass. In light of our interpretation of the quantal sus-
ceptibility, Eq. (2.8), what we are seeing is how quan-
tum fluctuations diminish that overlap. Hence, even in
advance of doing a calculation, we can immediately pre-
dict that tunneling ought to decrease the extent of a
glassy phase.

III. MEAN-FIELD THEORY

A. Derivation

—P&o =a g pl ( t )p, ( t + 1)+ nNPc
J,a, t

—y Nnm P' g p, (t)—
J,a, t

Nn(n —1)q —P g g gp, (t)pt(t')-
j a/3

(a&@)

(3.2a)

and defining the reference-system partition function
—P&o

Qo ——Tr(e ') . (3.2b)

To first order in a cumulant expansion, the partition
function for the full effective Hamiltonian Q may then
by written in terms of Qo and the interaction averaged
in the reference system, ( V )o:

Q =Tre ~ =Qoe~.a- —( pv),

Provided we do enforce the order-parameter constraint,
it has been shown that this level of approximation is pre-
cisely equivalent to ordinary Curie-Weiss mean-field
theory. ' However, our application differs from previ-
ous ones in two ways. First, we obtain the desired free
energy not by taking a logarithm, but by taking the
derivative prescribed by Eq. (2.12). Since each term of
&,s vanishes as n ~0,

—/3&0 ——g g p, a.p, +nNPc .
J a

More specifically, we define an "optimum" reference sys-
tem by using two Lagrange multipliers, y and g, to en-
force the constraint that order parameters m and q (re-
spectively) take on their self-consistently determined
values in the reference system itself From . Eqs. (2.9),
(2.14), and (2.16), this requirement is seen to suggest that
we revise &o into the reference Hamiltonian by writing

One can approach the statistical mechanics of the
classical effective Hamiltonian, Eq. (2.13), by any num-
ber of routes. We choose to do so here via a version of

PF = lim Qo—+ lim ( —PV)o .
n 0 Bn n 0 071

(3.3)
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Secondly, because we have spin-spin interactions (in
replica space) even in the reference system, we cannot
treat the reference system exactly. Fortunately, for our
rather limited purposes of simply ascertaining the phase
boundaries, it suffices to derive a Landau expansion
through second order in the order parameters. In what
follows we will calculate each of the two terms in Eq.
(3.3) through second order in y and g—confirming
along the way that this order is all that is necessary.

1. Reference free energy and the constraint conditions

It is convenient to perform an expansion for Qo with
the trivially transformed Hamiltonian

—P&o ———P&o+y(Nnm)+g[Nn (n —1)q], (3.4)

so that the reference free energy becomes

P—Fo ——lim Qo
n 0 Bn

aN—ym +Njq+ lim Qo
n- 0 dn

with

I ag,'
Qo =(Qo)oo+y

00

ag,'

ag

a'g,' a'g,'

00

, a'g,'
I (2

ag oo

Here the subscript 00 means y =/=0.
From Eqs. (3.2) and (3.4),

(3.5)

(3.6)

—pA' P
(Qo)oo ——(Tre ')oo —— g g exp a g p(t)p(t +1)+Pc

)M(&) p(P) t =1

ag,' =NP '
p t

a, t

a o
I

=N(p x xp, (t'tp~(t'))
ag 00

(a~p)

a2g t

00
=N P p tpPt'

ap tt 00

a'g,' I

g p (t )p~(t )p'(t, )p'(t, )
ag'

p )
1 2

(5~v) 3' 4

I

=N P g g P p (t&)p~(tz)p~(t3)
a t3, 5 t&,rZt3,

(p~&)

where for any quantity X we define its average in the
y=g=0 reference system by

I

(X ) '—:Tr(Xe ")

and we have made explicit use of the fact that Moo is di-
agonal in the site index j.

As we note in the Appendix, it is possible to take the
(exact quantal) P~ oo limit of these expressions analyti-
cally. If we do so, we can take advantage of two
features of the 00 reference: different replicas factor
and, for any given replica, only averages with an even
power of p survive. The end result is that most of the
derivatives of Qo vanish, and of the remainder, only cer-
tain terms contribute. In particular, only

(go )oo= [2 cosh(PK ) ] ",
aug t :Nn g(0)

00

aug 1

ag'
=2Nn(n —1)X~o~

(3.7)

is the reference system equivalent of the susceptibility of

survive. Note that the coeKcients involving n come
from the replica sums and the quantity

1 I
X(o):f dr f dr'C(o)(r~r )

0 0 (3.8)= tanh(PK ) /PK
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Eq. (2.8). That is, it requires the isolated spin-
(imaginary-time) correlation function

C„,(, ')=(p( )p, ( '))„, (3.9)

P
PH—(0)

——(2 g p(t)/2(t +1)+Pc . (3.10)

Combining Eqs. (3.5) —(3.7) now gives us the final form
for the reference free energy (through second order),

calculated with the single-site, single-replica Hamiltoni-
an

m =yX(p)q q =2/X(p)
2 (3.12)

at least through leading order. As promised, Eq. (3.12)
confirms that an expansion second order in y and g is
also second order in m and q.

2. Average potential energy

The remaining term in the full free energy, Eq. (3.3), is
the interaction term, which is given by Eq. (3.1). With
the aid of Eq. (2.9) we can express the necessary aver-
ages as

PF0/—N = —
m y+qua+in[2 cosh(PK )]

+—'y &(0) 0 &(0) . (3.1 1)

( —PV, )0/N= ,'z(PJ(—)/P)g (P (t))(),
a, t

(3.13)
( —pV2)0 ——4z(pt3, /P) g g (p (t)p~(t') )(),

We must still calculate what y and g have to be in order
to satisfy the order-parameter constraints, but it is easy
to verify from Eqs. (3.2) and (3.5) that the conditions

a( —pF, ) a( —pF, )
=0, =0

ay
= '

ag

will serve to fix the magnetization and glass order pa-
rameters, respectively. Hence by direct differentiation of
Eq. (3.11) we find the constraint conditions to be

for any lattice of coordination number z. These refer-
ence system averages, as with Qp, have to be expanded
in powers of the Langrange multipliers. However, since
the calculation proceeds similarly to that of the refer-
ence system, we simply report that, to lowest order,

P
(p (t) )()=y X(p)

whereas, to lowest order,

P
P g (P, (t, )P~(t2))() —'

4g X(0) (~&p)

3)(0)+y /i)(0)+4(n —1)g X(0)(/j(0) (a=p),

with the relevant isolated spin-correlation functions and susceptibilities

1 1

vg(0) —— dr dr'C(0)(r, r') = —,
' sech PK+ —,

' tanh(PK)/PK,

1 1 1 1

Q(p) = dr) d7 2 dr3 dr4C(p)(7), r2)[C(p)(r), r2, r3, 74) —C(p) (w), r2)C(p) (r3, r4)]
0 0 0 0

= —[3 sech (pK)/4(pK) ]+[3 tanh(pK)/4(pK) ]—[tanh(pK) sech(pK)/(2/3K)],

C(0)(ri~r2~r3~r4) (/ (r) )p(r2)p(r3)p(r4) ~(0)

(3.14)

described and calculated in the Appendix.
Substituting these results into Eqs. (3.13) and (3.1a)

yields the final form for the interaction term in the free
energy,

lim ( —PV )0/N = —,'(PJ0)zy X(0)+—'(P4) z
n 0 Bn

B. Results

In classical Landau-theory fashion, our phase boun-
daries are prescribed by the condition that if we look at
the sum of Eqs. (3.11) and (3.15) the coefficients of the
order parameters squared must vanish. Thus, for the
paraelectric-ferroelectric phase boundary, we require
that the coefficient of m (or equivalently of y ) van-
ishes,

X ['q(p) +y P(0)

+40 &(0)(i/)(0)+&('0) )] .
X(0)= (pI0 )zX(())+ —(p&) zi/(0) (3.16)

(3.15)
and for the paraelectric-glass phase boundary, the glass
transition, we require that the coefficient of q (or g )

vanishes,
Through second order, the entire mean-field free energy,
Eq. (3.3), is determined by Eqs. (3.11), (3.12), and (3.15). g(p) —(p6 ) z(X(0)+ 1/)(0) ) (3.17)
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so the two equations reduce to

1=(PJO)z, 1=(Pb, ) z, (3.18)

the standard, mean-field result for a classical Ising spin
glass. We have plotted the predictions of these equa-
tions in Fig. 1 using Eq. (2.5) to relate Jo and b, to the
proton glass, or more correctly (since K =0 here) to the
100% deuterated proton glass.

Several features of this figure stand out. To begin
with, our (rather simplistic) original model built in the
fact that the phase diagram has to be symmetric about
x = —,'. Somewhat surprisingly, not only in this regard,
but in a variety of other attributes our phase diagram
ends up being in reasonably good agreement with experi-
mental results. For example, our glass-forming concen-
tration range (assuming z =4 for a diamond lattice of

Along with the order-parameter definition, Eq. (2.16),
these two equations are the major results of this paper;
they describe the dependence of the critical and glass-
transition temperatures on the average bond strength,
J0, and the width of the bond distribution, A.

The physical content of the equations is somewhat ob-
scured by their dependence on the two functions of the
tunneling integral, 7~0~(pK) and p~o~(pK), which are
defined by Eqs. (3.8) and (3.14). However, looking at
some limiting cases immediately reveals most of the
physics. In the classical limit (K/JO~O)

&(o) 1 4(0)~0

phosphates) is 0.2764&x &0.7236, whereas real RADP
(Ref. 14) seems to have 0.22&x &0.74. The general to-
pology of the diagram is also correct, ' although it
should be pointed out that the methods of this paper, by
themselves, cannot be used to predict the ferroelectric-
glass (and antiferroelectric-glass) boundaries. In order to
draw the vertical dashed lines, we had to appeal to an
argument by Toulouse to the effect that Parisi's
replica-breaking scheme requires that equations
governing such boundaries cannot involve temperature.

Perhaps we should also point out that more realistic
treatment of the disorder will yield the experimentally
observed convex shape to the T -versus-x curve, in place
of our concave shape. ' Further, our (frequency-
independent) predictions for the location of this curve
can, at best, be in qualitative accord with experimental
measurements that are explicit functions of frequency.
Thus, we can do little more than note that our ratio of
the glass-transition temperature, T, to the pure-system
(RDP) critical temperature is T /T, =0.48 at x =0.35,
whereas the real ratio ranges from the highest-frequency
Raman result of T /T, =(110 K)/(146 K)=0.75 to the
lowest-frequency dielectric result of (20 K)/(146 K)
=0.14 (at this same concentration). ' Still, the original
physical question that motivated this work —what it is
that tunneling can do to such a phase diagram? —has
finally come within our reach.

If we look at the zero temperatur-e limit (kT/J~0)
XIO)~(pK ) r g(p)~ 4 (pK)

the two phase boundary equations become

1=(JO/K)z+ 3(b, /K) z, 1=—,'(—b, /K) z . (3.19)

FE

0 0.2

I

I

I

I

I

I

I

J ~ t.J
0.4 0.6 0.8

AFE

FIG. 1. The mean-field phase diagram predicted for
Rb, „(NH4) H~PO4 in the classical limit. The vertical axis is
the temperature in units of the interaction energy, J, and the
horizontal axis is the mole fraction, x, of antiferroelectric cat-
ion NH4+. PE refers to the paraelectric (thermally disordered)
phase, AFE and FE refer to the antiferroelectric and ferroelec-
tric (crystalline ordered) phases, and PG refers to the proton
glass (frozen-in disordered) phase. To create solid lines in this
diagram, Eq. (3.18) was solved with z =4 and 0(x (—'. The
right-hand side of the diagram then follows by symmetry. As
explained in the text, the fact that the dashed lines must be
vertical follows from replica-symmetry-breaking considerations
not pursued in this paper.

These results, plotted in Fig. 2 show that not only the
ordered phases, but also the glassy phase, can be
suppressed by tunneling; for both kinds of phases there
exists critical values of K/J beyond which only paraelec-
tric behavior is possible —even at zero temperature. An
equivalent way of seeing this effect is to solve Eq. (3.17)
numerically for the glass-transition temperature as a
function of the tunneling integral (as is shown in Fig. 3).
The monotonic decrease of T with K/J looks much like
the decrease of T, with K/J observed in the pure trans-
verse Ising model, but rather than destroying ferroelec-
tric order the way it does in the pure model, quantum
fluctuations here are evidently suppressing glassy frustra-
tion.

Our overall phase diagram (Fig. 4) makes these points
in somewhat more detail. Interestingly enough, this dia-
gram disagrees with some of the speculation that has ap-
peared in the literature. Before any quantum studies
were done, it was expected that tunneling would substan-
tially increase the glass-forming concentration range.
By way of contrast, our maximum glass-forming range,
that at T=O, is 0.2695 &x &0.7305 for z =4, practically
identical with our classical (0.2764 —0.7236) range. Simi-
larly, while Pire, Tadic, and Blinc ' successfully predict-
ed that quantum effects ought to lower the glass-
transition temperature, their phenomenological results
are quantitatively, and even qualitatively, different from
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FIG. 2. The mean-field phase diagram for RADP at zero
temperature. The vertical axis here is the tunneling integral,
K, in units of the interaction energy, J, and the dashed lines
are schematic (not precisely vertical) lines connecting the
known points at the classical value of K/J =0 and at the criti-
cal value of K/J. Otherwise, the labeling of the figure is as
discussed in the caption to Fig. 1. Note that the critical E/J
for destroying the glassy phase is lower than that for destroy-
ing the ordered phases, but that the width (in x) of the glassy
region is largely independent of K/J —largely unchanged by
quantum e6'ects.

FIG. 4. The complete mean-field phase diagram for RADP.
The labeling and the significance of the dashed lines are as dis-
cussed with Figs. 1 and 2. Note that there is no temperature
which permits a glassy phase without also allowing an ordered
phase.

lize the ordered phases while preserving the glassy
phase. We find that the glassy phase is more susceptible
to destruction by tunneling than the ordered phases.

ours. In particular, they arrive at the unphysical result
that increasing the amount of frustration (increasing x
from 0 or decreasing x from l) ought to stabilize the or-
dered [ferroelectric (FE) and antiferroelectric (AFE)]
phases with respect to quantum fluctuations —ought to
increase the critical K/J. Moreover, they predict that
there ought to exist some K/J high enough to destabi-

2.0

1.5

1,0

p p I ! i I I I l I I I

0 0.5 1 1.5
K/J

l i « i l

2 2.5

FIG. 3. The dependence of the glass-transition temperature
Tg on the tunneling integral I( for x = —' (the traditional spin-

glass condition of equal fractions of ferroelectric and antifer-
roelectric bonds). For the z =4 curve shown, any increase in
tunneling beyond the critical value of K/J =7' ' will forbid
the existence of a glassy phase at any temperature.

IV. DISCUSSION

Although much of this paper was written with the
compound RADP in mind, the paper is probably better
regarded as having presented the mean-field theory for
the asymmetric transverse Ising spin glass —perhaps the
simplest microscopic model incorporating both tunneling
and glassy behavior. We found that one could indeed set
up and solve such a theory by combining replicas with
discretized path integrals (and thereby avoid making any
approximations for either the disorder or the quantum
mechanics). For this model, at least, we were able to
identify the onset of glassy disorder with a correspond-
ing change in a quantum-mechanical Edwards-Anderson
order parameter. The glassy region (so defined) was then
shown to be even easier for tunneling to thermally disor-
der than the analogous crystalline ordered phases,
though we also showed that the relative stability of the
glassy and ordered phases was all but unaffected by the
presence of tunneling.

To the extent that one really can think of RADP in
the terms presented here, there are a number of fairly
specific experimental implications of our results. We
note, first, that it is possible to increase the effective
value of the tunneling integral, K, by subjecting the crys-
tals to pressure. ' Since Fig. 3 can thus be read as a plot
of the glass-transition temperature versus pressure, we
predict (as did Samara and Schmidt ) that it ought to be
possible to totally destroy the glassy phase at high
enough pressure. Moreover, contrary to what is implied
by previous work, ' we would predict that the critical
pressure ought to be less than the 15 kbar required to
disorder pure RDP (Ref. 53)—so there should be pres-
sures which do allow ferroelectric or antiferroelectric or-
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dering in the appropriate concentration ranges, but
which fail to permit a glass to exist at any concentration.

Of course, one can decrease K experimentally, as well
as increase it because substituting deuterium for hydro-
gen effectively sets K to zero. ' So clearly, a comparison
of the results obtained ' ' for Rb, (ND4) D2PO4
with those of the fully protonated material ought to be
equivalent to a direct check of the qualitative inAuence
of tunneling (at least for temperatures much larger than
the 1 K associated with seeing two-level —system behav-
ior''). Consistent with our ideas, it has already been
found that the glass-transition temperature is 2 —3 times
larger for deuterated compounds. We can go further
though, and use Fig. 4 to predict that the fully deuterat-
ed material ought to have a qualitatively similar phase
diagram to that of the protiated version, with almost the
same critical concentrations, but with a noticeably lower
ratio of T (x = —,') to T, (x =0, 1).

From a somewhat broader perspective, it would also
be useful if this paper could serve to point out some of
the limits to our current knowledge of quantal behavior
in glasses. We still have no model which predicts both
two-level systems and macroscopic glassy behavior from
a microscopic Hamiltonian. At a minimum, the work
here would have to be extended so as to permit treat-
ment of elementary excitations in the glassy region itself
before either the model or the methods would be
relevant. Similarly, we have no particular insight into
the frequency dependence of any measurable quantities
[although it might prove illuminating to examine the
analytical continuation of the order parameter defined
by Eq. (2.16)].

One direction in which there has been some progress,
though, is in raising the question of what quantum
mechanics does to frustration. ' We have noted here
that quantal fluctuations act against crystalline order in
much the same way (albeit slightly less efficiently) than
they act against glassy disorder. In a path-integral
language one might be able to think about such effects
by remembering that quantum mechanics tends to tip
the vectors p away from the classical (1, 1, . . . , 1) direc-
tion, making the p -pk interaction terms weaker. The

I

This appendix summarizes some of the statistical
mechanics of the isolated spin Hamiltonian, Eq. (3.10).
Since each p(t) is +1 and p(P +1)—:p(1), the behavior
of the isolated system is just that of a one-dimensional
Ising model with periodic boundary conditions and cou-
pling constant a = —,'1ncoth(f3%/P). As such, the parti-
tion function and correlation functions can be evaluated
exactly via transfer-matrix methods for any value of P.

In terms of the eigenvalues of the transfer matrix,
+PK /P

+ —e

the partition function is

Q(o) ——A. + + A, =2 cosh(PK), (A 1 )

and the general correlation functions can be written as

vectors could actually become perpendicular —setting
the interaction and hence the frustration to zero —if we
let K~ oo. Certainly, in this limit both frustration and
crystalline order are destroyed, but for less extreme cases
we still notice that a quantal spin has more "degrees of
freedom" (more components in this path-integral sense)
than a classical spin. By analogy with comparisons of
Ising and Heisenberg spins, this fact alone may suggest
why it is that quantum mechanics leads to a lessening of
frustration.

Note added in proof Sinc. e this paper was submitted,
experimental studies by G. A. Samara and H. Terauchi
[Phys. Rev. Lett. 54, 347 (1987)] have confirmed our pre-
diction that the glassy phase should be destroyed by
pressures even less than those necessary to suppress the
ordered phases.
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APPENDIX

C(0)(rl, . . . , rk )= (p( pl ' ' ' p) ~(o)
1 2 /'

~ —1(g2(g32g43. . . gkk —(gk 1 g2 lg32g43. . . gkk —

leak

1

=cosh(/3K)[1+2(r) r2+r3 — r—
k )]lcosh(/3K )—(0 & r( & r2 « r«1) (A2)

for k even. For k odd, the analogous correlation func-
tions vanish by symmetry.

Note that by defining

w-—= t /P

we have arrived at expressions which are equally valid
for finite or for infinite P. However, in actual use one
often has to compute susceptibilities involving sums over
t's,

X X

When these kinds of sums are required it is obviously
easiest to take the P~ oo limit and turn the sums into
integrals,

d d

We also point out that while the correlation function
in Eq. (A2) is manifestly independent of the ordering of



36 MEAN-FIELD THEORY OF THE PROTON GLASS 8495

the p's,

~Pr(Ptz ~(o)= ~P(zP(( ~(o)

the final formula requires that we first order the Ising
sites t, , tk if we are going to plug into the formula.

This feature no doubt arises because classical spins are
naturally ordered on a one-dimensional lattice. Still, it is
amusing to note the analogy with the time ordering that
shows up in nondiscretized-path-integral versions of
quantum mechanics.
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